Advances in Amylases—What’s Going on?
1. Introduction
2. The Special Issue “Advances in Amylases”
3. Conclusions
Funding
Conflicts of Interest
List of Contributions
- Tian, Y.; Wang, Y.; Zhong, Y.; Møller, M.S.; Westh, P.; Svensson, B.; Blennow, A. Interfacial catalysis during amylolytic degradation of starch granules: current understanding and kinetic approaches. Molecules 2023, 28, 3799. https://doi.org/10.3390/molecules28093799
- Zinck, S.S.; Christensen, S.J.; Sørensen, O.B.; Svensson, B.; Meyer, A.S. Importance of inactivation methodology in enzymatic processing of raw potato starch: NaOCl as efficient α-amylase inactivation agent. Molecules 2023, 28, 2947. https://doi.org/10.3390/molecules28072947
- Zhai, J.; Li, X.; Svensson, B.; Jin, Z.; Bai, Y. Increasing protein content of rice flour with maintained processability by using granular starch hydrolyzing enzyme. Molecules 2023, 28, 3522. https://doi.org/10.3390/molecules28083522
- Shao, Y.; Wang, W.; Hu, Y.; Gänzle, M.G. Characterization of the glucan-branching enzyme GlgB gene from swine intestinal bacteria. Molecules 2023, 28, 1881. https://doi.org/10.3390/molecules28041881
- Fawaz, R.; Bingham, C.; Nayebi, H.; Chiou, J.; Gilbert, L.; Park, S.H.; Geiger, J.H. The structure of maltooctaose-bound Escherichia coli branching enzyme suggests a mechanism for donor chain specificity. Molecules 2023, 28, 4377. https://doi.org/10.3390/molecules28114377
- Vester-Christensen, M.B.; Holck, J.; Rejzek, M.; Perrin, L.; Tovborg, M.; Svensson, B.; Field, R.A.; Møller, M.S. Exploration of the transglycosylation activity of barley limit dextrinase for production of novel glycoconjugates. Molecules 2023, 28, 4111. https://doi.org/10.3390/molecules28104111
- Rhimi, M.; Da Lage, J.-L.; Haser, R.; Feller, G.; Aghajari, N. Structural and functional characterization of Drosophila melanogaster α-amylase. Molecules 2023, 28, 5327. https://doi.org/10.3390/molecules28145327
- An, Y.; Tran, P.L.; Yoo, M.-J.; Song, H.-N.; Park, K.-H.; Kim, T.-J.; Park, J.-T.; Woo, E.-J. The distinctive permutated domain structure of periplasmic α-amylase (MalS) from glycoside hydrolase family 13 subfamily 19. Molecules 2023, 28, 3972. https://doi.org/10.3390/molecules28103972
- Auiewiriyanukul, W.; Saburi, W.; Ota, T.; Yu, J.; Kato, K.; Yao, M.; Mori, H. Alteration of substrate specificity and transglucosylation activity of GH13_31 α-glucosidase from Bacillus sp. AHU2216 through site-directed mutagenesis of Asn258 on β→α loop 5. Molecules 2023, 28, 3109. https://doi.org/10.3390/molecules28073109
- Marecek, F.; Janecek, S. A novel subfamily GH13_46 of the α-amylase family GH13 represented by the cyclomaltodextrinase from Flavobacterium sp. No. 92. Molecules 2022, 27, 8735. https://doi.org/10.3390/molecules27248735
- Sidar, A.; Voshol, G.P.; Vijgenboom, E.; Punt, P.J. Novel design of an α-amylase with an N-terminal CBM20 in Aspergillus niger improves binding and processing of a broad range of starches. Molecules 2023, 28, 5033. https://doi.org/10.3390/molecules28135033
- Wang, Y.; Wu, Y.; Christensen, S.J.; Janecek, S.; Bai, Y.; Møller, M.S.; Svensson, B. Impact of starch binding domain fusion on activities and starch product structure of 4-α-glucanotransferase. Molecules 2023, 28, 1320. https://doi.org/10.3390/molecules28031320
- Aranda-Caraballo, J.; Saenz, R.A.; López-Zavala, A.A.; Velazquez-Cruz, B.; Espinosa-Barrera, L.; Cárdenas-Conejo, Y.; Zárate-Romero, A.; Linares-Vergara, O.; Osuna-Castro, J.A.; Bonales-Alatorre, E.; Centeno-Leija, S.; Serrano-Posada, H. Binding specificity of a novel cyclo/maltodextrin-binding protein and its role in the cyclodextrin ABC importer system from Thermoanaerobacterales. Molecules 2023, 28, 6080. https://doi.org/10.3390/molecules28166080
References
- Drula, E.; Garron, M.L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef] [PubMed]
- Janecek, S.; Svensson, B. How many α-amylase GH families are there in the CAZy database? Amylase 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Janecek, S.; Gabrisko, M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell. Mol. Life Sci. 2016, 73, 2707–2725. [Google Scholar] [CrossRef] [PubMed]
- Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991, 280, 309–316. [Google Scholar] [CrossRef] [PubMed]
- MacGregor, E.A.; Svensson, B. A super-secondary structure predicted to be common to several α-1,4-d-glucan-cleaving enzymes. Biochem. J. 1989, 259, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Takata, H.; Kuriki, T.; Okada, S.; Takesada, Y.; Iizuka, M.; Minamiura, N.; Imanaka, T. Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1→4)- and α-(1→6)-glucosidic linkages. J. Biol. Chem. 1992, 267, 18447–18452. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, H.M.; MacGregor, E.A.; Henrissat, B.; Sierks, M.R.; Svensson, B. Starch- and glycogen-debranching and branching enzymes: Prediction of structural features of the catalytic (β/α)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. 1993, 12, 791–805. [Google Scholar] [CrossRef] [PubMed]
- Kuriki, T.; Imanaka, T. The concept of the α-amylase family: Structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 1999, 87, 557–565. [Google Scholar] [CrossRef] [PubMed]
- MacGregor, E.A.; Janecek, S.; Svensson, B. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 2001, 1546, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Van der Maarel, M.J.E.C.; van der Veen, B.; Uitdehaag, J.C.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 2002, 94, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.; Cioci, G.; Moulis, C.; Severac, E.; Remaud-Simeon, M. Bacterial α-glucan and branching sucrases from GH70 family: Discovery, structure-function relationship studies and engineering. Microorganisms 2021, 9, 1607. [Google Scholar] [CrossRef] [PubMed]
- Leoni, C.; Gattulli, B.A.R.; Pesole, G.; Ceci, L.R.; Volpicella, M. Amylomaltases in extremophilic microorganisms. Biomolecules 2021, 11, 1335. [Google Scholar] [CrossRef] [PubMed]
- Henrissat, B.; Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 1997, 7, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef] [PubMed]
- Stam, M.R.; Danchin, E.G.; Rancurel, C.; Coutinho, P.M.; Henrissat, B. Dividing the large glycoside hydrolase family 13 into subfamilies: Towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 2006, 19, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.A.; DeVeaux, A.L.; Juliano, B.R.; Photenhauer, A.L.; Boulinguiez, M.; Bornschein, R.E.; Wawrzak, Z.; Ruotolo, B.T.; Terrapon, N.; Koropatkin, N.M. BoGH13ASus from Bacteroides ovatus represents a novel α-amylase used for Bacteroides starch breakdown in the human gut. Cell. Mol. Life Sci. 2023, 80, 232. [Google Scholar] [CrossRef] [PubMed]
- Janecek, S.; Marecek, F.; MacGregor, E.A.; Svensson, B. Starch-binding domains as CBM families—History, occurrence, structure, function and evolution. Biotechnol. Adv. 2019, 37, 107451. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janeček, Š. Advances in Amylases—What’s Going on? Molecules 2023, 28, 7268. https://doi.org/10.3390/molecules28217268
Janeček Š. Advances in Amylases—What’s Going on? Molecules. 2023; 28(21):7268. https://doi.org/10.3390/molecules28217268
Chicago/Turabian StyleJaneček, Štefan. 2023. "Advances in Amylases—What’s Going on?" Molecules 28, no. 21: 7268. https://doi.org/10.3390/molecules28217268
APA StyleJaneček, Š. (2023). Advances in Amylases—What’s Going on? Molecules, 28(21), 7268. https://doi.org/10.3390/molecules28217268