Chemically Modified Starches as Food Additives
Abstract
:1. Introduction
2. Chemical Modifications of Starch for Food Purposes
3. Modified Starches as Food Additives—Production and Characteristics
3.1. Single Modified Starches
3.1.1. Oxidized Starch (E 1404)
3.1.2. Stabilized Starches
Starch Esters
- Acetylated starch (E 1420)
- Monostarch phosphate (E 1410)
- Octenyl succinic starches (E 1450; E 1452)
Starch Ether—Hydroxypropyl Starch (E 1440)
3.1.3. Cross-Linked Starch—Distarch Phosphate (E 1412)
3.2. Dually Modified Starches
3.2.1. Oxidized and Stabilized Starch—Acetylated Oxidized Starch (E 1451)
3.2.2. Cross-Linked and Stabilized Starches
Phosphated Distarch Phosphate (E 1413)
Acetylated Distarch Phosphate (E 1414)
Acetylated Distarch Adipate (E 1422)
Distarch Hydroxypropyl Phosphate (E 1442)
3.3. Heterogeneously Dually Modified Starches
4. Specific Properties and Applications of Chemically Modified Starches
4.1. Modified Starches as Resistant Starch
4.2. Modified Starches as Fat Substitutes
4.3. Modified Starches as Encapsulating Agents
4.4. Modified Starches as Micronutrient Carriers
4.5. Modified Starches as Emulsifiers and Stabilizers
4.6. Modified Starches in Edible Film Formulations
4.7. Modified Starches in Edible Coating Formulations
4.8. Modified Starches as Nanomaterials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off. J. Eur. Union 2008, L 354/16, 16–33.
- Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union 2011, L 295/1, 1–177.
- Vilpoux, O.F.; Junior, J.F.S.S. Global production and use of starch. Starchy Crop. Morphol. Extr. Prop. Appl. 2023, 1, 43–66. [Google Scholar] [CrossRef]
- El Halal, S.L.M.; Kringel, D.H.; Zavareze, E.d.R.; Dias, A.R.G. Methods for Extracting Cereal Starches from Different Sources: A Review. Starch/Staerke 2019, 71, 1900128. [Google Scholar] [CrossRef]
- Kringel, D.H.; El Halal, S.L.M.; Zavareze, E.d.R.; Dias, A.R.G. Methods for the Extraction of Roots, Tubers, Pulses, Pseudocereals, and Other Unconventional Starches Sources: A Review. Starch/Staerke 2020, 72, 1900234. [Google Scholar] [CrossRef]
- Gałkowska, D.; Długosz, M.; Juszczak, L. Effect of high methoxy pectin and sucrose on pasting, rheological and textural properties of modified starch systems. Starch/Staerke 2013, 65, 499–508. [Google Scholar] [CrossRef]
- Tharanathan, R.N. Starch—Value addition by modification. Crit. Rev. Food Sci. Nutr. 2005, 45, 371–384. [Google Scholar] [CrossRef]
- Ashogbon, A.O.; Akintayo, E.T. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch/Staerke 2014, 66, 41–57. [Google Scholar] [CrossRef]
- Sinhmar, A.; Pathera, A.K.; Sharma, S.; Nehra, M.; Thory, R.; Nain, V. Impact of Various Modification Methods on Physicochemical and Functional Properties of Starch: A Review. Starch/Staerke 2023, 75, 2200117. [Google Scholar] [CrossRef]
- Kapuśniak, J.; Jochym, K.; Bajer, K.; Bajer, D. Review of methods for chemical modification of starch. Przem. Chem. 2011, 90, 1521–1526. (In Polish) [Google Scholar]
- Gałkowska, D.; Juszczak, L. Effects of amino acids on gelatinization, pasting and rheological properties of modified potato starches. Food Hydrocoll. 2019, 92, 143–154. [Google Scholar] [CrossRef]
- Kapelko-Żeberska, M.; Zięba, T.; Singh, A.V. Physically and Chemically Modified Starches in Food and Non-Food Industries. In Surface Modification of Biopolymers; Wiley Online Library: Hoboken, NJ, USA, 2015; pp. 173–193. ISBN 9781119044901. [Google Scholar]
- Park, S.; Kim, Y.R. Clean label starch: Production, physicochemical characteristics, and industrial applications. Food Sci. Biotechnol. 2021, 30. [Google Scholar] [CrossRef]
- Korma, S.A.; Kamal-Alahmad, S.N.; Ammar, A.-F.; Zaaboul, F.; Tao, Z. Chemically modified starch and utilization in food stuffs. Int. J. Nutr. Food Sci. 2016, 5, 264–272. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L.; McCarthy, O.J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocoll. 2007, 21, 1–22. [Google Scholar] [CrossRef]
- Masina, N.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Govender, M.; Indermun, S.; Pillay, V. A review of the chemical modification techniques of starch. Carbohydr. Polym. 2017, 157, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Jiang, E.; Yao, Y. New Techniques in Structural Tailoring of Starch Functionality. Annu. Rev. Food Sci. Technol. 2022, 13, 117–143. [Google Scholar] [CrossRef] [PubMed]
- Ashogbon, A.O. The Recent Development in the Syntheses, Properties, and Applications of Triple Modification of Various Starches. Starch/Staerke 2021, 73, 2000125. [Google Scholar] [CrossRef]
- Kennedy, J.F.; Knill, C.J.; Liu, L.; Panesar, P.S. Starch and its derived products: Biotechnological and biomedical applications. In Renewable Resources for Functional Polymers and Biomaterials; Royal Society of Chemistry: Cambridge, UK, 2011; pp. 130–165. [Google Scholar] [CrossRef]
- Vanier, N.L.; El Halal, S.L.M.; Dias, A.R.G.; da Rosa Zavareze, E. Molecular structure, functionality and applications of oxidized starches: A review. Food Chem. 2017, 221, 1546–1559. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No. 231/2012 of 9 march 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No. 1333/2008 of the European Parliament and of the Council. Off. J. Eur. Union 2012, L 83/1, 1–295.
- Kuakpetoon, D.; Wang, Y.J. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr. Res. 2006, 341, 1896–1915. [Google Scholar] [CrossRef] [PubMed]
- Łabanowska, M.; Bidzińska, E.; Pietrzyk, S.; Juszczak, L.; Fortuna, T.; Błoniarczyk, K. Influence of copper catalyst on the mechanism of carbohydrate radicals generation in oxidized potato starch. Carbohydr. Polym. 2011, 85, 775–785. [Google Scholar] [CrossRef]
- Khlestkin, V.K.; Peltek, S.E.; Kolchanov, N.A. Review of direct chemical and biochemical transformations of starch. Carbohydr. Polym. 2018, 181, 460–476. [Google Scholar] [CrossRef]
- Chakraborty, I.; N, P.; Mal, S.S.; Paul, U.C.; Rahman, M.H.; Mazumder, N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. Food Bioprocess Technol. 2022, 15, 1195–1223. [Google Scholar] [CrossRef]
- Pietrzyk, S.; Fortuna, T.; Łabanowska, M.; Juszczak, L.; Gałkowska, D.; Bączkowicz, M.; Kurdziel, M. The effect of amylose content and level of oxidation on the structural changes of acetylated corn starch and generation of free radicals. Food Chem. 2018, 240, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Abbas, K.A.; Khalil, S.K.; Hussin, A.S.M. Modified starches and their usages in selected food products: A review study. J. Agric. Sci. 2010, 2, 90–100. [Google Scholar] [CrossRef]
- Rutkowski, A.; Gwiazda, S.; Dąbrowski, K. Compendium of Food Additives; Hortimex: Konin, Poland, 2003. [Google Scholar]
- Golachowski, A.; Zięba, T.; Kapelko-Żeberska, M.; Drożdż, W.; Gryszkin, A.; Grzechac, M. Current research addressing starch acetylation. Food Chem. 2015, 176, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Ačkar, D.; Babić, J.; Jozinović, A.; Miličević, B.; Jokić, S.; Miličević, R.; Rajič, M.; Šubarić, D. Starch modification by organic acids and their derivatives: A review. Molecules 2015, 20, 19554–19570. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Sitohy, M.Z. Phosphorylated Starches: Preparation, Properties, Functionality, and Techno-Applications. Starch/Staerke 2020, 72, 1900302. [Google Scholar] [CrossRef]
- Lewandowicz, G.; Fornal, J.; Walkowski, A.; MacZyński, M.; Urbaniak, G.; Szymańska, G. Starch esters obtained by microwave radiation—Structure and functionality. Ind. Crops Prod. 2000, 11, 249–257. [Google Scholar] [CrossRef]
- Gryszkin, A.; Grec, M.; Ačkar, Ð.D.; Zięba, T.; Jozinović, A.; Šubarić, D.; Miličević, B.; Blažić, M.; Babić, J. Phosphorylation of maize starch enhanced with high-voltage electrical discharge (Hved) instead of thermal treatment. Polymers 2021, 13, 3231. [Google Scholar] [CrossRef]
- Sweedman, M.C.; Tizzotti, M.J.; Schäfer, C.; Gilbert, R.G. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydr. Polym. 2013, 92, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Altuna, L.; Herrera, M.L.; Foresti, M.L. Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocoll. 2018, 80, 97–110. [Google Scholar] [CrossRef]
- Królikowska, K.; Fortuna, T.; Pietrzyk, S.; Gryszkin, A. Effect of modification of octenyl succinate starch with mineral elements on the stability and rheological properties of oil-in-water emulsions. Food Hydrocoll. 2017, 66, 118–127. [Google Scholar] [CrossRef]
- Wang, J.; Su, L.; Wang, S. Physicochemical properties of octenyl succinic anhydride-modified potato starch with different degrees of substitution. J. Sci. Food Agric. 2010, 90, 424–429. [Google Scholar] [CrossRef]
- Prochaska, K.; Kedziora, P.; Le Thanh, J.; Lewandowicz, G. Surface properties of enzymatic hydrolysis products of octenylsuccinate starch derivatives. Food Hydrocoll. 2007, 21, 654–659. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Bello-Perez, L.A. Starch as an emulsions stability: The case of octenyl succinic anhydride (OSA) starch. Curr. Opin. Food Sci. 2017, 13, 78–83. [Google Scholar] [CrossRef]
- Hoyos-Leyva, J.D.; Bello-Pérez, L.A.; Alvarez-Ramirez, J.; Garcia, H.S. Microencapsulation using starch as wall material: A review. Food Rev. Int. 2018, 34, 148–161. [Google Scholar] [CrossRef]
- Lauer, M.K.; Smith, R.C. Recent advances in starch-based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3031–3083. [Google Scholar] [CrossRef]
- Korus, J.; Ziobro, R.; Witczak, T.; Kapusniak, K.; Juszczak, L. Effect of octenyl succinic anhydride (Osa) modified starches on the rheological properties of dough and characteristic of the gluten-free bread. Molecules 2021, 26, 2197. [Google Scholar] [CrossRef]
- Ashogbon, A.O. Dual modification of various starches: Synthesis, properties and applications. Food Chem. 2021, 342, 128325. [Google Scholar] [CrossRef]
- Pietrzyk, S.; Juszczak, L.; Fortuna, T.; Ciemniewska, A. Effect of the oxidation level of corn starch on its acetylation and physicochemical and rheological properties. J. Food Eng. 2014, 120, 50–56. [Google Scholar] [CrossRef]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef]
- Haq, F.; Yu, H.; Wang, L.; Teng, L.; Haroon, M.; Khan, R.U.; Mehmood, S.; Amin, B.U.; Ullah, R.S.; Khan, A.; et al. Advances in chemical modifications of starches and their applications. Carbohydr. Res. 2019, 476, 12–35. [Google Scholar] [CrossRef]
- Subroto, E.; Indiarto, R.; Djali, M.; Rosyida, H.D. Production and application of crosslinking- Modified starch as fat replacer: A review. Int. J. Eng. Trends Technol. 2021, 68, 26–30. [Google Scholar] [CrossRef]
- Pycia, K.; Juszczak, L.; Gałkowska, D.; Witczak, M.; Jaworska, G. Maltodextrins from chemically modified starches. Selected physicochemical properties. Carbohydr. Polym. 2016, 146, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Lu, S.; Wang, L.; Zheng, M.; Quek, S.Y. Modified porous starch for enhanced properties: Synthesis, characterization and applications. Food Chem. 2023, 415. [Google Scholar] [CrossRef]
- Pycia, K.; Juszczak, L.; Gałkowska, D.; Socha, R.; Jaworska, G. Maltodextrins from chemically modified starches. Production and characteristics. Starch/Staerke 2017, 69, 1600199. [Google Scholar] [CrossRef]
- Pycia, K.; Gryszkin, A.; Berski, W.; Juszczak, L. The influence of chemically modified potato maltodextrins on stability and rheological properties of model oil-in-water emulsions. Polymers 2018, 10, 67. [Google Scholar] [CrossRef]
- Zaragozza, E.F.; Navarrete, M.J.R.; Zapata, E.S.; Alvarez, J.A.P. Resistant starch as functional ingredient: A review. Food Res. Int. 2010, 43, 931–942. [Google Scholar] [CrossRef]
- Sofi, S.; Ayoub, A.; Jan, A. Resistant starch as functional ingredient: A review. Int. J. Food Sci. Nutr. 2017, 2, 195–199. [Google Scholar]
- Ashwar, B.A.; Gani, A.; Shah, A.; Wani, I.A.; Masoodi, F.A. Preparation, health benefits and applications of resistant starch—A review. Starch/Staerke 2016, 68, 287–301. [Google Scholar] [CrossRef]
- Bede, D.; Zaixiang, L. Recent Developments in Resistant Starch as a Functional Food. Starch/Staerke 2021, 73, 2000139. [Google Scholar] [CrossRef]
- Zięba, T.; Gryszkin, A.; Kapelko, M. Selected properties of acetylated adipate of retrograded starch. Carbohydr. Polym. 2014, 99, 687–691. [Google Scholar] [CrossRef]
- Oltramari, K.; Madrona, G.S.; Neto, A.M.; de Morais, G.R.; Baesso, M.L.; Bergamasco, R.d.C.; de Moraes, F.F. Citrate esterified cassava starch: Preparation, physicochemical characterisation, and application in dairy beverages. Starch/Staerke 2017, 69, 1700044. [Google Scholar] [CrossRef]
- Golachowski, A.; Drożdż, W.; Golachowska, M.; Kapelko-Żeberska, M.; Raszewski, B. Production and properties of starch citrates—Current research. Foods 2020, 9, 1311. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Gao, P.; Xue, X.; Yang, Y. Effect of malate starch on cooking, texture and digestion characteristics in vitro of medium glycemic noodles. Int. J. Gastron. Food Sci. 2022, 29, 100558. [Google Scholar] [CrossRef]
- Park, J.J.; Olawuyi, I.F.; Lee, W.Y. Characteristics of low-fat mayonnaise using different modified arrowroot starches as fat replacer. Int. J. Biol. Macromol. 2020, 153, 215–223. [Google Scholar] [CrossRef]
- Khaturia, D.; Gautam, S.; Sharma, K.D. Utilization and health benefits of modified starch: A review. Int. J. Curr. Agric. Sci. 2019, 9, 347–358. [Google Scholar]
- Śmigielska, H.; Błaszczak, W.; Lewandowicz, G. Applicability of Food Grade Modified Starches as a Carrier of Microelements. Processes 2022, 10, 235. [Google Scholar] [CrossRef]
- Shao, P.; Feng, J.; Sun, P.; Xiang, N.; Lu, B.; Qiu, D. Recent advances in improving stability of food emulsion by plant polysaccharides. Food Res. Int. 2020, 137, 109376. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Q.; Blennow, A.; Herburger, K.; Zhu, C.; Nurzikhan, S.; Wei, J.; Zhong, Y.; Guo, D. The location of octenyl succinate anhydride groups in high-amylose maize starch granules and its effect on stability of pickering emulsion stability. LWT-Food Sci. Technol. 2022, 169, 113892. [Google Scholar] [CrossRef]
- Zhu, W.; Zheng, F.; Song, X.; Ren, H.; Gong, H. Influence of formulation parameters on lipid oxidative stability of Pickering emulsion stabilized by hydrophobically modified starch particles. Carbohydr. Polym. 2020, 246, 116649. [Google Scholar] [CrossRef] [PubMed]
- Thanh-Blicharz, J.L. Wpływ Właściwości Fizykochemicznych i Struktury Skrobi Modyfikowanych na ich Funkcjonalność w Tworzeniu i Stabilizacji Emulsji Spożywczych; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2018; pp. 1–88. ISBN 978-83-7160-903-9. (In Polish) [Google Scholar]
- Molavi, H.; Behfar, S.; Ali Shariati, M.; Kaviani, M.; Atarod, S. A review on biodegradable starch based film. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 456–461. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, L.; McClements, D.J.; Yang, T.; Zhang, Z.; Ren, F.; Miao, M.; Tian, Y.; Jin, Z. Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci. Technol. 2021, 114, 70–82. [Google Scholar] [CrossRef]
- Shah, U.; Naqash, F.; Gani, A.; Masoodi, F.A. Art and Science behind Modified Starch Edible Films and Coatings: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 568–580. [Google Scholar] [CrossRef]
- Luciano, C.G.; Chacon, W.D.C.; Valencia, G.A. Starch-Based Coatings for Food Preservation: A Review. Starch/Staerke 2022, 74, 2100279. [Google Scholar] [CrossRef]
- Alves, M.J.d.S.; Chacon, W.D.C.; Gagliardi, T.R.; Henao, A.C.A.; Monteiro, A.R.; Valencia, G.A. Food Applications of Starch Nanomaterials: A Review. Starch/Staerke 2021, 73, 2100046. [Google Scholar] [CrossRef]
Name of Modified Starch | Number | Reagent | Requirements |
---|---|---|---|
Oxidized starch | E 1404 | Sodium hypochlorite | Carboxyl groups < 1.1% dwb |
Monostarch phosphate | E 1410 | Orthophosphoric acid, sodium or potassium orthophosphate, sodium tripolyphosphate | Residual phosphates (as phosphorus): <0.5% dwb for wheat or potato starches, <0.4% dwb for other starches |
Distarch phosphate | E 1412 | Sodium trimetaphosphate, phosphorus oxychloride | Residual phosphates (as phosphorus): <0.5% dwb for wheat or potato starches, <0.4% dwb for other starches |
Phosphated distarch phosphate | E 1413 | Orthophosphoric acid, sodium or potassium orthophosphate, sodium tripolyphosphate | Residual phosphates (as phosphorus): <0.5% dwb for wheat or potato starches, <0.4% dwb for other starches |
Acetylated distarch phosphate | E 1414 | Cross-linking agent: sodium trimetaphosphate, phosphorus oxychloride; esterifying agent: acetic anhydride, vinyl acetate | Acetyl groups < 2.5% dwb; residual phosphates (as phosphorus): <0.14% dwb for wheat or potato starches, <0.04% dwb for other starches; vinyl acetate < 0.1 mg/kg dwb |
Acetylated starch | E 1420 | Acetic anhydride, vinyl acetate | Acetyl groups < 2.5% dwb; vinyl acetate < 0.1 mg/kg dwb |
Acetylated distarch adipate | E 1422 | Cross-linking agent: adipic anhydride; esterifying agent: acetic anhydride | Acetyl groups < 2.5% dwb; Adipic groups < 0.135% dwb |
Hydroxypropyl starch | E 1440 | Propylene oxide | Hydroxypropyl groups < 7.0% dwb; propylene chlorohydrin < 1 mg/kg dwb |
Distarch hydroxypropyl phosphate | E 1442 | Cross-linking agent: sodium trimetaphosphate, phosphorus oxychloride; etherification agent: propylene oxide | hydroxypropyl groups < 7.0% dwb; Residual phosphates (as phosphorus): <0.14% dwb for wheat or potato starches, <0.04% dwb for other starches; vinyl acetate < 0.1 mg/kg dwb; propylene chlorohydrin < 1 mg/kg dwb |
Starch sodium octenyl succinate | E 1450 | Octenyl succinic anhydride | Octenyl succinic groups < 3% dwb; residual octenyl succinic acid < 0.3% dwb |
Acetylated oxidized starch | E 1451 | Oxidizing agent: sodium hypochlorite; esterifying agent: acetic anhydride | Carboxyl groups < 1.3% dwb; acetyl groups < 2.5% dwb |
Starch octenyl succinate aluminium salt | E 1452 | Esterifying agent: octenyl succinic anhydride; aluminium sulphate | Octenyl succinic groups < 3% dwb; residual octenyl succinic acid < 0.3% dwb |
Type of Modification | Physicochemical and Functional Properties of Modified Starch as Compared to Native Starch |
---|---|
Oxidation | Partial depolymerization, reduced temperatures and gelatinization enthalpy, reduced viscosity of pastes, improved thermal stability and clarity of pastes, reduced ability for gelling, reduced retrogradation, increased adhesion and ability to form films and coatings |
Acetylation | Increased swelling and water absorption capacity, reduced gelatinization temperature, increased maximum viscosity, reduced retrogradation and syneresis, increased clarity of pastes, increased susceptibility to amylolytic enzymes |
OSA esterification | Reduced temperature and enthalpy of gelatinization, obtaining the ability to reduce surface tension and the ability to stabilize the emulsion, obtaining the ability to encapsulate |
Hydroxypropylation | Reduced gelatinization temperature, increased clarity of pastes, increased stability in freeze-thaw cycles, increased resistance to extreme environmental pH values, high temperatures and shear forces, reduced retrogradation |
Cross-linking | Increased temperatures and enthalpy of gelatinization, decreased swelling capacity, increased viscosity of pastes, increased cohesiveness of pastes and gels, increased strength of gels, increased thermal stability of pastes and gels, susceptibility to amylolytic enzymes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gałkowska, D.; Kapuśniak, K.; Juszczak, L. Chemically Modified Starches as Food Additives. Molecules 2023, 28, 7543. https://doi.org/10.3390/molecules28227543
Gałkowska D, Kapuśniak K, Juszczak L. Chemically Modified Starches as Food Additives. Molecules. 2023; 28(22):7543. https://doi.org/10.3390/molecules28227543
Chicago/Turabian StyleGałkowska, Dorota, Kamila Kapuśniak, and Lesław Juszczak. 2023. "Chemically Modified Starches as Food Additives" Molecules 28, no. 22: 7543. https://doi.org/10.3390/molecules28227543
APA StyleGałkowska, D., Kapuśniak, K., & Juszczak, L. (2023). Chemically Modified Starches as Food Additives. Molecules, 28(22), 7543. https://doi.org/10.3390/molecules28227543