Modification of Pillared Intercalated Montmorillonite Clay as Heterogeneous Pd Catalyst Supports
Abstract
:1. Introduction
2. Results and Discussions
Microstructure of the Catalytic Nanocomposites
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.4. Catalyst Performances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashraf, M.; Ahmad, M.S.; Inomata, Y.; Ullah, N.; Tahir, M.N.; Kida, T. Transition metal nanoparticles as nanocatalysts for Suzuki, Heck and Sonogashira cross-coupling reactions. Coordin. Chem. Rev. 2023, 476, 214928. [Google Scholar]
- Horbaczewskyj, C.S.; Fairlamb, I.J.S. Pd-catalyzed cross-couplings: On the importance of the catalyst quantity descriptors, mol % and ppm. Org. Process Res. Dev. 2022, 26, 2240–2269. [Google Scholar] [PubMed]
- Ballav, T.; Chakrabortty, R.; Das, A.; Ghosh, S.; Ganesh, V. Palladium-catalyzed dual catalytic synthesis of heterocycles. Eur. J. Org. Chem. 2022, 30, e202200553. [Google Scholar]
- Lawrence, A.S.; Martin, N.; Sivakumar, B.; Cirujano, F.G.; Dhakshinamoorthy, A. Palladium-based metal organic frameworks as heterogeneous catalysts for C-C couplings. ChemCatChem 2022, 14, e202200403. [Google Scholar]
- De Tovar, J.; Rataboul, F.; Djakovitch, L. Heterogenization of Pd(II) complexes as catalysts for the Suzuki-Miyaura reaction. Appl. Catal. A-Gen. 2021, 627, 118381. [Google Scholar]
- Nasrollahzadeh, M.; Motahharifar, N.; Ghorbannezhad, F.; Bidgoli, N.S.S.; Baran, T.; Varma, R.S. Recent advances in polymer supported palladium complexes as (nano) catalysts for Sonogashira coupling reaction. Mol. Catal. 2020, 480, 110645. [Google Scholar]
- Sadjadi, S. Halloysite-based hybrids/composites in catalysis. Appl. Clay Sci. 2020, 189, 105537. [Google Scholar]
- Glotov, A.; Stavitskaya, A.; Chudakov, Y.; Ivanov, E.; Huang, W.; Vinokurov, V.; Zolotukhina, A.; Maximov, A.; Karakhanov, E.; Lvov, Y. Mesoporous metal catalysts templated on clay nanotubes. B Chem. Soc. Jpn. 2019, 92, 61–69. [Google Scholar]
- Dutta, D.K.; Borah, B.J.; Sarmah, P.P. Recent advances in metal nanoparticles stabilization into nanopores of montmorillonite and their catalytic applications for fine chemicals synthesis. Catal. Rev. 2015, 57, 257–305. [Google Scholar]
- Chen, Y.L.; Sun, K.L.; Zhang, T.J.; Zhou, J.; Liu, Y.H.; Zeng, M.F.; Ren, X.R.; Feng, R.K.; Yang, Z.; Zhang, P.; et al. TiO2-modified montmorillonite-supported porous carbon-immobilized pd species nanocomposite as an efficient catalyst for Sonogashira reactions. Molecules 2023, 28, 2399. [Google Scholar]
- Gupta, U.; Krishnapriya, R.; Sharma, R.K. A sustainable palladium-intercalated montmorillonite clay catalytic system for imine hydrogenation under mild conditions. ChemPlusChem 2021, 86, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, A.H.; Molina, C.B.; Fierro, J.L.G.; Rodriguez, J.J. On the effect of Ce incorporation on pillared clay-supported Pt and Ir catalysts for aqueous-phase hydrodechlorination. Appl. Catal. B-Environm. 2016, 197, 236–243. [Google Scholar] [CrossRef]
- Zhao, B.; Cheng, Z.; Zheng, J.; Wang, Z.; Zuo, S.F. Synthesis of C21H38ClN assisted Si pillared clays and the effects of CeO2 addition on its supported palladium catalyst for benzene oxidation. Catal. Lett. 2021, 151, 3287–3297. [Google Scholar]
- Michalik-Zym, A.; Dula, R.; Duraczynska, D.; Krysciak-Czerwenka, J.; Machej, T.; Socha, R.P.; Wlodarczyk, W.; Gawel, A.; Matusik, J.; Bahranowski, K.; et al. Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr- or [Ti, Zr]-pillared montmorillonites for destruction of chlorinated volatile organic compounds. Appl. Catal. B-Environm. 2015, 174, 293–307. [Google Scholar]
- Aznarez, A.; Korili, S.A.; Gil, A. The promoting effect of cerium on the characteristics and catalytic performance of palladium supported on alumina pillared clays for the combustion of propene. Appl. Catal. A-Gen. 2014, 474, 95–99. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, X.; Liu, Q.; Xu, M.D.; Yang, S.; Zeng, M.F. Chitosan supported Pd0 nanoparticles encaged in Al or Al-Fe pillared montmorillonite and their catalytic activities in Sonogashira coupling reactions. Appl. Clay Sci. 2020, 195, 105721. [Google Scholar] [CrossRef]
- Cardona, Y.; Korili, S.A.; Gil, A. Understanding the formation of Al13 and Al30 polycations to the development of microporous materials based on Al13-and Al30-PILC montmorillonites: A review. Appl. Clay Sci. 2021, 203, 105996. [Google Scholar]
- Najafi, H.; Farajfaed, S.; Zolgharnian, S.; Mirak, S.H.M.; Asasian-Kolur, N.; Sharifian, S. A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes. Process Saf. Environm. 2021, 147, 8–36. [Google Scholar]
- Galeano, L.A.; Vicente, M.A.; Gil, A. Catalytic Degradation of organic pollutants in aqueous streams by mixed Al/M-pillared clays (M = Fe, Cu, Mn). Catal. Rev. 2014, 56, 239–287. [Google Scholar]
- Wu, X.Z.; Xia, X.N.; Chen, Y.; Lu, Y.B. Mesoporous Al-incorporated silica-pillared clay interlayer materials for catalytic hydroxyalkylation of phenol to bisphenol F. RSC Adv. 2016, 6, 74028–74038. [Google Scholar] [CrossRef]
- Li, J.R.; Hu, M.C.; Zuo, S.F.; Wang, X.Q. Catalytic combustion of volatile organic compounds on pillared interlayered clay (PILC)-based catalysts. Curr. Opin. Chem. Eng. 2018, 20, 93–98. [Google Scholar] [CrossRef]
- Daneshafruz, H.; Mohammadi, P.; Barani, H.; Sheibani, H. Facile synthesis of magnetic bentonite-chitosan-Pd nanocomposite: As a recoverable nanocatalyst for reduction of nitroarenes and Suzuki-Miyaura reaction. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1052–1065. [Google Scholar] [CrossRef]
- Zanin, C.I.C.B.; Jordao, E.; Mandelli, D.; Figueiredo, F.C.A.; Carvalho, W.A.; Oliveira, E.V. Hydrogenolysis of glycerol to alcohols catalyzed by transition metals supported on pillared clay. React. Kinet. Mech. Cat. 2015, 115, 293–310. [Google Scholar] [CrossRef]
- Reddy, K.P.; Swetha, C.; Murugadoss, A. Pd/chitosan nanoparticle catalysts prepared by solid mortar grinding for hydrogenation of nitroarenes. ACS Sustain. Chem. Eng. 2023, 11, 1643–1654. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, M.D.; Wang, Y.D.; Feng, R.K.; Yang, Z.; Zuo, S.F.; Qi, C.Z.; Zeng, M.F. Co-immobilization of Pd and Zn nanoparticles in chitosan/silica membranes for efficient, recyclable catalysts used in Ullmann reaction. Int. J. Biolog. Macromol. 2017, 105, 575–583. [Google Scholar] [CrossRef]
- Zeng, M.F.; Fang, Z.P.; Xu, C.W. Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membr. Sci. 2004, 230, 175–181. [Google Scholar] [CrossRef]
- Zeng, M.F.; Zhang, X.; Qi, C.Z.; Zhang, X.-M. Microstructure-stability relations studies of porous chitosan microspheres supported palladium catalysts. Int. J. Biolog. Macromol. 2012, 51, 730–737. [Google Scholar] [CrossRef]
- Daraie, M.; Heravi, M.M.; Rangraz, Y.; Besharati, Z. Pd NPs supported on halloysite functionalized with Schiff base as an efficient catalyst for Sonogashira reaction. Sci. Rep. 2021, 11, 6223. [Google Scholar] [CrossRef]
- Sadjadi, S.; Heravi, M.M.; Masoumi, B.; Kazemi, S.S. Pd(0) nanoparticles immobilized on multinitrogen functionalized halloysite for promoting Sonogashira reaction: Studying the role of the number of surface nitrogens in catalytic performance. J. Coordin. Chem. 2019, 72, 119–134. [Google Scholar] [CrossRef]
- Sadjadi, S.; Heravi, M.M.; Kazemi, S.S. Ionic liquid decorated chitosan hybridized with clay: A novel support for immobilizing Pd nanoparticles. Carbohydr. Polym. 2018, 200, 183–190. [Google Scholar] [CrossRef]
- Rafiee, F.; Rezaee, M. Functionalization of the magnetic chitosan support with dipyridylamine as a nitrogen-rich pincer ligand for Pd immobilization and investigation of catalytic efficiency in Sonogashira coupling. Polym. Bull. 2023, 80, 11139–11154. [Google Scholar] [CrossRef]
- Sun, K.L.; Zhang, T.J.; Zhou, J.; Liu, Y.H.; Zeng, M.F.; Yang, Z.; Feng, R.K.; Ren, X.R.; Zhang, P.; Baoyi, W.; et al. Chitosan-Pd0 nanoparticles encapsulated in Al, Co-pillared montmorillonite by one-pot process. Appl. Clay Sci. 2024, 247, 107192. [Google Scholar] [CrossRef]
- Chen, Y.L.; Yang, S.; Zhang, T.J.; Xu, M.D.; Zhao, J.; Zeng, M.F.; Sun, K.L.; Feng, R.K.; Yang, Z.; Zhang, P.; et al. Positron annihilation study of chitosan and its derived carbon/pillared montmorillonite clay stabilized Pd species nanocomposites. Polym. Test. 2022, 114, 107689. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, J.; Liu, Q.; Xu, M.D.; Yang, S.; Zeng, M.F.; Qi, C.Z.; Cao, X.Z.; Wang, B.Y. Chitosan modified Ti-PILC supported PdOx catalysts for coupling reactions of aryl halides with terminal alkynes. Int. J. Biolog. Macromol. 2020, 158, 67–74. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Vtot (cm3/g) | Vmeso (cm3/g) |
---|---|---|---|
Al-PM | 126.59 | 0.13 | 0.11 |
AlMn0.1-PM | 186.88 | 0.18 | 0.13 |
AlMn0.15-PM | 277.53 | 0.18 | 0.12 |
AlMn0.2-PM | 178.43 | 0.15 | 0.10 |
Samples | SBET (m2/g) | Vtot (cm3/g) | Vmeso (cm3/g) |
---|---|---|---|
PVP/AlMn0.15-PM | 60.49 | 0.13 | 0.11 |
Pd@PVP/AlMn0.15-PM | 27.66 | 0.09 | 0.07 |
CS/AlMn0.15-PM | 129.76 | 0.14 | 0.13 |
Pd@CS/AlMn0.15-PM | 91.55 | 0.13 | 0.12 |
Entry | Aromatic Halides | Alkynes | Yield a (%) | |
---|---|---|---|---|
C1 | C2 | |||
1 | C6H5I | C6H5C≡CH | 100 | 99 |
2 | 3-CH3C6H4I | C6H5C≡CH | 99 | 95 |
3 | 4-OCH3C6H4I | C6H5C≡CH | 98 | 94 |
4 | 4-ClC6H4I | C6H5C≡CH | 96 | 92 |
5 | 3-COCH3C6H4I | C6H5C≡CH | 98 | 93 |
6 | C6H5I | 4-CH3C6H4C≡CH | 97 | 97 |
7 | C6H5I | 4-OCH3C6H4C≡CH | 92 | 89 |
8 | C6H5I | 4-ClC6H4C≡CH | 95 | 91 |
9 | C6H5I | 4-BrC6H4C≡CH | 90 | 90 |
10 | C6H5Br | C6H5C≡CH | 35 b | 35 b |
11 | 4-CH3C6H4Br | C6H5C≡CH | 23 b | 25 b |
12 | 3-OCH3C6H4Br | C6H5C≡CH | 21 b | 20 b |
13 | 3-COCH3C6H4Br | C6H5C≡CH | 72 b | 70 b |
14 | 4-COCH3C6H4Br | C6H5C≡CH | 82 b | 80 b |
15 | 4-ClC6H4Br | C6H5C≡CH | 78 b | 71 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Liu, Y.; Zhang, T.; Zhou, J.; Chen, J.; Ren, X.; Yang, Z.; Zeng, M. Modification of Pillared Intercalated Montmorillonite Clay as Heterogeneous Pd Catalyst Supports. Molecules 2023, 28, 7638. https://doi.org/10.3390/molecules28227638
Sun K, Liu Y, Zhang T, Zhou J, Chen J, Ren X, Yang Z, Zeng M. Modification of Pillared Intercalated Montmorillonite Clay as Heterogeneous Pd Catalyst Supports. Molecules. 2023; 28(22):7638. https://doi.org/10.3390/molecules28227638
Chicago/Turabian StyleSun, Kailang, Yonghong Liu, Taojun Zhang, Jie Zhou, Jinyang Chen, Xiaorong Ren, Zhen Yang, and Minfeng Zeng. 2023. "Modification of Pillared Intercalated Montmorillonite Clay as Heterogeneous Pd Catalyst Supports" Molecules 28, no. 22: 7638. https://doi.org/10.3390/molecules28227638
APA StyleSun, K., Liu, Y., Zhang, T., Zhou, J., Chen, J., Ren, X., Yang, Z., & Zeng, M. (2023). Modification of Pillared Intercalated Montmorillonite Clay as Heterogeneous Pd Catalyst Supports. Molecules, 28(22), 7638. https://doi.org/10.3390/molecules28227638