Synthesis and Characterization of Zinc/Iron Composite Oxide Heterojunction Porous Anode Materials for High-Performance Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Analysis
2.1. Chemical and Structural Characterization
2.2. Characterization of Electrochemical Properties
3. Experimental Section
3.1. Material Preparation
3.2. Material Characterization
3.3. Electrochemical Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Cui, W.; Chu, F.; Wu, F. Lithium metal anodes: Present and future. J. Energy Chem. 2020, 48, 145–159. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Y.; Yang, K.; Zheng, J.; Li, Y.; Qian, Z.; He, Z.; Zhong, S. One-time sintering process to modify xLi2MnO3 (1-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. J. Energy Chem. 2020, 50, 271–279. [Google Scholar] [CrossRef]
- Grey, C.P.; Tarascon, J.M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, H.-H.; Liu, H.; Zhang, Q.; He, X.; Yu, S.; Petrova, V.; Feng, J.; Kostecki, R.; Liu, P.; et al. Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. ACS Nano 2020, 14, 9545–9561. [Google Scholar] [CrossRef]
- Bulut Kopuklu, B.; Tasdemir, A.; Alkan Gursel, S.; Yurum, A. High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode. Carbon 2021, 174, 158–172. [Google Scholar] [CrossRef]
- Azam, M.A.; Safie, N.E.; Ahmad, A.S.; Yuza, N.A.; Zulkifli, N.S.A. Recent advances of silicon, carbon composites and tin oxide as new anode materials for lithium-ion battery: A comprehensive review. J. Energy Storage 2021, 33, 102096. [Google Scholar] [CrossRef]
- He, J.; Lu, C.; Jiang, H.; Han, F.; Shi, X.; Wu, J.; Wang, L.; Chen, T.; Wang, J.; Zhang, Y.; et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021, 597, 57–63. [Google Scholar] [CrossRef]
- Wu, D.; Ouyang, Y.; Zhang, W.; Chen, Z.; Li, Z.; Wang, S.; Wang, F.; Li, H.; Zhang, L.Y. Hollow cobalt oxide nanoparticles embedded porous reduced graphene oxide anode for high performance lithium ion batteries. Appl. Surf. Sci. 2020, 508, 145311. [Google Scholar] [CrossRef]
- Caini, Z.; Zheqin, C.; Yanhua, L.; Jiaming, L.; Shubiao, X. A study on the synthesis and electrochemical properties of CuFe2O4 cubes as anode material for lithium-ion batteries. Nonferrous Met. Sci. Eng. 2020, 11, 59–64. [Google Scholar]
- Gao, S.; Tang, Y.; Zhao, H.; Liu, L.; Gu, Y.; Sheng, R. MoO2/C hybrid synthesized by a facile molten-salt-assisted approach for high-performance lithium-ion batteries. Int. J. Energy Res. 2021, 45, 6418–6425. [Google Scholar] [CrossRef]
- Tao, X.; Li, Y.; Wang, H.-g.; Lv, X.; Li, Y.; Xu, D.; Jiang, Y.; Meng, Y. Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. J. Colloid Interface Sci. 2020, 565, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ma, Y.; Geiger, D.; Kaiser, U.; Zhang, H.; Kim, G.-T.; Diemant, T.; Behm, R.J.; Varzi, A.; Passerini, S. ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries. Nano Energy 2017, 42, 341–352. [Google Scholar] [CrossRef]
- Li, T.; Bai, Y.; Wang, Y.; Xu, H.; Jin, H. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord. Chem. Rev. 2020, 410, 213221. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Liu, X.; Zhang, Y.; Zhao, W.; Li, Y.; Qin, C.; Bakenov, Z. High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries. J. Colloid Interface Sci. 2020, 569, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhang, W.; Li, L.; Jin, B.; Jin, E.; Jeong, S.; Jiang, Q. In-situ synthesized ZnFe2O4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance. Appl. Surf. Sci. 2017, 425, 978–987. [Google Scholar] [CrossRef]
- Su, L.; Jing, Y.; Zhou, Z. Li ion battery materials with core–shell nanostructures. Nanoscale 2011, 3, 3967–3983. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Li, X.; Li, B.; Mei, J.; Zhang, X.; Guo, W.; Peng, G.; Li, H.; Li, X.; Yuan, J. MOF-derived ZnO/ZnFe2O4@RGO nanocomposites with high lithium storage performance. J. Solid State Electrochem. 2021, 25, 1175–1181. [Google Scholar] [CrossRef]
- Zheng, F.; He, M.; Yang, Y.; Chen, Q. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Nanoscale 2015, 7, 3410–3417. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xiao, Z.; Wang, S.; Cheng, Z.; Li, P.; Wang, R. Engineered Interfusion of Hollow Nitrogen-Doped Carbon Nanospheres for Improving Electrochemical Behavior and Energy Density of Lithium–Sulfur Batteries. Adv. Funct. Mater. 2019, 29, 1902322. [Google Scholar] [CrossRef]
- Song, X.-Y.; Zhang, Y.-H.; Sun, P.-P.; Gao, J.; Shi, F.-N. Lithium–Lanthanide Bimetallic Metal–Organic Frameworks towards Negative Electrode Materials for Lithium-Ion Batteries. Chem. A Eur. J. 2020, 26, 5654–5661. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Z.; Li, X.; Sun, Q.; Cheng, N.; Lawes, S.; Sun, X. Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2016, 2, 35–62. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, X.-C.; Wu, Y.; Shu, Y.; Gong, X.; Ke, F.-S.; Deng, H. Metal–Organic Frameworks for High Charge–Discharge Rates in Lithium–Sulfur Batteries. Angew. Chem. Int. Ed. 2018, 57, 3916–3921. [Google Scholar] [CrossRef]
- Hernández-Rentero, C.; Marangon, V.; Olivares-Marín, M.; Gómez-Serrano, V.; Caballero, Á.; Morales, J.; Hassoun, J. Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. J. Colloid Interface Sci. 2020, 573, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent Advancement of Nanostructured Carbon for Energy Applications. Chem. Rev. 2015, 115, 5159–5223. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Qian, X.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J. Mater. Chem. A 2013, 1, 11126–11129. [Google Scholar] [CrossRef]
- Han, X.; Chen, W.-M.; Han, X.; Tan, Y.-Z.; Sun, D. Nitrogen-rich MOF derived porous Co3O4/N–C composites with superior performance in lithium-ion batteries. J. Mater. Chem. A 2016, 4, 13040–13045. [Google Scholar] [CrossRef]
- Gao, T.; Xu, C.; Li, R.; Zhang, R.; Wang, B.; Jiang, X.; Hu, M.; Bando, Y.; Kong, D.; Dai, P.; et al. Biomass-Derived Carbon Paper to Sandwich Magnetite Anode for Long-Life Li-Ion Battery. ACS Nano 2019, 13, 11901–11911. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, Z.; Ma, Z.; Zhang, G.; Feng, C. Synthesis and electrochemical properties of ZnFe2O4/C as novel anode material for lithium ion battery. Ionics 2021, 27, 1377–1384. [Google Scholar] [CrossRef]
- Mueller, F.; Geiger, D.; Kaiser, U.; Passerini, S.; Bresser, D. Elucidating the Impact of Cobalt Doping on the Lithium Storage Mechanism in Conversion/Alloying-Type Zinc Oxide Anodes. ChemElectroChem 2016, 3, 1311–1319. [Google Scholar] [CrossRef]
- Chu, K.; Li, Z.; Xu, S.; Yao, G.; Xu, Y.; Niu, P.; Zheng, F. MOF-derived hollow NiCo2O4 nanowires as stable Li-ion battery anodes. Dalton Trans. 2020, 49, 10808–10815. [Google Scholar] [CrossRef]
- Mei, C.; Hou, S.; Liu, M.; Guo, Y.; Liu, T.; Li, J.; Fu, W.; Wang, L.; Zhao, L. MOF derived ZnFe2O4 nanoparticles scattered in hollow octahedra carbon skeleton for advanced lithium-ion batteries. Appl. Surf. Sci. 2021, 541, 148475. [Google Scholar] [CrossRef]
- Wang, Q.; Kang, L.; Xing, Z.; Nie, C.; Hong, H.; Zhou, X.; Yun, Q.; Ju, Z.; Chen, B. Prussian Blue Analogue-Derived ZnO/ZnFe2O4 Core-Shell Nanospheres as High-Performance Anodes for Lithium-Ion and Potassium-Ion Batteries. Batter. Supercaps 2023, 6, e202200411. [Google Scholar] [CrossRef]
- Yuan, C.; Cao, H.; Zhu, S.; Hua, H.; Hou, L. Core–shell ZnO/ZnFe2O4@C mesoporous nanospheres with enhanced lithium storage properties towards high-performance Li-ion batteries. J. Mater. Chem. A 2015, 3, 20389–20398. [Google Scholar] [CrossRef]
- Bini, M.; Ambrosetti, M.; Spada, D. ZnFe2O4, a Green and High-Capacity Anode Material for Lithium-Ion Batteries: A Review. Appl. Sci. 2021, 11, 11713. [Google Scholar] [CrossRef]
- Wang, B.; Wang, G.; Wang, H.; Bai, J. Hierarchically Porous Carbon Nanofibers Encapsulating Carbon-Coated Mini Hollow FeP Nanoparticles for High Performance Lithium and Sodium Ion Batteries. ChemNanoMat 2018, 4, 924–935. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Lu, Y.; Zheng, J.; Zhong, C.; Liu, J.; Liu, J.; Xia, S. Hollow porous Co3O4/NC@rGO derived from reuleaux tetrahedral ZIF-67 as a promising anode material for Li-ion batteries. J. Mater. Res. Technol. 2022, 21, 4452–4461. [Google Scholar] [CrossRef]
- Wang, L.; Hu, X. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage. Chem. Asian J. 2018, 13, 1518–1529. [Google Scholar] [CrossRef]
- Veith, G.M.; Baggetto, L.; Adamczyk, L.A.; Guo, B.; Brown, S.S.; Sun, X.-G.; Albert, A.A.; Humble, J.R.; Barnes, C.E.; Bojdys, M.J.; et al. Electrochemical and Solid-State Lithiation of Graphitic C3N4. Chem. Mater. 2013, 25, 503–508. [Google Scholar] [CrossRef]
- Hankel, M.; Searles, D.J. Lithium storage on carbon nitride, graphenylene and inorganic graphenylene. PCCP 2016, 18, 14205–14215. [Google Scholar] [CrossRef] [PubMed]
- Qie, L.; Chen, W.-M.; Wang, Z.-H.; Shao, Q.-G.; Li, X.; Yuan, L.-X.; Hu, X.-L.; Zhang, W.-X.; Huang, Y.-H. Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability. Adv. Mater. 2012, 24, 2047–2050. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Nam, S.; Kim, T.; Im, J.H.; Jung, H.; Kang, J.H.; Wi, S.; Park, B.; Park, C.R. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J. Am. Chem. Soc. 2013, 135, 7394–7397. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Q.; Li, X.; Zhang, B.; Mai, L.; Zhang, K. Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 2015, 12, 437–446. [Google Scholar] [CrossRef]
- Gao, X.; Wang, J.; Zhang, D.; Adair, K.; Feng, K.; Sun, N.; Zheng, H.; Shao, H.; Zhong, J.; Ma, Y.; et al. Carbon coated bimetallic sulfide nanodots/carbon nanorod heterostructure enabling long-life lithium-ion batteries. J. Mater. Chem. A 2017, 5, 25625–25631. [Google Scholar] [CrossRef]
- Shi, S.; Li, Z.; Sun, Y.; Wang, B.; Liu, Q.; Hou, Y.; Huang, S.; Huang, J.; Zhao, Y. A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbon nanosheets for high performance sodium/lithium storage. Nano Energy 2018, 48, 510–517. [Google Scholar] [CrossRef]
Fe | Zn | |
---|---|---|
ZnO/NC | - | 71.24 |
ZnFe/NC | 1.73 | 30.68 |
ZnO/ZnFe2O4/NC | 1.69 | 29.66 |
Graphite N | Pyrrole N | Pyridine N | |
---|---|---|---|
ZnO/NC | 48.2 | 34.9 | 16.9 |
ZnFe/NC | 17.72 | 46.61 | 35.66 |
ZnO/ZnFe2O4/NC | 28.8 | 38.3 | 32.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wang, Y.; Xiong, W.; Liu, J.; Li, H. Synthesis and Characterization of Zinc/Iron Composite Oxide Heterojunction Porous Anode Materials for High-Performance Lithium-Ion Batteries. Molecules 2023, 28, 7665. https://doi.org/10.3390/molecules28227665
Wang R, Wang Y, Xiong W, Liu J, Li H. Synthesis and Characterization of Zinc/Iron Composite Oxide Heterojunction Porous Anode Materials for High-Performance Lithium-Ion Batteries. Molecules. 2023; 28(22):7665. https://doi.org/10.3390/molecules28227665
Chicago/Turabian StyleWang, Ruixiang, Yanyang Wang, Wei Xiong, Jiaming Liu, and Hui Li. 2023. "Synthesis and Characterization of Zinc/Iron Composite Oxide Heterojunction Porous Anode Materials for High-Performance Lithium-Ion Batteries" Molecules 28, no. 22: 7665. https://doi.org/10.3390/molecules28227665
APA StyleWang, R., Wang, Y., Xiong, W., Liu, J., & Li, H. (2023). Synthesis and Characterization of Zinc/Iron Composite Oxide Heterojunction Porous Anode Materials for High-Performance Lithium-Ion Batteries. Molecules, 28(22), 7665. https://doi.org/10.3390/molecules28227665