Degradation of Pesticides Using Semiconducting and Tetrapyrrolic Macrocyclic Photocatalysts—A Concise Review
Abstract
:1. Introduction
1.1. Advanced Oxidation Processes (AOPs) for the Degradation of Pesticides
1.2. Photooxidation Mechanisms
1.2.1. Mechanisms Using Semiconductors as Catalysts
1.2.2. Mechanisms Using Photo-Fenton Catalysts
1.2.3. Mechanisms Using Tetrapyrrolic Macrocyclic Photosensitizers
2. Photodegradation of Pesticides
2.1. Using Unitary Metal Oxide Semiconductors
2.2. Using Hybrid Photocatalysts
2.3. Using Tetrapyrrole-Based Macrocycle Photocatalysts
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carvalho, F.P. Pesticides, Environment, and Food Safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- de Souza, R.M.; Seibert, D.; Quesada, H.B.; de Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, Impacts and General Aspects of Pesticides in Surface Water: A Review. Process Saf. Environ. Prot. 2020, 135, 22–37. [Google Scholar] [CrossRef]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous Effects of Chemical Pesticides on Human Health–Cancer and Other Associated Disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Panis, C.; Kawassaki, A.C.B.; Crestani, A.P.J.; Pascotto, C.R.; Bortoloti, D.S.; Vicentini, G.E.; Lucio, L.C.; Ferreira, M.O.; Prates, R.T.C.; Vieira, V.K.; et al. Evidence on Human Exposure to Pesticides and the Occurrence of Health Hazards in the Brazilian Population: A Systematic Review. Front. Public Health 2022, 9, 787438. [Google Scholar] [CrossRef]
- Bonupara, T.; Udomkun, P.; Khan, E.; Kajitvichyanukul, P. Airborne Pesticides from Agricultural Practices: A Critical Review of Pathways, Influencing Factors, and Human Health Implications. Toxics 2023, 11, 858. [Google Scholar] [CrossRef]
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in Drinking Water-a Review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef]
- Shefali; Kumar, R.; Sankhla, M.S.; Kumar, R.; Sonone, S.S. Impact of Pesticide Toxicity in Aquatic Environment. Biointerface Res. Appl. 2021, 11, 10131–10140. [Google Scholar] [CrossRef]
- Pinto, M.I.; Burrows, H.D.; Sontag, G.; Vale, C.; Noronha, J.P. Priority Pesticides in Sediments of European Coastal Lagoons: A Review. Mar. Pollut. Bull. 2016, 112, 6–16. [Google Scholar] [CrossRef]
- Jurado, A.; Pujades, E.; Walther, M.; Diaz-Cruz, M.S. Occurrence, Fate, and Risk of the Organic Pollutants of the Surface Water Watch List in European Groundwaters: A Review. Environ. Chem. Lett. 2022, 20, 3313–3333. [Google Scholar] [CrossRef]
- Sabzevari, S.; Hofman, J. A Worldwide Review of Currently Used Pesticides’ Monitoring in Agricultural Soils. Sci. Total Environ. 2022, 812, 152344. [Google Scholar] [CrossRef]
- Jatoi, A.S.; Hashmi, Z.; Adriyani, R.; Yuniarto, A.; Mazari, S.A.; Akhter, F.; Mubarak, N.M. Recent Trends and Future Challenges of Pesticide Removal Techniques—A Comprehensive Review. J. Environ. Chem. Eng. 2021, 9, 105571. [Google Scholar] [CrossRef]
- Ponnuchamy, M.; Kapoor, A.; Senthil Kumar, P.; Vo, D.-V.N.; Balakrishnan, A.; Mariam Jacob, M.; Sivaraman, P. Sustainable Adsorbents for the Removal of Pesticides from Water: A Review. Environ. Chem. Lett. 2021, 19, 2425–2463. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kashif, A.; Fuwad, A.; Choi, Y. Current Advances in Treatment Technologies for Removal of Emerging Contaminants from Water—A Critical Review. Coord. Chem. Rev. 2021, 442, 213993. [Google Scholar] [CrossRef]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of Pesticides from Water and Wastewater: Chemical, Physical and Biological Treatment Approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Vo, D.-V.N.; Jeevanantham, S.; Karishma, S.; Yaashikaa, P.R. A Review on Catalytic-Enzyme Degradation of Toxic Environmental Pollutants: Microbial Enzymes. J. Hazard. Mater. 2021, 419, 126451. [Google Scholar] [CrossRef] [PubMed]
- Shekher Giri, B.; Geed, S.; Vikrant, K.; Lee, S.S.; Kim, K.-H.; Kumar Kailasa, S.; Vithanage, M.; Chaturvedi, P.; Nath Rai, B.; Sharan Singh, R. Progress in Bioremediation of Pesticide Residues in the Environment. Environ. Eng. Res. 2021, 26, 200446. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Acero, J.L.; Benitez, F.J.; Real, F.J.; Roldan, G. Kinetics of Aqueous Chlorination of Some Pharmaceuticals and Their Elimination from Water Matrices. Water Res. 2010, 44, 4158–4170. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef]
- Khan, I.; Liu, W.; Zada, A.; Raziq, F.; Ali, S.; Shah, M.I.A.; Ateeq, M.; Khan, M.; Alei, D.; Fazil, P.; et al. Recent Progress in Emerging Materials and Hybrid Nanocomposites for Peroxymonosulfate and Peroxydisulfate Activation Towards Solar Light-Driven Photocatalytic Degradation of Emerging Pollutants. Coord. Chem. Rev. 2024, 499, 215466. [Google Scholar] [CrossRef]
- Zada, A.; Khan, M.; Khan, M.A.; Khan, Q.; Habibi-Yangjeh, A.; Dang, A.; Maqbool, M. Review on the Hazardous Applications and Photodegradation Mechanisms of Chlorophenols over Different Photocatalysts. Environ. Res. 2021, 195, 110742. [Google Scholar] [CrossRef]
- Burrows, H.D.; Canle, M.; Santaballa, J.A.; Steenken, S. Reaction Pathways and Mechanisms of Photodegradation of Pesticides. J. Photochem. Photobiol. B-Biol. 2002, 67, 71–108. [Google Scholar] [CrossRef]
- Devipriya, S.; Yesodharan, S. Photocatalytic Degradation of Pesticide Contaminants in Water. Sol. Energy Mater. Sol. Cells 2005, 86, 309–348. [Google Scholar] [CrossRef]
- Martins, D.C.D.; Resende, I.T.; Da Silva, B.J.R. Degradation Features of Pesticides: A Review on (Metallo)Porphyrin-Mediated Catalytic Processes. Environ. Sci. Pollut. Res. 2022, 29, 42384–42403. [Google Scholar] [CrossRef] [PubMed]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liao, M.; Zhao, C.; Liu, M.M.; Han, A.L.; Zhu, C.N.; Sun, Y.J.; Zhao, M.; Ye, S.; Cao, H.Q. A Comprehensive Review on Semiconductor-Based Photocatalysts toward the Degradation of Persistent Pesticides. Nano Res. 2023, 16, 6402–6443. [Google Scholar] [CrossRef]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed.; Grad Texts Phys; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Opoku, F.; Govender, K.K.; van Sittert, C.G.C.E.; Govender, P.P. Recent Progress in the Development of Semiconductor-Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants. Adv. Sustain. Syst. 2017, 1, 1700006. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Piccirillo, G.; Vinagreiro, C.S.; Pereira, M.M. Hybrid Materials for Heterogeneous Photocatalytic Degradation of Antibiotics. Coord. Chem. Rev. 2019, 395, 63–85. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, Q. Action and Mechanism of Semiconductor Photocatalysis on Degradation of Organic Pollutants in Water Treatment: A Review. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100255. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced Oxidation Processes (Aop) for Water Purification and Recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Homem, V.; Santos, L. Degradation and Removal Methods of Antibiotics from Aqueous Matrices—A Review. J. Environ. Manag. 2011, 92, 2304–2347. [Google Scholar] [CrossRef] [PubMed]
- Fenton, H.J.H. On a New Reaction of Tartaric Acid. Chem. News 1876, 33, 190. [Google Scholar]
- Bishop, D.F.; Stern, G.; Fleischman, M.; Marshall, L.S. Hydrogen Peroxide Catalytic Oxidation of Refractory Organics in Municipal Waste Waters. Ind. Eng. Chem. Process Des. Dev. 1968, 7, 110–117. [Google Scholar] [CrossRef]
- Clarizia, L.; Russo, D.; Di Somma, I.; Marotta, R.; Andreozzi, R. Homogeneous Photo-Fenton Processes at near Neutral Ph: A Review. Appl. Catal. B Environ. 2017, 209, 358–371. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Giannakis, S.; Polo López, M.I.; Spuhler, D.; Sánchez Pérez, J.A.; Fernández Ibáñez, P.; Pulgarin, C. Solar Disinfection Is an Augmentable, in Situ-Generated Photo-Fenton Reaction—Part 1: A Review of the Mechanisms and the Fundamental Aspects of the Process. Appl. Catal. B Environ. 2016, 199, 199–223. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S. Photo-Fenton Applied to the Removal of Pharmaceutical and Other Pollutants of Emerging Concern. Curr. Opin. Green Sustain. Chem. 2021, 29, 100458. [Google Scholar] [CrossRef]
- Machado, F.; Teixeira, A.C.S.C.; Ruotolo, L.A.M. Critical Review of Fenton and Photo-Fenton Wastewater Treatment Processes over the Last Two Decades. Int. J. Environ. Sci. Technol. 2023, 20, 13995–14032. [Google Scholar] [CrossRef]
- Demarchis, L.; Minella, M.; Nistico, R.; Maurino, V.; Minero, C.; Vione, D. Photo-Fenton Reaction in the Presence of Morphologically Controlled Hematite as Iron Source. J. Photochem. Photobiol. A-Chem. 2015, 307, 99–107. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent Advances in Photo-Activated Sulfate Radical-Advanced Oxidation Process (Sr-Aop) for Refractory Organic Pollutants Removal in Water. Chem. Eng. J. 2019, 378, 122149. [Google Scholar] [CrossRef]
- Guerra-Rodriguez, S.; Rodriguez, E.; Singh, D.N.; Rodriguez-Chueca, J. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 2018, 10, 1828. [Google Scholar] [CrossRef]
- Cecconi, B.; Manfredi, N.; Montini, T.; Fornasiero, P.; Abbotto, A. Dye-Sensitized Solar Hydrogen Production: The Emerging Role of Metal-Free Organic Sensitizers. Eur. J. Org. Chem. 2016, 2016, 5194–5215. [Google Scholar] [CrossRef]
- Brogdon, P.; Cheema, H.; Delcamp, J.H. Near-Infrared-Absorbing Metal-Free Organic, Porphyrin, and Phthalocyanine Sensitizers for Panchromatic Dye-Sensitized Solar Cells. Chemsuschem 2018, 11, 86–103. [Google Scholar] [CrossRef] [PubMed]
- Martynov, A.G.; Safonova, E.A.; Tsivadze, A.Y.; Gorbunova, Y.G. Functional Molecular Switches Involving Tetrapyrrolic Macrocycles. Coord. Chem. Rev. 2019, 387, 325–347. [Google Scholar] [CrossRef]
- Dini, D.; Calvete, M.J.F.; Hanack, M. Nonlinear Optical Materials for the Smart Filtering of Optical Radiation. Chem. Rev. 2016, 116, 13043–13233. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Dini, D. Conjugated Macrocyclic Materials with Photoactivated Optical Absorption for the Control of Energy Transmission Delivered by Pulsed Radiations. J. Photochem. Photobiol. C 2018, 35, 56–73. [Google Scholar] [CrossRef]
- Fernandez, L.; Esteves, V.I.; Cunha, A.; Schneider, R.J.; Tome, J.P.C. Photodegradation of Organic Pollutants in Water by Immobilized Porphyrins and Phthalocyanines. J. Porphyr. Phthalocyanines 2016, 20, 150–166. [Google Scholar] [CrossRef]
- Piccirillo, G.; Aroso, R.T.; Rodrigues, F.M.S.; Carrilho, R.M.B.; Pinto, S.M.A.; Calvete, M.J.F.; Pereira, M.M. Oxidative Degradation of Pharmaceuticals: The Role of Tetrapyrrole-Based Catalysts. Catalysts 2021, 11, 1335. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Pinto, S.M.A.; Pereira, M.M.; Geraldes, C.F.G.C. Metal Coordinated Pyrrole-Based Macrocycles as Contrast Agents for Magnetic Resonance Imaging Technologies: Synthesis and Applications. Coord. Chem. Rev. 2017, 333, 82–107. [Google Scholar] [CrossRef]
- Aroso, R.T.; Schaberle, F.A.; Arnaut, L.G.; Pereira, M.M. Photodynamic Disinfection and Its Role in Controlling Infectious Diseases. Photochem. Photobiol. Sci. 2021, 20, 1497–1545. [Google Scholar] [CrossRef]
- Maldonado-Carmona, N.; Ouk, T.S.; Calvete, M.J.F.; Pereira, M.M.; Villandier, N.; Leroy-Lhez, S. Conjugating Biomaterials with Photosensitizers: Advances and Perspectives for Photodynamic Antimicrobial Chemotherapy. Photochem. Photobiol. Sci. 2020, 19, 445–461. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, J.M.; Pucelik, B.; Regiel-Futyra, A.; Brindell, M.; Mazuryk, O.; Kyziol, A.; Stochel, G.; Macyk, W.; Arnaut, L.G. Engineering of Relevant Photodynamic Processes through Structural Modifications of Metallotetrapyrrolic Photosensitizers. Coord. Chem. Rev. 2016, 325, 67–101. [Google Scholar] [CrossRef]
- Dini, D.; Calvete, M.; Vagin, S.; Hanack, M.; Eriksson, A.; Lopes, C. Analysis of the Nonlinear Transmission Properties of Some Naphthalocyanines. J. Porphyr. Phthalocyanines 2006, 10, 1165–1171. [Google Scholar] [CrossRef]
- Dini, D.; Calvete, M.J.F.; Hanack, M.; Amendola, V.; Meneghetti, M. Demonstration of the Optical Limiting Effect for an Hemiporphyrazine. Chem. Commun. 2006, 2006, 2394–2396. [Google Scholar] [CrossRef] [PubMed]
- Farinha, A.S.F.; Calvete, M.J.F.; Paz, F.A.A.; Tomé, A.C.; Cavaleiro, J.A.S.; Sessler, J.L.; Tomé, J.P.C. Octatosylaminophthalocyanine: A Reusable Chromogenic Anion Chemosensor. Sens. Actuators B Chem. 2014, 201, 387–394. [Google Scholar] [CrossRef]
- Marques, A.T.; Pinto, S.M.A.; Monteiro, C.J.P.; Seixas de Melo, J.S.; Burrows, H.D.; Scherf, U.; Calvete, M.J.F.; Pereira, M.M. Energy Transfer from Fluorene-Based Conjugated Polyelectrolytes to on-Chain and Self-Assembled Porphyrin Units. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1408–1417. [Google Scholar] [CrossRef]
- Pinto, S.M.A.; Tomé, V.A.; Calvete, M.J.F.; Pereira, M.M.; Burrows, H.D.; Cardoso, A.M.S.; Pallier, A.; Castro, M.M.C.A.; Tóth, É.; Geraldes, C.F.G.C. The Quest for Biocompatible Phthalocyanines for Molecular Imaging: Photophysics, Relaxometry and Cytotoxicity Studies. J. Inorg. Biochem. 2016, 154, 50–59. [Google Scholar] [CrossRef]
- Jablonski, A. Efficiency of Anti-Stokes Fluorescence in Dyes. Nature 1933, 131, 839–840. [Google Scholar] [CrossRef]
- Nonell, S.; Flors, C. (Eds.) Singlet Oxygen: Applications in Biosciences and Nanosciences; The Royal Society of Chemistry: London, UK, 2016. [Google Scholar]
- Wiehe, A.; O’Brien, J.M.; Senge, M.O. Trends and Targets in Antiviral Phototherapy. Photochem. Photobiol. Sci. 2019, 18, 2565–2612. [Google Scholar] [CrossRef]
- Pietrzak, D.; Kania, J.; Malina, G.; Kmiecik, E.; Wator, K. Pesticides from the Eu First and Second Watch Lists in the Water Environment. Clean-Soil Air Water 2019, 47, 1800376. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and Removal of Organic Micropollutants: An Overview of the Watch List of Eu Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef]
- Pohanish, R.P. Sittig’s Handbook of Pesticides and Agricultural Chemicals; William Andrew Publishers: Norwich, UK, 2014. [Google Scholar]
- Abubakar, Y.; Tijjani, H.; Egbuna, C.; Adetunji, C.O.; Kala, S.; Kryeziu, T.L.; Ifemeje, J.C.; Patrick-Iwuanyanwu, K.C. Chapter 3—Pesticides, History, and Classification. In Natural Remedies for Pest, Disease and Weed Control; Egbuna, C., Sawicka, B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 29–42. [Google Scholar]
- Turner, J.A. (Ed.) A World Compendium: Pesticide Manual, 19th ed.; BCPC Publishing: Cambridge, UK, 2022. [Google Scholar]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. Heterogeneous Photocatalysis: From Water Photolysis to Applications in Environmental Cleanup. Int. J. Hydrogen Energy 2007, 32, 2664–2672. [Google Scholar] [CrossRef]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Titanium Dioxide Photocatalysis for Pharmaceutical Wastewater Treatment. Environ. Chem. Lett. 2014, 12, 27–47. [Google Scholar] [CrossRef]
- Ohtani, B. Photocatalysis a to Z—What We Know and What We Do Not Know in a Scientific Sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157–178. [Google Scholar] [CrossRef]
- Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E. Noble Metal-Based Bimetallic Nanoparticles: The Effect of the Structure on the Optical, Catalytic and Photocatalytic Properties. Adv. Colloid Interface Sci. 2016, 229, 80–107. [Google Scholar] [CrossRef]
- Barbeni, M.; Pramauro, E.; Pelizzetti, E.; Borgarello, E.; Serpone, N. Photodegradation of Pentachlorophenol Catalyzed by Semiconductor Particles. Chemosphere 1985, 14, 195–208. [Google Scholar] [CrossRef]
- Hidaka, H.; Nohara, K.; Zhao, J.C.; Serpone, N.; Pelizzetti, E. Photooxidative Degradation of the Pesticide Permethrin Catalyzed by Irradiated TiO2 Semiconductor Slurries in Aqueous-Media. J. Photochem. Photobiol. A-Chem. 1992, 64, 247–254. [Google Scholar] [CrossRef]
- Dionysiou, D.; Khodadoust, A.P.; Kern, A.M.; Suidan, M.T.; Baudin, I.; Laine, J.M. Continuous-Mode Photocatalytic Degradation of Chlorinated Phenols and Pesticides in Water Using a Bench-Scale TiO2 Rotating Disk Reactor. Appl. Catal. B-Environ. 2000, 24, 139–155. [Google Scholar] [CrossRef]
- Parra, S.; Stanca, S.E.; Guasaquillo, I.; Thampi, K.R. Photocatalytic Degradation of Atrazine Using Suspended and Supported TiO2. Appl. Catal. B-Environ. 2004, 51, 107–116. [Google Scholar] [CrossRef]
- Saien, J.; Khezrianjoo, S. Degradation of the Fungicide Carbendazim in Aqueous Solutions with Uv/TiO2 Process: Optimization, Kinetics and Toxicity Studies. J. Hazard. Mater. 2008, 157, 269–276. [Google Scholar] [CrossRef]
- Navarro, S.; Fenoll, J.; Vela, N.; Ruiz, E.; Navarro, G. Photocatalytic Degradation of Eight Pesticides in Leaching Water by Use of Zno under Natural Sunlight. J. Hazard. Mater. 2009, 172, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Sarkar, D.; Madras, G. Hierarchical Design of Cus Architectures for Visible Light Photocatalysis of 4-Chlorophenol. Acs Omega 2017, 2, 4009–4021. [Google Scholar] [CrossRef]
- Barbeni, M.; Pramauro, E.; Pelizzetti, E.; Borgarello, E.; Gratzel, M.; Serpone, N. Photodegradation of 4-Chlorophenol Catalyzed by Titanium-Dioxide Particles. Nouv. J. Chim. -New J. Chem. 1984, 8, 547–550. [Google Scholar]
- Banerjee, S.; Pillai, S.C.; Falaras, P.; O’Shea, K.E.; Byrne, J.A.; Dionysiou, D.D. New Insights into the Mechanism of Visible Light Photocatalysis. J. Phys. Chem. Lett. 2014, 5, 2543–2554. [Google Scholar] [CrossRef] [PubMed]
- Schultz, D.M.; Yoon, T.P. Solar Synthesis: Prospects in Visible Light Photocatalysis. Science 2014, 343, 1239176. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, B. Titania Photocatalysis Beyond Recombination: A Critical Review. Catalysts 2013, 3, 942–953. [Google Scholar] [CrossRef]
- Ozawa, K.; Emori, M.; Yamamoto, S.; Yukawa, R.; Yamamoto, S.; Hobara, R.; Fujikawa, K.; Sakama, H.; Matsuda, I. Electron–Hole Recombination Time at TiO2 Single-Crystal Surfaces: Influence of Surface Band Bending. J. Phys. Chem. Lett. 2014, 5, 1953–1957. [Google Scholar] [CrossRef] [PubMed]
- Fenoll, J.; Garrido, I.; Cava, J.; Hellin, P.; Flores, P.; Navarro, S. Photometabolic Pathways of Chlorantraniliprole in Aqueous Slurries Containing Binary and Ternary Oxides of Zn and Ti. Chem. Eng. J. 2015, 264, 720–727. [Google Scholar] [CrossRef]
- Majhi, D.; Bhoi, Y.P.; Samal, P.K.; Mishra, B.G. Morphology Controlled Synthesis and Photocatalytic Study of Novel Cus-Bi2O2CO3 Heterojunction System for Chlorpyrifos Degradation under Visible Light Illumination. Appl. Surf. Sci. 2018, 455, 891–902. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Guo, C.S.; Stadler, F.J. Biochar-Templated g-C3N4/Bi2O2CO3/CoFe2O4 Nano-Assembly for Visible and Solar Assisted Photo-Degradation of Paraquat, Nitrophenol Reduction and CO2 Conversion. Chem. Eng. J. 2018, 339, 393–410. [Google Scholar] [CrossRef]
- Sun, H.H.; Zou, C.J.; Liao, Y.; Tang, W.Y.; Huang, Y.S.; Chen, M.J. Modulating Charge Transport Behavior across the Interface Via g-C3N4 Surface Discrete Modified Bioi and Bi2moo6 for Efficient Photodegradation of Glyphosate. J. Alloys Compd. 2023, 935, 168208. [Google Scholar] [CrossRef]
- Dehghan, S.; Jafari, A.J.; FarzadKia, M.; Esrafili, A.; Kalantary, R.R. Visible-Light-Driven Photocatalytic Degradation of Metalaxyl by Reduced Graphene Oxide/Fe3O4/ZnO Ternary Nanohybrid: Influential Factors, Mechanism and Toxicity Bioassay. J. Photochem. Photobiol. A-Chem. 2019, 375, 280–292. [Google Scholar] [CrossRef]
- Bai, Z.K.; Ge, Q.M.; Jiang, N.; Cong, H.; Tao, Z.; Liu, M.; Fan, Y. Energy-Saving-Lamp-Driven Photodegradation of Pyroquilon and Admire in the Presence of Cucurbituril-Block Composite of g-C3N4/Ag3PO4@Q 7. Opt. Mater. 2023, 135, 113369. [Google Scholar] [CrossRef]
- Doong, R.A.; Chang, W.H. Photoassisted Iron Compound Catalytic Degradation of Organophosphorous Pesticides with Hydrogen Peroxide. Chemosphere 1998, 37, 2563–2572. [Google Scholar] [CrossRef]
- Carra, I.; Perez, J.A.S.; Malato, S.; Autin, O.; Jefferson, B.; Jarvis, P. Application of High Intensity Uvc-Led for the Removal of Acetamiprid with the Photo-Fenton Process. Chem. Eng. J. 2015, 264, 690–696. [Google Scholar] [CrossRef]
- Evgenidou, E.; Konstantinou, I.; Fytianos, K.; Poulios, I. Oxidation of Two Organophosphorous Insecticides by the Photo-Assisted Fenton Reaction. Water Res. 2007, 41, 2015–2027. [Google Scholar] [CrossRef]
- Kitsiou, V.; Filippidis, N.; Mantzavinos, D.; Pouios, I. Heterogeneous and Homogeneous Photocatalytic Degradation of the Insecticide Imidacloprid in Aqueous Solutions. Appl. Catal. B-Environ. 2009, 86, 27–35. [Google Scholar] [CrossRef]
- Banic, N.; Abramovic, B.; Krstic, J.; Sojic, D.; Loncarevic, D.; Cherkezova-Zheleva, Z.; Guzsvany, V. Photodegradation of Thiacloprid Using Fe/TiO2 as a Heterogeneous Photo-Fenton Catalyst. Appl. Catal. B-Environ. 2011, 107, 363–371. [Google Scholar] [CrossRef]
- Abramovic, B.F.; Banic, N.D.; Sojic, D.V. Degradation of Thiacloprid in Aqueous Solution by Uv and Uv/H2O2 Treatments. Chemosphere 2010, 81, 114–119. [Google Scholar] [CrossRef]
- Tan, J.; Li, Z.F.; Li, J.; Meng, Y.; Yao, X.L.; Wang, Y.H.; Lu, Y.; Zhang, T.T. Visible-Light-Assisted Peroxymonosulfate Activation by Metal-Free Bifunctional Oxygen-Doped Graphitic Carbon Nitride for Enhanced Degradation of Imidacloprid: Role of Non-Photochemical and Photocatalytic Activation Pathway. J. Hazard. Mater. 2022, 423, 127048. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Preethi, J.; Meenakshi, S. Removal of Chlorpyrifos, an Insecticide Using Metal Free Heterogeneous Graphitic Carbon Nitride (g-C3N4) Incorporated Chitosan as Catalyst: Photocatalytic and Adsorption Studies. Int. J. Biol. Macromol. 2019, 132, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Granados-Oliveros, G.; Páez-Mozo, E.A.; Ortega, F.M.; Ferronato, C.; Chovelon, J.-M. Degradation of Atrazine Using Metalloporphyrins Supported on TiO2 under Visible Light Irradiation. Appl. Catal. B Environ. 2009, 89, 448–454. [Google Scholar] [CrossRef]
- Liu, J.T.; Xiong, W.H.; Ye, L.Y.; Zhang, W.S.; Yang, H. Developing a Novel Nanoscale Porphyrinic Metal-Organic Framework: A Bifunctional Platform with Sensitive Fluorescent Detection and Elimination of Nitenpyram in Agricultural Environment. J. Agric. Food Chem. 2020, 68, 5572–5578. [Google Scholar] [CrossRef]
- Rebelo, S.L.H.; Melo, A.; Coimbra, R.; Azenha, M.E.; Pereira, M.M.; Burrows, H.D.; Sarakha, M. Photodegradation of Atrazine and Ametryn with Visible Light Using Water Soluble Porphyrins as Sensitizers. Environ. Chem. Lett. 2007, 5, 29–33. [Google Scholar] [CrossRef]
- Silva, M.; Azenha, M.E.; Pereira, M.M.; Burrows, H.D.; Sarakha, M.; Forano, C.; Ribeiro, M.F.; Fernandes, A. Immobilization of Halogenated Porphyrins and Their Copper Complexes in Mcm-41: Environmentally Friendly Photocatalysts for the Degradation of Pesticides. Appl. Catal. B-Environ. 2010, 100, 1–9. [Google Scholar] [CrossRef]
- Silva, M.; Azenha, M.E.; Pereira, M.M.; Burrows, H.D.; Sarakha, M.; Ribeiro, M.F.; Fernandes, A.; Monsanto, P.; Castanheira, F. Immobilization of 5,10,15,20-Tetrakis-(2-Fluorophenyl)Porphyrin into Mcm-41 and Nay: Routes toward Photodegradation of Pesticides. Pure Appl. Chem. 2009, 81, 2025–2033. [Google Scholar] [CrossRef]
- De Oliveira, E.; Neri, C.R.; Ribeiro, A.O.; Garcia, V.S.; Costa, L.L.; Moura, A.O.; Prado, A.G.S.; Serra, O.A.; Iamamoto, Y. Hexagonal Mesoporous Silica Modified with Copper Phthalocyanine as a Photocatalyst for Pesticide 2,4-Dichlorophenoxiacetic Acid Degradation. J. Colloid Interface Sci. 2008, 323, 98–104. [Google Scholar] [CrossRef]
- Silva, M.; Calvete, M.J.F.; Goncalves, N.P.F.; Burrows, H.D.; Sarakha, M.; Fernandes, A.; Ribeiro, M.F.; Azenha, M.E.; Pereira, M.M. Zinc(Ii) Phthalocyanines Immobilized in Mesoporous Silica Al-Mcm-41 and Their Applications in Photocatalytic Degradation of Pesticides. J. Hazard. Mater. 2012, 233, 79–88. [Google Scholar] [CrossRef]
Category | Structures |
---|---|
Entry/ Ref. | Substrates and Catalysts | Operational Features | Results and Comments |
---|---|---|---|
1 [73] | [PCP] = 12 mg L−1 [TiO2] = 2000 mg L−1 |
|
|
2 [74] | [PER] = 17,000 mg L−1 [T-805] = 100 mg L−1 [TiO2 (P-25)] = 100 mg L−1 |
|
|
3 [75] | [4-CP], [2,4-DCP], [2,4,6-TCP], [2,3,6-TCP], [2,3,5-TCP], [PCP], [LIN] = 4.6 to 7.5 mg L−1 [TiO2 disks] = NR |
|
|
4 [76] | [ATR] = 25 mg L−1 [TiO2] = 1000 mg L−1 |
|
|
5 [77] | [CAR] = 10 mg L−1 [TiO2] = 70 mg L−1 |
|
|
6 [78] | [AZO] = [KRM] = [HEX]= [TEB] = [TRI] = [PYRI] = [PRO]= [PRO] = 0.5 mg L−1 [ZnO]= 150 mg L−1 | Irradiation: natural sunlight; 400 nm < λ < 700 nm Matrix: greenhouse irrigation water pH = 8–8.4; T = 25 °C Na2S2O8: 100 mg L−1 |
|
7 [79] | [4-CP]= 100 mg L−1 [CuS-ST] = [CuS-TA] = [CuS-TU] = 50 mg L−1 | Irradiation: 400 W metal halide lamp; 400 nm < λ < 700 nm Matrix: DW pH = 8–8.4; T ~25 °C |
|
Entry/Ref | Substrates and Catalysts | Operational Features | Results and Comments |
---|---|---|---|
1 [85] | [CAP]0 = 0.1 mg/L [TiO2] = 300 mg L−1 [ZnO] = 200 mg L−1 [Zn2TiO4] = 200 mg L−1 |
|
|
2 [86] | [CPF]0 = 10 mg/L [CuS10/Bi2O2CO3(U5K1)] = 250 mg L−1 |
|
|
3 [87] | [PAR] = 20 mg L−1 [g-C3N4/Bi2O2CO3/ CoFe2O4] = 500 mg L−1 |
|
|
4 [88] | [GLY] = 50 mg L−1 [g-C3N4/BiOI/Bi2MoO6] = 250 mg L−1 |
|
|
5 [89] | [MET]0 = 30 mg/L [(rGO)/Fe3O4/ZnO] = 500 mg L−1 |
|
|
6 [90] | [PYR] = [IMI] = 10 mg L−1 [g-C3N4/Ag3PO4@Q [7]] = 400 mg L−1 |
|
|
7 [91] | [MET] = [MAL] = [DIA] = [PHO] = [EPN] = 8 mg L−1 [Fe(SO4)] = 7.6 mg L−1 [Fe0]= 830 mg L−1 |
|
|
8 [92] | [ACE] = 0.100 mg L−1 Iron(II) sulfate [FeSO4] = 3 mg L−1 |
|
|
9 [93] | [DIM] = [MPA] = 10 mg L−1 [Fe2(SO4)3] = [Fe2(ClO4)3] = [FeCl3] = 1 mg L−1 |
|
|
10 [94] | [IMI] = 20 mg L−1 Iron(III) oxalate [Fe2(oxal)3] = 7 mg L−1 |
|
|
11 [95] | [THI] = 20 mg L−1 7.2% w/w Fe (denoted as 7.2Fe/TiO2) [7.2Fe/TiO2] = 1670 mg L−1 |
|
|
12 [96] | [THI] = 20 mg L−1 [7.2Fe/TiO2] = 1670 mg L−1 |
|
|
13 [97] | [IMI] = 3 mg L−1 [OCN] = 500 mg L−1 |
|
|
14 [98] | [CPF] = 50 mg L−1 [CS/g-C3N4] = 2 mg L−1 |
|
|
Entry/Ref | Substrates and Catalysts | Operational Features | Results and Comments |
---|---|---|---|
1 [99] | [ATR] = 10 mg L−1 [TCPP] = [CuTCPP] = [ZnTCPP] = [FeTCPP] = 1 mg L−1 |
|
|
2 [100] | [NIT] = 10 mg L−1 [TCPP]: 10 mg L−1 |
|
|
3 [101] | [ATR] =[AME] = 1 mg L−1 [TPPS] = 4 mg L−1 [TDCPPS] = 5 mg L−1 |
|
|
4 [102] | [2,4,6-TMP] = 15 mg L−1; [FEN] = 33 mg L−1 [DIU] = 26 mg L−1 [TDCPP] = [CuTDCPP] = [TFPP] = [CuTFPP] = 500 mg L−1 |
|
|
5 [103] | [2,3,5- TMP] = 68 mg L−1; [MEC] = 107 mg L−1 [TFPP] = 200 mg L−1 |
|
|
6 [104] | [2,4-DCPA] = 10 mg L−1 [CuF16Pc] = 500 mg L−1 |
|
|
7 [105] | [FEN] = 30 mg L−1 and [PCP] = 3 mg L−1 [ZnN4Pc] = [Zn(OPh)4Pc] = [Zn(chol)4Pc] = 500 mg L−1 |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccirillo, G.; De Sousa, R.B.; Dias, L.D.; Calvete, M.J.F. Degradation of Pesticides Using Semiconducting and Tetrapyrrolic Macrocyclic Photocatalysts—A Concise Review. Molecules 2023, 28, 7677. https://doi.org/10.3390/molecules28227677
Piccirillo G, De Sousa RB, Dias LD, Calvete MJF. Degradation of Pesticides Using Semiconducting and Tetrapyrrolic Macrocyclic Photocatalysts—A Concise Review. Molecules. 2023; 28(22):7677. https://doi.org/10.3390/molecules28227677
Chicago/Turabian StylePiccirillo, Giusi, Rodrigo B. De Sousa, Lucas D. Dias, and Mário J. F. Calvete. 2023. "Degradation of Pesticides Using Semiconducting and Tetrapyrrolic Macrocyclic Photocatalysts—A Concise Review" Molecules 28, no. 22: 7677. https://doi.org/10.3390/molecules28227677
APA StylePiccirillo, G., De Sousa, R. B., Dias, L. D., & Calvete, M. J. F. (2023). Degradation of Pesticides Using Semiconducting and Tetrapyrrolic Macrocyclic Photocatalysts—A Concise Review. Molecules, 28(22), 7677. https://doi.org/10.3390/molecules28227677