In Vitro Analysis of Selected Antioxidant and Biological Properties of the Extract from Large-Fruited Cranberry Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Bioactive Substances in the Extract from Large-Fruited Cranberry Fruits
2.2. Profile of Polyphenolic Compounds in Cranberry Extract
2.3. Profile of Volatile Compounds in the Obtained Cranberry Extract
2.4. Inhibitory Activity against COX-1, COX-2, and AChE
2.5. Evaluation of Antioxidant Properties of Extract Using S. cerevisiae Yeast Exposed to Toxic Effects of H2O2
3. Materials and Methods
3.1. Research Material
3.2. The Procedure for Preparing and the Yield of Extracts
3.3. The Total Polyphenol Content, Antioxidant Activity, and Vitamin C Content
3.4. Profile of Phenolic Compounds in Cranberry Extracts
3.5. Volatile Compound Profile of Cranberry Extracts
3.6. Inhibition of Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), and Acetylcholinesterase (ACHE) by Cranberry Extract
3.7. Antioxidant Properties Using Saccharomyces Cerevisiae
3.7.1. Metabolic Activity
3.7.2. Intracellular ROS Levels
3.7.3. The Activity of Antioxidant Enzymes
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Česonienė, L.; Daubaras, R. Chapter 8—Phytochemical Composition of the Large Cranberry (Vaccinium macrocarpon) and the Small Cranberry (Vaccinium oxycoccos). In Nutritional Composition of Fruit Cultivars; Academic Press: Cambridge, MA, USA, 2016; pp. 173–194. [Google Scholar] [CrossRef]
- Mabberley, D.J. The Plant-Book: A Portable Dictionary of the Vascular Plants, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; p. 740. [Google Scholar]
- Česonienė, L.; Daubaras, R.; Paulauskas, A.; Žukauskienė, J.; Zych, M. Morphological and genetic diversity of European cranberry (Vaccinium oxycoccos L., Ericaceae) clones in Lithuanian reserves. Acta Soc. Bot. Pol. 2013, 82, 211–217. [Google Scholar] [CrossRef]
- Narwojsz, A.; Tańska, M.; Mazur, B.; Borowska, E.J. Fruit Physical Features, Phenolic Compounds Profile and Inhibition Activities of Cranberry Cultivars (Vaccinium macrocarpon) Compared to Wild-Grown Cranberry (Vaccinium oxycoccus). Plant Foods Hum. Nutr. 2019, 74, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Greblikaite, J.; Ispiryan, A.; Montvydaite, D. Development of berry farms in europe: Organisational and management issues. Mark. Manag. Innov. 2019, 2, 141–159. [Google Scholar] [CrossRef]
- Jacquemart, A.L. Vaccinium oxycoccos L. (Oxycoccos palustris Pers.) and Vaccinium microcarpum (Turcz. ex Rupr.) schmalh. (Oxycoccos microcarpus Turcz. ex Rupr.). J. Ecol. 1997, 85, 381–396. [Google Scholar] [CrossRef]
- Česonienė, L.; Daubaras, R.; Areškevičiūtė, J.; Viškelis, P. Evaluation of Morphological Peculiarities, Amount of Total Phenolics and Anthocyanins in Berries of European Cranberry (Oxycoccus palustris). Balt. For. 2006, 12, 59–63. [Google Scholar]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Jung, H.N.; Kim, K.N.; Kwak, H.-K. Effects of cranberry powder on serum lipid profiles and biomarkers of oxidative stress in rats fed an atherogenic diet. Nutr. Res. Pract. 2008, 2, 158–164. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Krisetherton, P.; Howell, A.; Manach, C. Cranberries and their bioactive constituents in human health. Adv. Nutr. 2013, 4, 618–632. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors. Nutr. Rev. 2007, 65, 490–502. [Google Scholar] [CrossRef]
- Raz, R.; Chazan, B.L.; Dan, M. Cranberry Juice and Urinary Tract Infection. Clin. Infect. Dis. 2004, 38, 1413–1419. [Google Scholar] [CrossRef]
- Simão, T.N.C.; Lozovoy, M.A.B.; Simão, A.N.C.; Oliveira, S.R.; Venturini, D.; Morimoto, H.K.; Miglioranza, L.H.S.; Dichi, I. Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome. Br. J. Nutr. 2013, 110, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Thimóteo, N.S.B.; Scavuzzi, B.M.; Simão, A.N.C.; Dichi, I. The impact of cranberry (Vaccinium macrocarpon) and cranberry products on each component of the metabolic syndrome: A review. Nutrire 2017, 42, 25. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Drużyńska, B.; Sieradzka, B.; Majewska, E.; Kowalska, J.; Wołosiak, R.; Derewiaka, D.; Ciecierska, M. Selected bioactive components and antioxidant properties of cranberries and dried figs. Bromat. Chem. Toksykol.–XLIX 2016, 3, 272–275. [Google Scholar]
- Dybkowska, E.; Sadowska, A.; Rakowska, R.; Debowska, M.; Swiderski, F.; Swiader, K. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting. Rocz. Państw. Zakładu Hig. 2017, 68, 4. [Google Scholar]
- Nemzer, B.V.; Al-Taher, F.; Yashin, A.; Revelsky, I.; Yashin, Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. Molecules 2022, 27, 1503. [Google Scholar] [CrossRef]
- Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos). Molecules 2019, 24, 24. [Google Scholar] [CrossRef]
- Česonienė, L.; Daubaras, R.; Jasutiene, I.; Vencloviene, J.; Miliauskiene, I. Evaluation of the Biochemical Components and Chromatic Properties of the Juice of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Plant Foods Hum. Nutr. 2011, 66, 238–244. [Google Scholar] [CrossRef]
- Česonienė, L.; Daubaras, R.; Jasutiene, I.; Miliauskiene, I.; Zych, M. Investigations of anthocyanins, organic acids, and sugars show great variability in nutritional and medicinal value of European cranberry (Vaccinium oxycoccos) fruit. J. Appl. Bot. Food Qual. 2015, 88, 295–299. [Google Scholar] [CrossRef]
- Česonienė, L.; Jasutiene, I.; Šarkinas, A. Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Medicina 2009, 45, 992–999. [Google Scholar] [CrossRef]
- Prasain, J.K.; Rajbhandari, R.; Keeton, A.B.; Piazza, G.A.; Barnes, S. Metabolism and growth inhibitory activity of cranberry derived flavonoids in bladder cancer cells. Food Funct. 2016, 7, 4012–4019. [Google Scholar] [CrossRef]
- Panche, A.; Diwan, A.; Chandra, S. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, E47. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Hao, J.; Selorm Yao-Say, S.A.; Wencui, K.; Zhaoli, X.; Muhammad, Z.; Quansheng, C. Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Crit. Rev. Food Sci. Nutr. 2023, 63, 8226–8248. [Google Scholar] [CrossRef]
- Yu, J.; Wania, F.; Abbatt, J.P.D. A New Approach to Characterizing the Partitioning of Volatile Organic Compounds to Cotton Fabric. Environ. Sci. Technol. 2022, 56, 3365–3374. [Google Scholar] [CrossRef] [PubMed]
- Alonso, D.M.; Granados, M.L.; Mariscal, R.; Douhal, A. Polarity of the acid chain of esters and transesterification activity of acid catalysts. J. Catal. 2009, 262, 18–26. [Google Scholar] [CrossRef]
- Chen, J.; Brooks, C.L.; Scheraga, H.A. Revisiting the carboxylic acid dimers in aqueous solution: Interplay of hydrogen bonding, hydrophobic interactions, and entropy. J. Phys. Chem. B 2008, 112, 242–249. [Google Scholar] [CrossRef] [PubMed]
- De Lange, E.S.; Salamanca, J.; Polashock, J. Genotypic Variation and Phenotypic Plasticity in Gene Expression and Emissions of Herbivore-Induced Volatiles, and their Potential Tritrophic Implications, in Cranberries. J. Chem. Ecol. 2019, 45, 298–312. [Google Scholar] [CrossRef]
- Vane, J.R.; Bakhle, Y.S.; Botting, R.M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 97–120. [Google Scholar] [CrossRef]
- Mitchell, J.A.; Akarasereenont, P.; Thiemermann, C.; Flower, R.J.; Vane, J.R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA 1993, 24, 11693–11697. [Google Scholar] [CrossRef]
- Rees, T.M.; Brimijoin, S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today 2003, 39, 75–83. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, P.; Li, S.; Ho, C.H.; Zhao, H. Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. J. Funct. Foods 2017, 38, 36–44. [Google Scholar] [CrossRef]
- Balawejder, M.; Matłok, N.; Piechowiak, T.; Szostek, M.; Kapusta, I.; Niemiec, M.; Komorowska, M.; Wróbel, M.; Mudryk, K.; Szeląg-Sikora, A.; et al. The Modification of Substrate in the Soilless Cultivation of Raspberries (Rubus Idaeus L.) as a Factor Stimulating the Biosynthesis of Selected Bioactive Compounds in Fruits. Molecules 2023, 28, 118. [Google Scholar] [CrossRef] [PubMed]
- Piechowiak, T.; Matłok, N.; Balawejder, M. Extraction of phytochemicals from young shoots of Pinus sylvestris L. and analysis of their selected biological properties. LWT 2023, 188, 115404. [Google Scholar] [CrossRef]
- Matłok, N.; Kapusta, I.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Characterisation of Some Phytochemicals Extracted from Black Elder (Sambucus nigra L.) Flowers Subjected to Ozone Treatment. Molecules 2021, 26, 5548. [Google Scholar] [CrossRef]
Ascorbic acid (mg 100 g d.m.−1) | 418.2 ± 21.4 |
Total phenolic compounds (mg 100 g d.m.−1) | 1041.9 ± 2.29 |
Antioxidant activity against DPPH radicals (mg TE 100 g d.m.−1) | 2271.2 ± 7.31 |
Antioxidant activity against ABTS radicals (mg TE 100 g d.m.−1) | 1781.5 ± 24.9 |
Compound | Rt | λmax | [M-H]+/− m/z | Content (mg 100 g d.m.−1) | ||
---|---|---|---|---|---|---|
min | nm | MS | MS/MS | |||
Anthocyanins | ||||||
1 | Peonidin O-hexoside | 2.44 | 279,524 | 463+ | 301 | 1.15 ± 0.07 |
2 | Cyanidin 3-O-glucoside | 2.80 | 279,512 | 449+ | 287 | 96.59 ± 3.03 |
3 | Cyanidin 3-O-galactoside | 2.96 | 279,517 | 449+ | 287 | 2.64 ± 0.01 |
4 | Cyanidin 3-O-arabinoside | 3.12 | 279,512 | 419+ | 287 | 73.25 ± 2.23 |
5 | Peonidin 3-O-glucoside | 3.42 | 279,512 | 463+ | 301 | 118.46 ± 1.88 |
6 | Peonidin 3-O-galactoside | 3.56 | 278,519 | 463+ | 301 | 13.30 ± 0.22 |
7 | Peonidin 3-O-arabinoside | 3.71 | 279,517 | 433+ | 301 | 56.98 ± 0.61 |
8 | Peonidin 3-O-xyloside | 3.87 | 279,524 | 433+ | 301 | 2.85 ± 0.09 |
Other phenolics | ||||||
9 | 5-O-Caffeoylquinic acid | 2.35 | 319 | 353− | 191 | 4.82 ± 0.02 |
10 | Caffeic acid O-glucoside I | 2.53 | 329 | 341− | 179 | 9.13 ± 0.21 |
11 | Caffeic acid O-glucoside II | 2.86 | 312 | 341− | 179 | 5.54 ± 0.19 |
12 | 3-O-Caffeoylquinic acid | 2.95 | 324 | 353− | 191 | 29.45 ± 0.89 |
13 | Coumaric acid O-glucoside I | 3.11 | 310 | 325− | 163 | 56.65 ± 2.62 |
14 | Coumaric acid O-glucoside II | 3.40 | 312 | 325− | 163 | 6.61 ± 0.36 |
15 | 3-O-Feruloylquinic acid | 3.50 | 329 | 355− | 193 | 24.23 ± 0.17 |
16 | 4-O-Caffeoylquinic acid | 3.57 | 329 | 353− | 161 | 16.90 ± 0.14 |
17 | Myricetin 3-O-glucoside | 3.96 | 257,355 | 479− | 317 | 120.19 ± 1.30 |
18 | p-coumaric acid | 4.19 | 307 | 163− | 119 | 7.07 ± 0.13 |
19 | Myricetin 3-O-pentoside | 4.43 | 257,352 | 449− | 317 | 42.01 ± 0.47 |
20 | Quercetin 3-O-glucoside | 4.60 | 255,355 | 463− | 301 | 227.16 ± 2.99 |
21 | Laricitrin 3-O-glucoside | 4.71 | 271,354 | 493− | 331 | 25.25 ± 0.04 |
22 | Quercetin 3-O-pentoside I | 4.91 | 255,355 | 433− | 301 | 31.44 ± 1.81 |
23 | Coumaroyl-dihydromonotropein | 5.02 | 310 | 537− | 163,119 | 38.51 ± 1.21 |
24 | Quercetin 3-O-pentoside II | 4.91 | 255,355 | 433− | 301 | 111.37 ± 0.25 |
25 | Quercetin 3-O-rhamnoside | 5.31 | 255,352 | 447− | 301 | 90.45 ± 2.75 |
26 | Syringetin 3-O-glucoside | 5.37 | 271,352 | 507− | 345 | 20.59 ± 0.33 |
27 | Kaempferol 3-O-glucoside | 5.82 | 267,352 | 447− | 285 | 5.28 ± 0.09 |
28 | Kaempferol 3-O-galactoside | 5.95 | 265,350 | 447− | 285 | 6.55 ± 0.07 |
29 | Syringetin 3-O-pentoside | 6.07 | 271,350 | 477− | 345 | 4.76 ± 0.15 |
30 | Quercetin 3-O-(6”p-coumaroyl)-glucoside | 6.37 | 255,326 | 609− | 463,301 | 2.06 ± 0.03 |
31 | Quercetin | 6.75 | 255,350 | 301− | - | 9.82 ± 0.03 |
32 | Quercetin 3-O-(6”-p-benzoyl)-glucoside | 7.31 | 255,355 | 567− | 463,301 | 9.99 ± 0.36 |
No. | RT [min] | Peak Share in the Chromatogram [%] | Ordinary Substance Name | Systematic Substance Name | No CAS |
---|---|---|---|---|---|
1 | 12.42 | 45.7 | - | ethyl benzoate | 93-89-0 |
2 | 12.63 | trace | - | benzoic acid | 65-85-0 |
3 | 12.86 | trace | α-terpinyl acetate | 2-(4-methyl-3-cyclohexenyl)isopropyl acetate | 80-26-2 |
4 | 12.95 | trace | dihydrocarveol | 5-isopropenyl-2-methylcyclohexanol | 22567-21-1 |
5 | 15.40 | 3.16 | butyl benzoate | 136-60-7 | |
6 | 15.70 | trace | aromadendrene | 7-methylene-3,3,11-trimethyltricyclo[6.3.0.02.4]undecane | 489-39-4 |
7 | 16.13 | 14.66 | β-caryophyllene | trans-(1R,9S)-8-methylene-4,11,11-trimethylbicyclo [7.2.0]undec-4-ene | 87-44-5 |
8 | 16.39 | 3.46 | ledene | (1S,2R,4R,11R)-3,3,7,11-tetramethyltricyclo[6.3.0.02.4]undec-7-ene | 21747-46-6 |
9 | 16.57 | trace | α-humulene | 2,6,6,9-tetramethyl-1,4,8-cycloundecatriene | 6753-98-6 |
10 | 16.82 | trace | α-amorphene | naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S,4aR,8aS)- | 23515-88-0 |
11 | 16.91 | 7.08 | (E)-germacrene D | (1E,6E)-1-methyl-5-methylidene-8-propan-2-ylcyclodeca-1,6-diene | 23986-74-5 |
12 | 17.10 | 3.45 | α-muurolene | (1S,4aS,8aR)-4,7-dimethyl-1-propan-2-yl-1,2,4a,5,6,8a-hexahydronaphthalene | 31983-22-9 |
13 | 17.29 | 4.07 | (R)-gamma-cadinene | (1R,4aS,8aS)-7-methyl-4-methylidene-1-propan-2-yl-2,3,4a,5,6,8a-hexahydro-1H-naphthalene | 39029-41-9 |
14 | 17.38 | 7.53 | delta-cadinene | naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-isopropyl- | 483-76-1 |
15 | 18.14 | 6.62 | - | n-eicosane | 112-95-8 |
16 | 21.38 | 4.22 | homomenthyl salicylate | benzoic acid, 2-hydroxy-, 3,3,5-trimethylcyclohexyl ester | 118-56-9 |
TOTAL | 99.95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balawejder, M.; Piechowiak, T.; Kapusta, I.; Chęciek, A.; Matłok, N. In Vitro Analysis of Selected Antioxidant and Biological Properties of the Extract from Large-Fruited Cranberry Fruits. Molecules 2023, 28, 7895. https://doi.org/10.3390/molecules28237895
Balawejder M, Piechowiak T, Kapusta I, Chęciek A, Matłok N. In Vitro Analysis of Selected Antioxidant and Biological Properties of the Extract from Large-Fruited Cranberry Fruits. Molecules. 2023; 28(23):7895. https://doi.org/10.3390/molecules28237895
Chicago/Turabian StyleBalawejder, Maciej, Tomasz Piechowiak, Ireneusz Kapusta, Aleksandra Chęciek, and Natalia Matłok. 2023. "In Vitro Analysis of Selected Antioxidant and Biological Properties of the Extract from Large-Fruited Cranberry Fruits" Molecules 28, no. 23: 7895. https://doi.org/10.3390/molecules28237895
APA StyleBalawejder, M., Piechowiak, T., Kapusta, I., Chęciek, A., & Matłok, N. (2023). In Vitro Analysis of Selected Antioxidant and Biological Properties of the Extract from Large-Fruited Cranberry Fruits. Molecules, 28(23), 7895. https://doi.org/10.3390/molecules28237895