A Small-Molecule Fluorescent Probe for the Detection of Mitochondrial Peroxynitrite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis of the Probe DH-1
2.2. Spectral Response of the Probe DH-1 to ONOO−
2.3. Mitochondrial Targeting Ability of the Probe DH-1
2.4. Imaging of ONOO− by the Probe DH-1 in Cells
2.5. Fluorescence Imaging of ONOO− during Ferroptosis
3. Materials and Methods
3.1. General
3.2. Synthesis of the Probe DH-1
3.3. Spectroscopic Measurements
3.4. Culture of Cells
3.5. Colocalization Experiments
3.6. Intracellular Fluorescence Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Guo, R.; Chen, X.Y.; Yang, Y.S.; Qiao, L.Q.; Wang, M.L. Multifunctional lysosome-targetable fluorescent probe for imaging peroxynitrite in acute liver injury model. Chem. Eng. J. 2023, 455, 140491. [Google Scholar] [CrossRef]
- Luo, X.; Cheng, Z.; Wang, R.; Yu, F. Indication of dynamic peroxynitrite fluctuations in the rat epilepsy model with a near-infrared two-photon fluorescent probe. Anal. Chem. 2021, 93, 2490–2499. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Li, X.; Li, X.; Ma, H. Design, synthesis and application of a dual-functional fluorescent probe for reactive oxygen species and viscosity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 119059. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.; Yuan, L.; Zhang, X.; Chang, Y.T. Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe. J. Am. Chem. Soc. 2017, 139, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.Q.; Xiong, J.H.; Wang, P.Z.; An, J.S.; Zhang, F.; Liu, Z.H.; Kim, J.S. Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes. Coord. Chem. Rev. 2022, 454, 214356. [Google Scholar] [CrossRef]
- Darley-Usmar, V.M.; Hogg, N.; O’leary, V.J.; Wilson, M.T.; Moncada, S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Rad. Res. Comms. 1992, 17, 9–20. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physio. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Radi, R.; Cassina, A.; Hodara, R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol. Chem. 2002, 383, 401–409. [Google Scholar] [CrossRef]
- Zhang, X.F.; Shen, L.; Wang, S.; Chen, Q.; Cao, X.Q.; Shen, S.L.; Li, X. A new xanthene-based platform for developing NIR fluorogenic probes for in vivo bioimaging. Chem. Eng. J. 2023, 472, 145065. [Google Scholar] [CrossRef]
- Ren, M.H.; Zhou, C.Y.; Wang, L.F.; Lv, X.; Guo, W. Rationally designed meso-benzimidazole-pyronin with emission wavelength beyond 700 nm enabling in vivo visualization of acute-liver-injury-induced peroxynitrite. Chin. Chem. Lett. 2023, 34, 107646. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Lan, Y.; Wang, F.; Gou, Z.; Yan, M.; Zuo, Y. Hyperbranched polysiloxane-based probe with enhanced lipophilicity for visualizing ONOO- fluctuations in endoplasmic reticulum. Anal. Chim. Acta 2023, 1249, 340939. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.; Wu, Y.L.; Shen, T.J.; Cui, J.; Kang, H.; Jing, J.; Zhang, X.L. A mitochondria-targeted far red fluorescent probe for ratiometric imaging of endogenous peroxynitrite. Dye. Pigment. 2019, 170, 107609. [Google Scholar] [CrossRef]
- Lu, J.; Li, Z.; Zheng, X.; Tan, J.; Ji, Z.; Sun, Z.; You, J. A rapid response near-infrared ratiometric fluorescent probe enabled in real-time peroxynitrite tracking for pathological diagnosing and therapeutic assessment in rheumatoid arthritis model. J. Mater. Chem. B 2020, 8, 9343–9350. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.D.; Li, Z.L.; Fu, J.; Jiang, C.; Ma, M.S.; Zhu, L.; Jin, X. A novel ultrasensitive peroxynitrite-specific fluorescent probe and its bioimaging applications in living systems. Dye. Pigment. 2021, 186, 108982. [Google Scholar] [CrossRef]
- Zhang, J.; Zhen, X.; Zeng, J.; Pu, K. A dual-modal molecular probe for near-infrared fluorescence and photoacoustic imaging of peroxynitrite. Anal. Chem. 2018, 90, 9301–9307. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yu, L.; Fu, L.L.; Hou, J.J.; Wang, L.X.; Sun, M.Z.; Wang, X.Y.; Chen, L.X. Molecular fluorescent probes for imaging and evaluation of peroxynitrite fluctuations in living cells and in vivo under hypoxic stress. Sens. Actuators B Chem. 2022, 370, 132410. [Google Scholar] [CrossRef]
- Ferrer-Sueta, G.; Radi, R. Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals. ACS Chem. Biol. 2009, 4, 161–177. [Google Scholar] [CrossRef]
- Feng, S.M.; Zheng, Z.P.; Gong, S.Y.; Feng, G.Q. A unique probe enables labeling cell membrane and Golgi apparatus and tracking peroxynitrite in Golgi oxidative stress and drug-induced liver injury. Sens. Actuators B Chem. 2022, 361, 131751. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Tian, X.; Groleau, R.R.; Bull, S.D.; Li, P.; Tang, B.; James, T.D. Fluorescent probe for the imaging of superoxide and peroxynitrite during drug-induced liver injury. Chem. Sci. 2021, 12, 3921–3928. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Wu, P.; Xiong, H. Highly sensitive D-A-D-type near-infrared fluorescent probe for nitric oxide real-time imaging in inflammatory bowel disease. Anal. Chem. 2021, 93, 4975–4983. [Google Scholar] [CrossRef]
- Zhu, H.C.; Liu, C.Y.; Rong, X.D.; Zhang, Y.; Su, M.J.; Wang, X.; Liu, M.Y.; Zhang, X.H.; Sheng, W.L.; Zhu, B.C. A new isothiocyanate-based Golgi-targeting fluorescent probe for Cys and its bioimaging applications during the Golgi stress response. Bioorg. Chem. 2022, 122, 105741. [Google Scholar] [CrossRef]
- Yin, G.; Gan, Y.; Jiang, H.; Yu, T.; Liu, M.; Zhang, Y.; Li, H.; Yin, P.; Yao, S. Direct quantification and visualization of homocysteine, cysteine, and glutathione in Alzheimer’s and Parkinson’s disease model tissues. Anal. Chem. 2021, 93, 9878–9886. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Kim, H.S.; Zou, X.; Huang, L.; Liang, X.; Li, Z.; Kim, J.S.; Lin, W. Harnessing dual-fluorescence lifetime probes to validate regulatory mechanisms of organelle interactions. J. Am. Chem. Soc. 2022, 144, 20854–20865. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yu, L.; Gong, J.; Xiong, J.; Zi, S.; Xie, H.; Zhang, F.; Mao, Z.; Liu, Z.; Kim, J.S. An activity-based fluorescent probe for imaging fluctuations of peroxynitrite (ONOO-) in the Alzheimer’s disease brain. Angew. Chem. Int. Ed. Engl. 2022, 61, e202206894. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Peng, J.; Lv, Y.; Su, D.; Liu, D.; Chen, M.; Yuan, L.; Zhang, X. De novo design of chemical stability near-infrared molecular probes for high-fidelity hepatotoxicity evaluation in vivo. J. Am. Chem. Soc. 2019, 141, 6352–6361. [Google Scholar] [CrossRef] [PubMed]
- Oliden-Sanchez, A.; Alvarado-Martinez, E.; Ramirez-Ornelas, D.E.; Vazquez, M.A.; Avellanal-Zaballa, E.; Banuelos, J.; Pena-Cabrera, E. Extended BODIPYs as red-NIR laser radiation sources with emission from 610 nm to 750 nm. Molecules 2023, 28, 4750. [Google Scholar] [CrossRef]
- He, L.; He, L.H.; Xu, S.; Ren, T.B.; Zhang, X.X.; Qin, Z.J.; Zhang, X.B.; Yuan, L. Engineering of reversible NIR-II redox-responsive fluorescent probes for imaging of inflammation in vivo. Angew. Chem. Int. Ed. Engl. 2022, 61, e202211409. [Google Scholar] [CrossRef]
- Sun, L.; Ouyang, J.; Zeng, F.; Wu, S. An AIEgen-based oral-administration nanosystem for detection and therapy of ulcerative colitis via 3D-MSOT/NIR-II fluorescent imaging and inhibiting NLRP3 inflammasome. Biomaterials 2022, 283, 121468. [Google Scholar] [CrossRef]
- Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T. Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress. J. Am. Chem. Soc. 2006, 128, 10640–10641. [Google Scholar] [CrossRef]
- Debowska, K.; Debski, D.; Michalowski, B.; Dybala-Defratyka, A.; Wojcik, T.; Michalski, R.; Jakubowska, M.; Selmi, A.; Smulik, R.; Piotrowski, L.; et al. Characterization of fluorescein-based monoboronate probe and its application to the detection of peroxynitrite in endothelial cells treated with doxorubicin. Chem. Res. Toxicol. 2016, 29, 735–746. [Google Scholar] [CrossRef]
- Chen, Z.J.; Tian, Z.Q.; Kallio, K.; Oleson, A.L.; Ji, A.; Borchardt, D.; Jiang, D.E.; Remington, S.J.; Ai, H.W. The N-B interaction through a water bridge: Understanding the chemoselectivity of a fluorescent protein based probe for peroxynitrite. J. Am. Chem. Soc. 2016, 138, 4900–4907. [Google Scholar] [CrossRef]
- Yu, F.B.; Li, P.; Li, G.Y.; Zhao, G.J.; Chu, T.S.; Han, K.L. A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. Chem. Soc. 2011, 133, 11030–11033. [Google Scholar] [CrossRef]
- Peng, T.; Wong, N.K.; Chen, X.M.; Chan, Y.K.; Ho, D.H.H.; Sun, Z.N.; Hu, J.J.; Shen, J.G.; El-Nezami, H.; Yang, D. Molecular imaging of peroxynitrite with HKGreen-4 in live cells and tissues. J. Am. Chem. Soc. 2014, 136, 11728–11734. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Chen, R.X.; Qin, H.F.; Wang, J.J.; Zhang, Q.; Chen, S.; Wen, Y.H.; Wang, K.P.; Hu, Z.Q. A chromene based fluorescence probe: Accurate detection of peroxynitrite in mitochondria, not elsewhere. Sens. Actuators B Chem. 2021, 334, 129603. [Google Scholar] [CrossRef]
- Zhou, D.Y.; Li, Y.; Jiang, W.L.; Tian, Y.; Fei, J.; Li, C.Y. A ratiometric fluorescent probe for peroxynitrite prepared by de novo synthesis and its application in assessing the mitochondrial oxidative stress status in cells and in vivo. Chem. Commun. 2018, 54, 11590–11593. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, S.; Liu, D.; Li, X.; Shi, W.; Ma, H. Combination of changeable π-conjugation and hydrophilic groups for developing water-soluble small-molecule NIR-II fluorogenic probes. Chem. Sci. 2023, 14, 2928–2934. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Li, M.; Chen, Y.; Du, J.; Fan, J.; Peng, X. A singlet oxygen self-reporting photosensitizer for cancer phototherapy. Chem. Sci. 2020, 12, 2515–2520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.F.; Chen, Q.; Cao, X.Q.; Shen, S.L. A novel near-infrared fluorescence off-on probe for imaging hypoxia and nitroreductase in cells and in vivo. Sens. Actuators B Chem. 2022, 353, 131145. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Shi, W.; Ma, H. Sensitive imaging of tumors using a nitroreductase-activated fluorescence probe in the NIR-II window. Chem. Commun. 2021, 57, 8174–8177. [Google Scholar] [CrossRef]
- Li, H.Y.; Li, X.H.; Wu, X.F.; Shi, W.; Ma, H.M. Observation of the generation of ONOO− in mitochondria under various stimuli with a sensitive fluorescence probe. Anal. Chem. 2017, 89, 5519–5525. [Google Scholar] [CrossRef]
- Xia, Q.F.; Feng, S.M.; Hong, J.X.; Feng, G.Q. One probe for multiple targets: A NIR fluorescent rhodamine-based probe for ONOO− and lysosomal pH detection in live cells. Sens. Actuators B Chem. 2021, 337, 129732. [Google Scholar] [CrossRef]
- Mao, G.J.; Gao, G.Q.; Dong, W.P.; Wang, Q.Q.; Wang, Y.Y.; Li, Y.; Su, L.; Zhang, G. A two-photon excited near-infrared fluorescent probe for imaging peroxynitrite during drug-induced hepatotoxicity and its remediation. Talanta 2021, 221, 121607. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Ryu, J.C.; Chung, Y.W.; Lee, D.; Ryu, J.H.; Yoon, J.H.; Yoon, J. A far-red-emitting fluorescence probe for sensitive and selective detection of peroxynitrite in live cells and tissues. Anal. Chem. 2017, 89, 10924–10931. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.P.; Sun, Q.; Yan, M.; Zhang, C.L.; Yuan, H.; He, W.J. Activity-based fluorescent molecular logic gate probe for dynamic tracking of mitophagy induced by oxidative stress. Anal. Chem. 2021, 93, 3502–3509. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Zhang, Y.R.; Zheng, M.H.; Wang, X.; Wu, X.; Jin, J.Y. A single fluorescent probe reveals changes in endoplasmic reticulum-mitochondria contact in hepatocytes during ferroptosis. Chem. Eng. J. 2023, 466, 143104. [Google Scholar] [CrossRef]
- Yuan, L.; Lin, W.; Yang, Y.; Chen, H. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence on/off switching: Rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J. Am. Chem. Soc. 2012, 134, 1200–1211. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.F.; Wang, T.; Cao, X.Q.; Shen, S.L. A sensitive NIR mitochondria-targeting fluorescence probe for visualizing viscosity in living cells and mice. Anal. Chim. Acta 2022, 1231, 340443. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Ma, Y.Y.; Lin, W.Y. Construction of a bi-functional ratiometric fluorescent probe for detection of endoplasmic reticulum viscosity and ONOO- in cells and zebrafish. Sens. Actuators B Chem. 2022, 373, 132742. [Google Scholar] [CrossRef]
- Song, Z.; Mao, D.; Sung, S.H.P.; Kwok, R.T.K.; Lam, J.W.Y.; Kong, D.; Ding, D.; Tang, B.Z. Activatable fluorescent nanoprobe with aggregation-induced emission characteristics for selective in vivo imaging of elevated peroxynitrite generation. Adv. Mater. 2016, 28, 7249–7256. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Lee, H.; Choi, Y.; Kim, Y. A boronate-based fluorescent probe for the selective detection of cellular peroxynitrite. Chem. Commun. 2014, 50, 9353–9356. [Google Scholar] [CrossRef]
- Yu, F.B.; Li, P.; Wang, B.S.; Han, K.L. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J. Am. Chem. Soc. 2013, 135, 7674–7680. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, Y.Z.; Zhang, L.; Wang, H.; Yang, M.; Yuan, J.L. A visible-light-excited Eu3+ complex-based luminescent probe for highly sensitive time-gated luminescence imaging detection of intracellular peroxynitrite. J. Mater. Chem. B 2017, 5, 2322–2329. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Tang, M.-Y.; Shen, S.; Cao, X.-Q.; Zhang, X.-F. A Small-Molecule Fluorescent Probe for the Detection of Mitochondrial Peroxynitrite. Molecules 2023, 28, 7976. https://doi.org/10.3390/molecules28247976
Dong H, Tang M-Y, Shen S, Cao X-Q, Zhang X-F. A Small-Molecule Fluorescent Probe for the Detection of Mitochondrial Peroxynitrite. Molecules. 2023; 28(24):7976. https://doi.org/10.3390/molecules28247976
Chicago/Turabian StyleDong, Han, Meng-Yu Tang, Shili Shen, Xiao-Qun Cao, and Xiao-Fan Zhang. 2023. "A Small-Molecule Fluorescent Probe for the Detection of Mitochondrial Peroxynitrite" Molecules 28, no. 24: 7976. https://doi.org/10.3390/molecules28247976
APA StyleDong, H., Tang, M.-Y., Shen, S., Cao, X.-Q., & Zhang, X.-F. (2023). A Small-Molecule Fluorescent Probe for the Detection of Mitochondrial Peroxynitrite. Molecules, 28(24), 7976. https://doi.org/10.3390/molecules28247976