Research Progress of Methods for Degradation of Bisphenol A
Abstract
:1. Introduction
2. Properties and Characteristics of BPA
2.1. Physicochemical Properties of BPA
2.2. Application and Harmful of BPA
3. Progress in the BPA Degradation
3.1. Analysis Results of VOSviewer
3.2. Biological Treatment for BPA Degradation
3.2.1. Biodegradation of BPA by Bacteria
3.2.2. Degradation of BPA by Laccase
3.2.3. Degradation of BPA by Peroxidase
3.3. Degradation of BPA by Chemical Oxidation
3.3.1. Oxidative Degradation of BPA by Manganese Dioxide
3.3.2. Oxidative Degradation of Bisphenol A by Ferrate
3.3.3. Photocatalytic Degradation of BPA
3.3.4. Advanced Oxidation Degradation of BPA
3.4. Physical Technology to Remove BPA
3.4.1. Adsorption of BPA by Graphene and its Derivatives
3.4.2. Adsorption of BPA by Activated Carbon
3.4.3. Adsorption of BPA by Zeolite
3.4.4. Adsorption of BPA by Agricultural Wastes
3.4.5. Membrane Adsorption of BPA
3.4.6. Adsorption of BPA by Other Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czarny, K.K.; Krawczyk, B.; Szczukocki, D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment. Chemosphere 2023, 315, 137763. [Google Scholar] [CrossRef] [PubMed]
- Rashid, H.; Akhter, M.S.; Alshahrani, S.; Qadri, M.; Nomier, Y.; Sageer, M.; Khan, A.; Alam, M.F.; Anwer, T.; Ayoub, R.; et al. Mitochondrial oxidative damage by co-exposure to bisphenol A and acetaminophen in rat testes and its amelioration by melatonin. Clin. Exp. Reprod. Med. 2023, 50, 26–33. [Google Scholar] [CrossRef]
- Yeo, M.K.; Kang, M. Photodecomposition of bisphenol A on nanometer-sized TiO2 thin film and the associated biological toxicity to zebrafish (Danio rerio) during and after photocatalysis. Water Res. 2006, 40, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.E.; Wu, F.; Deng, N. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions. Environ. Pollut. 2006, 144, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Staples, C.A.; Dome, P.B.; Klecka, G.M.; Oblock, S.T.; Harris, L.R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998, 36, 2149–2173. [Google Scholar] [CrossRef]
- Abraham, A.; Chakraborty, P. A review on sources and health impacts of bisphenol A. Rev. Environ. Health 2020, 35, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sang, J.M.; Ji, Z.Y.; Yu, Y.; Wang, S.W.; Zhu, Y.; Li, H.T.; Wang, Y.Y.; Zhu, Q.Q.; Ge, R.S. Bisphenol A analogues inhibit human and rat 11β-hydroxysteroid dehydrogenase 1 depending on its lipophilicity. Molecules 2023, 28, 4894. [Google Scholar] [CrossRef]
- LaKind, J.S.; Levesque, J.; Dumas, P.; Bryan, S.; Clarke, J.; Naiman, D.Q. Comparing United States and Canadian population exposures from National Biomonitoring Surveys: Bisphenol A intake as a case study. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 219–226. [Google Scholar] [CrossRef]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Wang, R.; Ren, D.; Xia, S.; Zhang, Y.; Zhao, J. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J. Hazard. Mater. 2009, 169, 926–932. [Google Scholar] [CrossRef]
- Aldad, T.S.; Rahmani, N.; Leranth, C.; Taylor, H.S. Bisphenol-A exposure alters endometrial progesterone receptor expression in the nonhuman primate. Fertil. Steril. 2011, 96, 175–179. [Google Scholar] [CrossRef]
- Mei, Z.; Qu, W.; Deng, Y.; Chu, H.; Cao, J.; Xue, F.; Zheng, L.; El-Nezamic, H.S.; Wu, Y.; Chen, W. One-step signal amplified lateral flow strip biosensor for ultrasensitive and on-site detection of bisphenol A (BPA) in aqueous samples. Biosens. Bioelectron. 2013, 49, 457–461. [Google Scholar] [CrossRef]
- Tan, C.; Gao, N.; Chu, W.; Cong, L.; Templeton, M.R. Degradation of diuron by persulfate activated with ferrous ion. Sep. Purif. Technol. 2012, 95, 44–48. [Google Scholar] [CrossRef]
- Tian, D.; Xu, X.H.; Hong, X.; Chen, L.; Xie, L.D.; Li, T. Effects of adult bisphenol A exposure on behavior in mice. J. Psychol. 2011, 43, 534–543. [Google Scholar]
- Guo, X.F.; Wang, Y.X.; Geng, C.Z.; Yang, Y.L. Advances in toxicology of the environmental hormone bisphenol A. Environ. Sci. Technol. 2013, 36, 86–92+99. [Google Scholar]
- Lin, X.Y.; Yu, R.L.; Hu, G.R. Research progress of interfering effect and mechanism of environmental hormones on aquatic animals. Environ. Sci. Technol. 2009, 32, 98–104. [Google Scholar]
- Qin, D.D.; Yuan, W.; Gao, E.S. Effects of bisphenol A on male reproductive function planned parenthood research. J. Environ. Health 2007, 24, 550–552. [Google Scholar]
- Yang, D.; Li, D.D.; Liu, S.S.; Yan, Y.Q. Effects of bisphenol A on the body and its mechanism. Mod. Prev. Med. 2008, 3280–3282+3287. [Google Scholar]
- Ma, X.Y.; Gao, N.Y.; Li, Q.S.; Xu, B.; Le, L.S.; Wu, J.M. SPE-HPLC determination of trace endocrine disrupting chemicals in raw water. Water Wastewater Eng. 2006, 32, 6–10. [Google Scholar]
- Ohore, O.E.; Zhang, S. Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. Sci. Afr. 2019, 5, e00135. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Maffini, M.V.; Sonnenschein, C.; Rubin, B.S.; Soto, A.M. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr Rev. 2009, 30, 75–95. [Google Scholar] [CrossRef]
- Castellini, C.; Di Giammarco, N.; D’Andrea, S.; Parisi, A.; Totaro, M.; Francavilla, S.; Francavilla, F.; Barbonetti, A. Effects of bisphenol S and bisphenol F on human spermatozoa: An in vitro study. Reprod. Toxicol. 2021, 103, 58–63. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Harner, T. Bisphenol A and its analogues in outdoor and indoor air: Properties, sources and global levels. Sci. Total Environ. 2021, 789, 148013. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, X.-Z.; Zhang, Z.; Sui, Y.-M.; Wu, H.-L.; Feng, J.-M.; Tong, X.-N.; Zhang, Z.-Y. Adsorption and degradation of 14C-bisphenol A in a soil trench. Sci. Total Environ. 2017, 607–608, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; An, T.; Li, G.; Peng, P.a. Accelerated biodegradation of BPA in water-sediment microcosms with Bacillus sp. GZB and the associated bacterial community structure. Chemosphere 2017, 184, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. Molecular interactions of bisphenols and analogs with glucocorticoid biosynthetic pathway enzymes: An in silico approach. Toxicol. Mech. Methods 2018, 28, 45–54. [Google Scholar] [CrossRef]
- Huang, C.; Xu, P.; Zeng, G.; Huang, D.; Lai, C.; Cheng, M.; Deng, L.; Zhang, C.; Wan, J.; Liu, L. The rapid degradation of bisphenol A induced by the response of indigenous bacterial communities in sediment. Appl. Microbiol. Biotechnol. 2017, 101, 3919–3928. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, W.; Xiao, F.; Wang, D.; Wang, Z. Influence of NOM and SS on the BPA removal via peroxidase catalyzed reactions: Kinetics and pathways. Sep. Purif. Technol. 2017, 173, 244–249. [Google Scholar] [CrossRef]
- Zhao, J.; Zeng, S.; Xia, Y.; Xia, L. Expression of a thermotolerant laccase from Pycnoporus sanguineus in Trichoderma reesei and its application in the degradation of bisphenol A. J. Biosci. Bioeng. 2018, 125, 371–376. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, Z.X.; Xie, S.W.; He, X.; Zhu, Y.N.; Li, H.Y.; Yi, Z.S. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking. Chemosphere 2019, 224, 743–750. [Google Scholar]
- Kimura, Y.; Takahashi, A.; Kashiwada, A.; Yamada, K. Removal of bisphenol A and its derivatives from aqueous medium through laccase-catalyzed treatment enhanced by addition of polyethylene glycol. Environ. Technol. 2016, 37, 1733–1744. [Google Scholar] [CrossRef]
- Latif, A.; Maqbool, A.; Sun, K.; Si, Y. Immobilization of Trametes Versicolor laccase on Cu-alginate beads for biocatalytic degradation of bisphenol A in water: Optimized immobilization, degradation and toxicity assessment. J. Environ. Chem. Eng. 2022, 10, 107089. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, D.; Cheng, Y.; Zhang, X.; Zhang, S.; Chen, W. Immobilization of laccase on chitosan functionalized halloysite nanotubes for degradation of Bisphenol A in aqueous solution: Degradation mechanism and mineralization pathway. Heliyon 2022, 8, e09919. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Li, X.; Zhang, S.L.; Cong, F.D.; Li, T.; Zhang, D.J.; Li, Y.Y.; Liang, E.R.; Hu, J.B. Potato peroxidase catalyzed oxidation for rapid degradation of bisphenol A. Ind. Water Treat. 2021, 41, 93–97. [Google Scholar]
- Tang, T.; Hou, J.; Ai, S.; Qiu, Y.; Ma, Q.; Han, R. Electroenzymatic oxidation of bisphenol A (BPA) based on the hemoglobin (Hb) film in a membraneless electrochemical reactor. J. Hazard. Mater. 2010, 181, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Lobos, J.H.; Leib, T.K.; Su, T.M. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Appl. Environ. Microbiol. 1992, 58, 1823–1831. [Google Scholar] [CrossRef]
- Spivack, J.; Leib, T.K.; Lobos, J.H. Novel pathway for bacterial metabolism of bisphenol A. Rearrangements and stilbene cleavage in bisphenol A metabolism. J. Biol. Chem. 1994, 269, 7323–7329. [Google Scholar] [CrossRef]
- Tanghe, T.; Dhooge, W.; Verstraete, W. Isolation of a Bacterial Strain Able to Degrade Branched Nonylphenol. Appl. Environ. Microbiol. 1999, 65, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Kolvenbach, B.; Schlaich, N.; Raoui, Z.; Prell, J.; Zühlke, S.; Schäffer, A.; Guengerich, F.P.; Corvini, P.F.X. Degradation Pathway of Bisphenol A: Does ipso Substitution Apply to Phenols Containing a Quaternary α-Carbon Structure in the para Position? Appl. Environ. Microbiol. 2007, 73, 4776–4784. [Google Scholar] [CrossRef]
- Sasaki, M.; Maki, J.-I.; Oshiman, K.-I.; Matsumura, Y.; Tsuchido, T. Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation 2005, 16, 449–459. [Google Scholar] [CrossRef]
- Matsumura, Y.; Hosokawa, C.; Sasaki-Mori, M.; Akahira, A.; Fukunaga, K.; Ikeuchi, T.; Oshiman, K.-I.; Tsuchido, T. Isolation and characterization of novel bisphenol-A-degrading bacteria from soils. Biocontrol Sci. 2009, 14, 161–169. [Google Scholar] [CrossRef]
- Mahesh, N.; Shyamalagowri, S.; Nithya, T.G.; Aravind, J.; Govarthanan, M.; Kamaraj, M. Trends and thresholds on bacterial degradation of bisphenol-A endocrine disruptor—A concise review. Environ. Monit. Assess. 2022, 194, 886. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Yang, P. BPA biodegradation driven by isolated strain SQ-2 and its metabolism mechanism elucidation. Biochem. Eng. J. 2022, 185, 108540. [Google Scholar] [CrossRef]
- Takeuchi, M.; Hamana, K.; Hiraishi, A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 2001, 51, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Yamanaka, H.; Moriyoshi, K.; Ohmoto, T.; Ohe, T. Biodegradation of Bisphenol A and Related Compounds by Sphingomonas sp. Strain BP-7 Isolated from Seawater. Biosci. Biotechnol. Biochem. 2007, 71, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Kaur, N.; Selvaraj, M.; Ghramh, H.A.; Al-Shehri, B.M.; Singh, G.; Arya, S.K.; Bhatt, K.; Ghotekar, S.; Mani, R.; et al. Laccase-assisted degradation of emerging recalcitrant compounds—A review. Bioresour. Technol. 2022, 364, 128031. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Kim, S.Y.; Kim, I.W.; Kalia, V.C.; Lee, J.K. Rhus vernicifera Laccase Immobilization on Magnetic Nanoparticles to Improve Stability and Its Potential Application in Bisphenol A Degradation. Indian J. Microbiol. 2021, 61, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Leung, I.K.H. Novel Thermophilic Bacterial Laccase for the Degradation of Aromatic Organic Pollutants. Front. Chem. 2021, 9, 711345. [Google Scholar] [CrossRef]
- Zhang, F.; Lian, M.; Alhadhrami, A.; Huang, M.; Li, B.; Mersal, G.A.M.; Ibrahim, M.M.; Xu, M. Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water. Adv. Compos. Hybrid Mater. 2022, 5, 1852–1864. [Google Scholar] [CrossRef]
- Brugnari, T.; Pereira, M.G.; Bubna, G.A.; de Freitas, E.N.; Contato, A.G.; Corrêa, R.C.G.; Castoldi, R.; de Souza, C.G.M.; Polizeli, M.d.L.T.d.M.; Bracht, A.; et al. A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci. Total Environ. 2018, 634, 1346–1351. [Google Scholar] [CrossRef]
- Olajuyigbe, F.M.; Adetuyi, O.Y.; Fatokun, C.O. Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A. Int. J. Biol. Macromol. 2019, 125, 856–864. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Kalia, V.C.; Lee, J.K. Laccase Immobilization on Copper-Magnetic Nanoparticles for Efficient Bisphenol Degradation. J. Microbiol. Biotechnol. 2023, 33, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wang, S.; Miao, S.; Suo, H.; Xu, H.; Hu, Y. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. J. Hazard. Mater. 2021, 401, 123353. [Google Scholar] [CrossRef]
- Buchanan, I.D.; Nicell, J.A. Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnol. Bioeng. 1997, 54, 251–261. [Google Scholar] [CrossRef]
- Taboada-Puig, R.; Eibes, G.; Lloret, L.; Lú-Chau, T.A.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Fostering the action of versatile peroxidase as a highly efficient biocatalyst for the removal of endocrine disrupting compounds. New Biotechnol. 2016, 33, 187–195. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Miyazaki, M. Laccase aggregates via poly-lysine-supported immobilization onto PEGA resin, with efficient activity and high operational stability and can be used to degrade endocrine-disrupting chemicals. Catal. Sci. Technol. 2021, 11, 934–942. [Google Scholar] [CrossRef]
- Kong, Q.; Wang, Y.; Zhang, L.; Ge, S.; Yu, J. A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sens. Actuators B Chem. 2017, 243, 130–136. [Google Scholar] [CrossRef]
- Gao, N.; Yu, Z.Q.; Liao, R.E.; Peng, P.A. Kinetics of oxidative degradation of bisphenol A by manganese dioxide. J. Ecol. Environ. 2009, 18, 431–434. [Google Scholar]
- Zhang, H.; Huang, C.-H. Oxidative Transformation of Triclosan and Chlorophene by Manganese Oxides. Environ. Sci. Technol. 2003, 37, 2421–2430. [Google Scholar] [CrossRef]
- Sharma, V.K. Potassium ferrate(VI): An environmentally friendly oxidant. Adv. Environ. Res. 2002, 6, 143–156. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Lloyd, B. Progress in the development and use of ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res. A J. Int. Water Assoc. 2002, 36, 1397–1408. [Google Scholar] [CrossRef]
- Sharma, V.K.; Burnett, C.R.; Yngard, R.A.; Cabello, D.E. Iron(VI) and Iron(V) oxidation of copper(I) cyanide. Environ. Sci. Technol. 2005, 39, 3849–3854. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.L.; Qu, J.H.; Fu, M.L. Removal of cyanobacterial microcystin-LR by ferrate oxidation-coagulation. Toxicon 2002, 40, 1129–1134. [Google Scholar] [CrossRef]
- Li, C.; Li, X.Z.; Graham, N.; Gao, N.Y. The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Res. 2008, 42, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.; Lim, T.M.; Tsen, L.; Lee, C.C. Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Appl. Catal. A Gen. 2004, 261, 225–237. [Google Scholar] [CrossRef]
- Kang, S.; Do, J.Y.; Jo, S.W.; Kim, K.M.; Jeong, K.M.; Park, S.-M.; Kang, M. Efficient Removal of Bisphenol A by an Advanced Photocatalytic Oxidation-type UV/H2O2/Fe-loaded TiO2System. Bull. Korean Chem. Soc. 2015, 36, 2006–2014. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Huang, C.P.; Doong, R.-a. Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Sci. Total Environ. 2019, 646, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Sambaza, S.; Maity, A.; Pillay, K. Enhanced degradation of BPA in water by PANI supported Ag/TiO2 nanocomposite under UV and visible light. J. Environ. Chem. Eng. 2019, 7, 102880. [Google Scholar] [CrossRef]
- Mei, P.; Wang, H.; Guo, H.; Zhang, N.; Ji, S.; Ma, Y.; Xu, J.; Li, Y.; Alsulami, H.; Alhodaly, M.S.; et al. The enhanced photodegradation of bisphenol A by TiO2/C3N4 composites. Environ. Res. 2020, 182, 109090. [Google Scholar] [CrossRef]
- Ahamad, T.; Naushad, M.; Alzaharani, Y.; Alshehri, S.M. Photocatalytic degradation of bisphenol-A with g-C3N4/MoS2-PANI nanocomposite: Kinetics, main active species, intermediates and pathways. J. Mol. Liq. 2020, 311, 113339. [Google Scholar] [CrossRef]
- Gao, S.; Guo, C.; Lv, J.; Wang, Q.; Zhang, Y.; Hou, S.; Gao, J.; Xu, J. A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation. Chem. Eng. J. 2017, 307, 1055–1065. [Google Scholar] [CrossRef]
- Chang, C.; Fu, Y.; Hu, M.; Wang, C.; Shan, G.; Zhu, L. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl. Catal. B Environ. 2013, 142–143, 553–560. [Google Scholar] [CrossRef]
- Ju, P.; Fan, H.; Zhang, B.; Shang, K.; Liu, T.; Ai, S.; Zhang, D. Enhanced photocatalytic activity of β-AgVO3 nanowires loaded with Ag nanoparticles under visible light irradiation. Sep. Purif. Technol. 2013, 109, 107–110. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix. Sci. Total Environ. 2014, 493, 307–323. [Google Scholar] [CrossRef]
- Irmak, S.; Erbatur, O.; Akgerman, A. Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J. Hazard. Mater. 2005, 126, 54–62. [Google Scholar] [CrossRef]
- Liu, Z.; Wardenier, N.; Hosseinzadeh, S.; Verheust, Y.; De Buyck, P.-J.; Chys, M.; Nikiforov, A.; Leys, C.; Van Hulle, S. Degradation of bisphenol A by combining ozone with UV and H2O2 in aqueous solutions: Mechanism and optimization. Clean Technol. Environ. Policy 2018, 20, 2109–2118. [Google Scholar] [CrossRef]
- Katsumata, H.; Kawabe, S.; Kaneco, S.; Suzuki, T.; Ohta, K. Degradation of bisphenol A in water by the photo-Fenton reaction. J. Photochem. Photobiol. A Chem. 2004, 162, 297–305. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Zhu, Y. Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir 2012, 28, 8418–8425. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhu, Y.F. Adsorption properties of graphene oxide to endocrine disruptor bisphenol A in water. J. Phys. Chem. 2013, 29, 829–836. [Google Scholar]
- Tang, X.; Tang, P.; Si, S.; Liu, L. Adsorption and removal of bisphenol A from aqueous solution by p-phenylenediamine-modified magnetic graphene oxide. J. Serbian Chem. Soc. 2017, 82, 39–50. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Y.; Zhu, L.; Tang, H. Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Material for Removing Bisphenols: Synergistic Effect between Adsorption and Catalysis. Environ. Sci. Technol. 2015, 49, 6855–6864. [Google Scholar] [CrossRef]
- Matsushita, K.; Shimada, M.; Okayama, T. Adsorption Properties of Bisphenol A on Activated Carbon Prepared from Wastepaper. Sen’i Gakkaishi 2009, 65, 287–291. [Google Scholar] [CrossRef]
- Gong, Z.; Li, S.; Ma, J.; Zhang, X. Synthesis of recyclable powdered activated carbon with temperature responsive polymer for bisphenol A removal. Sep. Purif. Technol. 2016, 157, 131–140. [Google Scholar] [CrossRef]
- Liu, G.; Ma, J.; Li, X.; Qin, Q. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. J. Hazard. Mater. 2009, 164, 1275–1280. [Google Scholar] [CrossRef]
- Bautista-Toledo, I.; Ferro-García, M.A.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Vegas Fernández, F.J. Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry. Environ. Sci. Technol. 2005, 39, 6246–6250. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Tsai, W.-T.; Hsu, H.-C.; Su, T.-Y.; Lin, K.-Y.; Lin, C.-M. Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite. J. Colloid Interface Sci. 2006, 299, 513–519. [Google Scholar] [CrossRef]
- Chen, X.; Fujiwara, T.; Fukahori, S.; Ishigaki, T. Factors affecting the adsorptive removal of bisphenol A in landfill leachate by high silica Y-type zeolite. Environ. Sci. Pollut. Res. 2015, 22, 2788–2799. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Jiang, J.-Q.; Ma, X. Adsorption of bisphenol A onto cationic-modified zeolite. Desalination Water Treat. 2016, 57, 26299–26306. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, D.; Chen, X.; Lin, Y. Adsorption of bisphenol A from water by surfactant-modified zeolite. J. Colloid Interface Sci. 2010, 348, 585–590. [Google Scholar] [CrossRef]
- Chang, K.-L.; Hsieh, J.-F.; Ou, B.-M.; Chang, M.-H.; Hseih, W.-Y.; Lin, J.-H.; Huang, P.-J.; Wong, K.-F.; Chen, S.-T. Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol A) using activated carbon from rice straw agricultural waste. Sep. Sci. Technol. 2012, 47, 1514–1521. [Google Scholar] [CrossRef]
- Katibi, K.K.; Yunos, K.F.; Man, H.C.; Aris, A.Z.; Mohd Nor, M.Z.; Azis, R.S. An Insight into a Sustainable Removal of Bisphenol A from Aqueous Solution by Novel Palm Kernel Shell Magnetically Induced Biochar: Synthesis, Characterization, Kinetic, and Thermodynamic Studies. Polymers 2021, 13, 3781. [Google Scholar] [CrossRef] [PubMed]
- Zbair, M.; Ainassaari, K.; Drif, A.; Ojala, S.; Bottlinger, M.; Pirilä, M.; Keiski, R.L.; Bensitel, M.; Brahmi, R. Toward new benchmark adsorbents: Preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ. Sci. Pollut. Res. 2018, 25, 1869–1882. [Google Scholar] [CrossRef] [PubMed]
- Uzosike, A.O.; Ofudje, E.A.; Akiode, O.K.; Ikenna, C.V.; Adeogun, A.I.; Akinyele, J.O.; Idowu, M.A. Magnetic supported activated carbon obtained from walnut shells for bisphenol-a uptake from aqueous solution. Appl. Water Sci. 2022, 12, 201. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M. Adsorption Characteristics and Mechanism of Bisphenol A by Magnetic Biochar. Int. J. Environ. Res. Public Health 2020, 17, 1075–1091. [Google Scholar] [CrossRef] [PubMed]
- Hayoun, B.; Bourouina-Bacha, S.; Pazos, M.; Sanromán, M.A.; Benkhennouche-Bouchene, H.; Deflaoui, O.; Hamaidi-Maouche, N.; Bourouina, M. Production of modified sunflowers seed shells for the removal of bisphenol A. RSC Adv. 2021, 11, 3516–3533. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; Dong, B.Z.; Huang, Y. Adsorption of bisphenol A by polysulphone membrane. Desalination 2010, 253, 22–29. [Google Scholar]
- Wang, Z.; Xu, L.; Qi, C.; Zhao, C. Fabrication of MWCNTs-polysulfone composite membranes and its application in the removal of bisphenol A. Mater. Res. Express 2018, 5, 065101. [Google Scholar] [CrossRef]
- Muhamad, M.S.; Salim, M.R.; Lau, W.J.; Hadibarata, T.; Yusop, Z. Removal of bisphenol A by adsorption mechanism using PES–SiO2 composite membranes. Environ. Technol. 2016, 37, 1959–1969. [Google Scholar] [CrossRef]
- Gao, H.; Han, X.; Wang, R.; Zhu, K.; Han, R. Adsorption and catalytic degradation of bisphenol A and p-chlorophenol by magnetic carbon nanotubes. Environ. Res. 2023, 231, 116314. [Google Scholar] [CrossRef]
Enzyme | Source | Temperature (°C) | BPA Degradation Efficiency (%) | Reference |
---|---|---|---|---|
Laccase | fungus | 60 | 95 | [29] |
Laccase | plant | 44.6 | 97.68 | [30] |
Laccase | bacteria | 40 | 100 | [31] |
Laccase | plant | 30 | 96.12 | [32] |
Laccase | plant | 45 | 87.31 | [33] |
potato peroxidase | plant | 23 | 99 | [34] |
Peroxidase | bacteria | 25 | 50.7 | [35] |
Strain | Specific Name | Metabolic Type | Source |
---|---|---|---|
Novosphingobium | strain TYA-1 | the only carbon source | Phragmites |
Sphingomonas | strain MV1 | the only carbon source | waste water |
Sphingomonas | strains AO1, SO11, SO1a, SO4a | the only carbon source | soil |
Sphingomonas | Strain BP-7 | the only carbon source | seawater |
Sphingobium | yanoikuyae strain BP-11R | the only carbon source | river water |
Oxidant | Standard Redox Potential (V) |
---|---|
Oxygen (O2) | 0.40 |
Hydroxyl radical (HO•) | 2.80 |
Atomic oxygen (O•) | 2.42 |
Ozone (O3) | 2.07 |
Potassium permanganate (KMnO4) | 1.51 |
Chlorine (Cl2) | 1.36 |
Hydrogen peroxide (H2O2) | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Dai, H.; Rong, X.; Jiang, H.; Xue, Y. Research Progress of Methods for Degradation of Bisphenol A. Molecules 2023, 28, 8028. https://doi.org/10.3390/molecules28248028
Han Y, Dai H, Rong X, Jiang H, Xue Y. Research Progress of Methods for Degradation of Bisphenol A. Molecules. 2023; 28(24):8028. https://doi.org/10.3390/molecules28248028
Chicago/Turabian StyleHan, Ying, Hao Dai, Xiaolong Rong, Haixia Jiang, and Yingang Xue. 2023. "Research Progress of Methods for Degradation of Bisphenol A" Molecules 28, no. 24: 8028. https://doi.org/10.3390/molecules28248028
APA StyleHan, Y., Dai, H., Rong, X., Jiang, H., & Xue, Y. (2023). Research Progress of Methods for Degradation of Bisphenol A. Molecules, 28(24), 8028. https://doi.org/10.3390/molecules28248028