Spectroscopic, Spectrometric and Computational Studies of New Lasalocid Derivatives and Their Complexes with Selected Metal Cations
Abstract
:1. Introduction
2. Results and Discussion
2.1. ESI Mass Spectrometry
2.2. NMR Measurements
2.3. FT-IR Measurements
2.4. PM6 and DFT Study
3. Materials and Methods
3.1. Preparation of Lasalocid Acid
3.2. Preparation of the Esters—LasNeo, Las Geran, LasEtHex, LasEico and LasVanil
3.3. Preparation of Complexes
3.4. Elementary Analysis
3.5. ESI MS Measurements
3.6. NMR Measurements
3.7. FT-IR Measurement
3.8. Theoretical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kevin, D.A., II; Meujo, D.A.F.; Hamann, M.T. Polyether ionophores: Broad spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin. Drug. Discov. 2009, 4, 109–146. [Google Scholar] [CrossRef] [PubMed]
- Pankiewicz, R.; Schroeder, G.; Przybylski, P.; Brzezinski, B.; Bartl, F. Lasalocid polyoxaalkyl esters complexes with Li+, Na+, K+, Rb+ and Cs+ cations studied by ESI MS and semiempirical methods. J. Mol. Struct. 2004, 688, 171–176. [Google Scholar] [CrossRef]
- Huczyński, A. Polyether ionophores—Promising bioactive molecules for cancer therapy. Bioorg. Med. Chem. Lett. 2012, 22, 7002–7010. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Liu, Y.; Li, J.; Huang, J.H.; Hu, X.; Wu, E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med. Res. Rev. 2022, 42, 1037–1063. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, J.; Brzezinski, B. Structures and properties of naturalny occyrring polyether antibiotics. BioMed. Res. Int. 2013, 2013, 162513. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, R.; Willingham, M.; Pastan, I. Monensin blocks endocytosis of vesicular stomatitis virus. Bioch. Biophys. Res. Commun. 1981, 102, 992–998. [Google Scholar] [CrossRef]
- Russel, J.B. A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: Effects on ion flux and protonmotive force. J. Anim. Sci. 1987, 64, 1519–1525. [Google Scholar] [CrossRef]
- Ferdani, R.; Gokel, G.W. Ionophores. In Encyclopedia of Supramolecular Chemistry; Atwood, J.L., Steed, J.W., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 760–766. [Google Scholar]
- Fong, C.W. Physiology of ionophore transport of potassium and sodium ions across cell membranes: Valinomycin and 18-crown-6 ether. Int. J. Comput. Biol. Drug Des. 2016, 9, 228. [Google Scholar] [CrossRef]
- Dorkov, P.; Pantcheva, I.N.; Sheldrick, W.S.; Mayer-Figge, H.; Petrova, R.; Mitewa, M. Synthesis, structure and antimicrobial activity of manganese(II) and cobalt(II) complexes of the polyether ionophore antibiotic Sodium Monensin A. J. Inorg. Biochem. 2008, 102, 26–32. [Google Scholar] [CrossRef]
- Pankiewicz, R.; Schroeder, G.; Brzezinski, B.; Bartl, F. Spectroscopic and PM5 semiempirical study of New Lasalocid 5-hydroxypentyl Ester and its complexes with monovalent cations. J. Mol. Struct. 2004, 699, 53–64. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, N.; Deng, Y.; Guan, Y.; Xiao, H.; Nitka, T.A.; Yang, H.; Yadav, A.; Vukovic, L.; Mathews, I.I.; et al. Triepoxide formation by a flavin-dependent monooxygenase in monensin biosynthesis. Nat. Commun. 2023, 14, 6273. [Google Scholar] [CrossRef] [PubMed]
- Pankiewicz, R.; Schroeder, G.; Brzezinski, B. Spectroscopic, spectrometric and PM5 semiempirical investigation of new lasalocid 8–hydroxy–3,6–dioxaoctyl ester and its complexes with monovalent cations. J. Mol. Struct. 2005, 733, 217–229. [Google Scholar] [CrossRef]
- Westley, J.W. (Ed.) Chemical transformations of polyether antibiotics. In Polyether Antibiotics: Naturally Occurring Acid Ionophores; Chemistry, Marcel Dekker, Inc.: New York, NY, USA, 1983; Volume 2, pp. 51–87. [Google Scholar]
- Schroeder, G.; Gierczyk, B.; Brzezinski, B.; Różalski, B.; Bartl, F.; Zundel, G.; Sośnicki, J.; Grech, E. 23Na NMR and FT-IR studies of sodium complexes with the ionophore lasalocid in solution. J. Mol. Struct. 2000, 516, 91–98. [Google Scholar] [CrossRef]
- Fuchs, D.; Heinold, A.; Opelz, G.; Daniel, V.; Naujokat, C. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem. Biophys. Res. Commun. 2009, 390, 743–749. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Li, B.; Xia, J.; Wu, H.; Wang, L.; Hao, J.; Zhou, Q.; Wu, S. Synthesis and biological activity evaluation of 20-epi-salinomycin and its 20-O-acyl derivatives. RSC Adv. 2006, 6, 41885–41890. [Google Scholar] [CrossRef]
- Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009, 138, 645–659. [Google Scholar] [CrossRef] [PubMed]
- Naujokat, C.; Steinhart, R. Salinomycin as a drug for targeting human cancer stem cells. J. Biomed. Biotechnol 2012, 2012, 950658. [Google Scholar] [CrossRef]
- Versini, A.; Saier, L.; Sindikubwabo, F.; Müller, S.; Cañeque, T.; Rodriguez, R. Chemical biology of salinomycin. Tetrahedron 2018, 74, 5585–5614. [Google Scholar] [CrossRef]
- Antoszczak, M. A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur. J. Med. Chem. 2019, 166, 48–64. [Google Scholar] [CrossRef]
- Antoszczak, M.; Huczyński, A. Salimocycin and its derivatives—A new class of multiple-targeted “magic bullets”. Eur. J. Med. Chem. 2019, 176, 208–277. [Google Scholar] [CrossRef]
- Svenningsen, E.B.; Thyrsted, J.; Blay-Cadanet, J.; Liu, H.; Lin, S.; Moyano-Villameriel, J.; Olagnier, D.; Idorn, M.; Paludan, S.R.; Holm, C.K.; et al. Ionophore antibiotic X-206 is a potent inhibitor of SARS-CoV-2 infection in vitro. Antivir. Res. 2021, 185, 104988. [Google Scholar] [CrossRef] [PubMed]
- Lopes, N.P.; Gates, P.J.; Wilkinsc, J.P.G.; Stauntona, J. Fragmentation studies on lasalocid acid by accurate mass electrospray mass spectrometry. Analyst 2002, 127, 1224–1227. [Google Scholar] [CrossRef] [PubMed]
- Papsdorf, M.; Pankiewicz, R. New hydrophilic derivatives of lasalocid and their complexes with selected metal cations. Molecules 2023, 28, 5114. [Google Scholar] [CrossRef] [PubMed]
- Fujitsu Limited. MO-G Version 1.2A; Fujitsu Limited: Tokyo, Japan, 2013. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
Ester | Main Peaks (m/z) |
---|---|
LasNeo | 683, 684, 685, 699 |
LasGeran | 629 (w), 749, 765, 766, 767 |
LasEtHex | 725, 726, 227, 741 (w) |
LasEico | 337 (w), 652, 653, 668 (w), 893, 894, 909 |
LasVanil | 613 (w), 726, 727, 749, 750 |
No of Atom | LasNeo | LasGeran | LasEtHex | LasEico | LasVanil | |||||
---|---|---|---|---|---|---|---|---|---|---|
Δ1H | Δ13C | Δ1H | Δ13C | Δ1H | Δ13C | Δ1H | Δ13C | Δ1H | Δ13C | |
1 | - | 0.95 | - | 0.59 | - | 1 | - | 0.81 | - | −6.69 |
2 | - | 0.26 | - | 0.05 | - | 0.13 | - | 0 | - | −0.4 |
3 | - | 0.4 | - | 0.51 | - | 0.54 | - | 0.61 | - | −9.07 |
4 | - | 0.17 | - | −0.06 | - | 0.17 | - | 0.16 | - | 0.33 |
5 | 0.05 | −0.03 | 0.03 | 0.02 | 0.04 | 0.01 | 0.04 | 0.05 | 0.12 | 0.99 |
6 | 0.1 | −0.37 | 0.06 | 0.01 | 0.06 | −0.13 | 0.06 | −0.04 | 0.55 | 0.61 |
7 | - | −0.22 | - | −0.04 | - | −0.09 | - | 0.08 | - | −2.11 |
8 | 0.09; 0.01 | −2.13 | −0.09; −0.07 | 0.64 | −0.09; −0.03 | 0.05 | −0.09; −0.07 | 0.44 | −0.09; −0.15 | −1.07 |
9 | −0.35 | −0.06 | −0.39 | 1.93 | −0.31 | −0.03 | −0.11 | −0.04 | 0.08 | −1.23 |
10 | −0.16 | −0.32 | 0 | −3.07 | −0.16 | 0.44 | 0.08 | −1 | 0.2 | −2.49 |
11 | 0.01 | 0.04 | 0.01 | 0.06 | 0.01 | 1.25 | 0.01 | 1.25 | 0.28 | 0.17 |
12 | 0.03 | 0.66 | 0.03 | 0.57 | 0.03 | 0.66 | 0.03 | 0.6 | 0.03 | 0.4 |
13 | - | 0.17 | - | 0.29 | - | 0.26 | - | 0.17 | - | 0.73 |
14 | 0.11 | −0.1 | 0.11 | −0.09 | 0.14 | −0.09 | 0.11 | −0.11 | 0.07 | 0.3 |
15 | 0.04 | 0.73 | 0.04 | 0.74 | 0.04 | 0.78 | 0.04 | 0.76 | 0 | 0.49 |
16 | 0 | 0.02 | 0 | −0.54 | 0 | 0.15 | 0.1 | 0.41 | -0.07 | −0.29 |
17 | 0.14; 0.02 | 0.32 | 0.1; 0.29 | 0.45 | 0.1; 0.02 | 0.36 | 0.1; 0.03 | 0.34 | 0.1; 0.02 | 0.41 |
18 | - | 0.34 | - | 0.4 | - | −0.81 | - | −0.83 | - | 0.41 |
19 | 0.4 | 1.51 | 0.4 | 1.6 | 0.4 | 1.6 | 0.4 | 1.66 | 0.09 | 2.35 |
20 | 0.03; 0.05 | 0.58 | 0.04; −0.06 | 0.58 | 0.05; 0.06 | 0.6 | 0.05; 0.26 | 0.59 | 0.04; 0.06 | 0.47 |
21 | 0.07 | 0.29 | 0.15 | −0.4 | 0.07 | −0.38 | 0.03 | −0.15 | 0.01 | 0.08 |
22 | - | 0.09 | - | 0.02 | - | 0.06 | - | 0.08 | - | −0.02 |
23 | 0.05 | - | 0.05 | - | 0.05 | - | 0.05 | - | 0.05 | - |
24 | 0.01 | 0.22 | 0.01 | −0.1 | −0.26 | −0.46 | 0.05 | 0.26 | 0.01 | 0.21 |
25 | −0.22 | 0.14 | 0.05 | −0.32 | 0.05 | 0.14 | −0.28 | 0.15 | 0.05 | 0.12 |
26 | −0.84 | 0.19 | −0.09 | 0.19 | 0.02 | 0.2 | 0.02 | 0.2 | −0.09 | 0.21 |
27 | −0.17 | - | −0.17 | - | -0.01 | - | −0.1 | - | −0.17 | - |
28 | 0.2 | 0.19 | 0.2 | 0.77 | 0.01 | −0.05 | −0.11 | 0.41 | 0.03 | 0.08 |
29 | 0.07 | 0.05 | -0.1 | 0.03 | 0.27 | 0.04 | 0.15 | 0.05 | 0.03 | 0.08 |
30 | 0.06 | 0.23 | 0.06 | −0.31 | 0.06 | 0.09 | 0.06 | 0.07 | 0.02 | −0.31 |
31 | 1 signal | 0.67 | 1 signal | −0.08 | 1 signal | 0.74 | 1 signal | 0.68 | 1 signal | 0.58 |
32 | 0.06 | 0.37 | 0.1 | 0.81 | 0.02 | −0.11 | 0.02 | 0.37 | −0.02 | 0.3 |
33 | 0.08 | 0.04 | 0.04 | 0.13 | 0 | −0.59 | 0.04 | 0.14 | −0.04 | 0.1 |
34 | 0.08 | - | 0.38 | - | 0.18 | - | 0.1 | - | 0.2 | - |
35 | 0 | 0.04 | −0.04 | 0.39 | −0.11 | −1.12 | −0.04 | 0.06 | −0.23 | −0.67 |
36 | 0.04 | 0.23 | 0.04 | −0.19 | 0.04 | 0.37 | 0.04 | 0.36 | 0.04 | 0.33 |
37 | 0.16 | - | 0.28 | - | 0.28 | - | 0.32 | - | 0.39 | - |
Compounds and Complexes | Maximum Absorption of Vibration Bands: | ||
---|---|---|---|
ν(O-H) in the Hydroxyl Group (cm−1) | ν(C=O) in the Carbonyl Group (cm−1) | ν(C=O) in the Carboxyl Group (cm−1) | |
LasNeo | 3438 | 1712 | 1652 |
LasNeo-Li+ | 3390 | 1712 | 1652 |
LasNeo-Na+ | 3438 | 1712 | 1652 |
LasNeo-K+ | 3440 | 1712 | 1652 |
LasGeran | 3434 | 1712 | 1652 |
LasGeran-Li+ | 3385 | 1711 | 1652 |
LasGeran-Na+ | 3459 | 1709 | 1652 |
LasGeran-K+ | 3438 | 1712 | 1652 |
LasEtHex | 3442 | 1713 | 1653 |
LasEtHex-Li+ | 3406 | 1711 | 1653 |
LasEtHex-Na+ | 3461 | 1711 | 1653 |
LasEtHex-K+ | 3437 | 1712 | 1653 |
LasEico | 3433 | 1712 | 1652 |
LasEico-Li+ | 3369 | 1712 | 1653 |
LasEico-Na+ | 3432 | 1711 | 1652 |
LasEico-K+ | 3434 | 1712 | 1652 |
LasVanil | 3350 | 1712 | 1667 |
LasVanil-Li+ | 3446 | 1706 | 1666 |
LasVanil-Na+ | 3454 | 1704 | 1667 |
LasVanil-K+ | 3349 | 1711 | 1666 |
Complex | HOF (kJ/mol) | ΔHOF |
---|---|---|
LasNeopent | −1901.97 | - |
LasGeran | −1828.39 | |
LasEtHex | −1952.06 | |
LasEico | −2182.47 | |
LasVanil | −2034.23 | |
LasNeopent Li+ (complexed) | −1620.8 | −333.97 |
LasNeopent Li+ (uncomplexed) | −1286.83 | |
LasNeopent Na+ (complexed) | −1711.38 | −354.49 |
LasNeopent Na+ (uncomplexed) | −1356.89 | |
LasNeopent K+ (complexed) | −1603.03 | −157.43 |
LasNeopent K+ (uncomplexed) | −1445.6 | |
LasGeran Li+ (complexed) | −1561.86 | −348.61 |
LasGeran Li+ (uncomplexed) | −1213.25 | |
LasGeran Na+ (complexed) | −1672.57 | −389.26 |
LasGeran Na+ (uncomplexed) | −1283.31 | |
LasGeran K+ (complexed) | −1546.81 | −174.79 |
LasGeran K+ (uncomplexed) | −1372.02 | |
LasEtHex Li+ (complexed) | −1667.27 | −330.35 |
LasEtHex Li+ (uncomplexed) | −1336.92 | |
LasEtHex Na+ (complexed) | −1763.78 | −356.8 |
LasEtHex Na+ (uncomplexed) | −1406.98 | |
LasEtHex K+ (complexed) | −1661.97 | −166.28 |
LasEtHex K+ (uncomplexed) | −1495.69 | |
LasEico Li+ (complexed) | −1916.75 | −349.42 |
LasEico Li+ (uncomplexed) | −1567.33 | |
LasEico Na+ (complexed) | −2015.41 | −378.02 |
LasEico Na+ (uncomplexed) | −1637.39 | |
LasEico K+ (complexed) | −1882.66 | −156.56 |
LasEico K+ (uncomplexed) | −1726.1 | |
LasVanil Li+ (complexed) | −1758.32 | −339.23 |
LasVanil Li+ (uncomplexed) | −1419.09 | |
LasVanilNa+ (complexed) | −1877.76 | −388.61 |
LasVanil Na+ (uncomplexed) | −1489.15 | |
LasVanil K+ (complexed) | −1781.33 | −203.47 |
LasVanil K+ (uncomplexed) | -1577.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papsdorf, M.; Pankiewicz, R. Spectroscopic, Spectrometric and Computational Studies of New Lasalocid Derivatives and Their Complexes with Selected Metal Cations. Molecules 2023, 28, 8085. https://doi.org/10.3390/molecules28248085
Papsdorf M, Pankiewicz R. Spectroscopic, Spectrometric and Computational Studies of New Lasalocid Derivatives and Their Complexes with Selected Metal Cations. Molecules. 2023; 28(24):8085. https://doi.org/10.3390/molecules28248085
Chicago/Turabian StylePapsdorf, Monika, and Radosław Pankiewicz. 2023. "Spectroscopic, Spectrometric and Computational Studies of New Lasalocid Derivatives and Their Complexes with Selected Metal Cations" Molecules 28, no. 24: 8085. https://doi.org/10.3390/molecules28248085
APA StylePapsdorf, M., & Pankiewicz, R. (2023). Spectroscopic, Spectrometric and Computational Studies of New Lasalocid Derivatives and Their Complexes with Selected Metal Cations. Molecules, 28(24), 8085. https://doi.org/10.3390/molecules28248085