The Structure of 2,6-Di-tert-butylphenol–Argon by Rotational Spectroscopy
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
- (a)
- The DPM computations were executed utilizing the software RGDMIN [26]. The configuration of 26BP was held constant at the theoretical structure, whereas the distance (RCM) between its center of mass (CM) and the Ar noble gas was allowed to adjust freely in order to minimize energy across the complete spectrum of θ = 0–180°, φ = 0–360°, incrementing in steps of θ = φ = 10°. RCM, θ, and φ represent the spherical coordinates.
- (b)
- Using Gaussian16 [27], the relative minima obtained from RGDMIN have been optimized in order to guide the experimental assignment. The results obtained with the DFT B3LYP method with the addition of the D3 method developed by Grimme et al. [28] and the Becke–Johnson damping function [29,30] have been reported in Table 1. The Weigend and Ahlrich’s def2-TZVP basis set [31] was used as previous work has highlighted the accuracy of the method for experimental purposes [32,33,34]. Table 1 reports the spectroscopic parameters obtained, including the rotational constants and the dipole moment components, which are necessary for the prediction of the rotational spectrum. The frequency calculation at B3LYP-D3(BJ)/def2-TZVP was performed with the harmonic approximation. All the theoretical structures are reported in the Supplementary Materials.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calabria, D.; Guardigli, M.; Severi, P.; Trozzi, I.; Pace, A.; Cinti, S.; Zangheri, M.; Mirasoli, M. A smartphone-based chemosensor to evaluate antioxidants in agri-food matrices by in situ AuNP formation. Sensors 2021, 21, 5432. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Huang, X.; Ahn, D.U. Plant-and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: A review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef]
- Evangelisti, L.; Brendel, K.; Mäder, H.; Caminati, W.; Melandri, S. Rotational spectroscopy probes water flipping by full fluorination of benzene. Angew. Chemie Int. Ed. 2017, 56, 13699–13703. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Li, W.; Prampolini, G.; Evangelisti, L.; Uriarte, I.; Cacelli, I.; Melandri, S.; Cocinero, E.J. A General Treatment to Study Molecular Complexes Stabilized by Hydrogen-, Halogen-, and Carbon-Bond Networks: Experiment and Theory of (CH2F2) n⋯H2O) m. Angew. Chem. Int. Ed. 2019, 58, 8437–8442. [Google Scholar] [CrossRef]
- Li, W.; Maris, A.; Melandri, S.; Lesarri, A.; Evangelisti, L. Molecular structure and internal dynamics of the antioxidant 2, 6-di-tert-butylphenol. J. Mol. Struct. 2024, 1296, 136910. [Google Scholar] [CrossRef]
- Larsen, N.W.; Mathier, E.; Bauder, A.; Günthard, H.H. Analysis of microwave and infrared transitions of phenol by rotation-internal rotation theory. Phenol-OD. J. Mol. Spectrosc. 1973, 47, 183–188. [Google Scholar] [CrossRef]
- Tanjaroon, C.; Kukolich, S.G. Measurements of the Rotational Spectra of Phenol and 2-Pyrone and Computational Studies of the H-Bonded Phenol−Pyrone Dimer. J. Phys. Chem. A 2009, 113, 9185–9192. [Google Scholar] [CrossRef] [PubMed]
- Kolesniková, L.; Daly, A.M.; Alonso, J.L.; Tercero, B.; Cernicharo, J. The millimeter wave tunneling–rotational spectrum of phenol. J. Mol. Spectrosc. 2013, 289, 13–20. [Google Scholar] [CrossRef]
- Kisiel, Z. Further rotational spectroscopy of phenol: Sextic centrifugal distortion and vibrational satellites. J. Mol. Spectrosc. 2022, 386, 111630. [Google Scholar] [CrossRef]
- Peña, I.; Cabezas, C. Rotational spectra of van der Waals complexes: Pyrrole–Ne and pyrrole–Ne 2. Phys. Chem. Chem. Phys. 2020, 22, 25652–25660. [Google Scholar] [CrossRef]
- Hellweg, A.; Hättig, C. On the internal rotations in p-cresol in its ground and first electronically excited states. J. Chem. Phys. 2007, 127, 024307. [Google Scholar] [CrossRef]
- Watson, J.K.; During, J.R. (Eds.) Vibrational Spectra and Structure; Elsevier: Amsterdam, The Netherlands, 1977; Volume 6, pp. 1–89. [Google Scholar]
- Pickett, H.M. The fitting and prediction of vibration-rotation spectra with spin interactions. J. Mol. Spectrosc. 1991, 148, 371–377. [Google Scholar] [CrossRef]
- Kraitchman, J. Determination of molecular structure from microwave spectroscopic data. Am. J. Phys. 1953, 21, 17–24. [Google Scholar] [CrossRef]
- Evangelisti, L.; Perez, C.; Seifert, N.A.; Pate, B.H.; Dehghany, M.; Moazzen-Ahmadi, N.; McKellar, A.R.W. Theory vs. experiment for molecular clusters: Spectra of OCS trimers and tetramers. J. Chem. Phys. 2015, 142, 104309. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Lo, A.; Miret, S.; Pate, B.; Aspuru-Guzik, A. Reflection-Equivariant Diffusion for 3D Structure Determination from Isotopologue Rotational Spectra in Natural Abundance. arXiv 2023, arXiv:2310.11609. [Google Scholar]
- Lefebvre, C.; Klein, J.; Khartabil, H.; Boisson, J.C.; Hénon, E. IGMPlot: A program to identify, characterize, and quantify molecular interactions. J. Comput. Chem. 2023, 44, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev. 1994, 94, 1887–1930. [Google Scholar] [CrossRef]
- Parrish, R.M.; Burns, L.A.; Smith, D.G.; Simmonett, A.C.; Eugene DePrince, A.E., III; Hohenstein, E.G.; Bozkaya, U.; Sokolov, A.Y.; Di Remigio, R.; Richard, R.M.; et al. Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R. Flexible models for intramolecular motion, a versatile treatment and its application to glyoxal. J. Mol. Spectrosc. 1979, 76, 266–300. [Google Scholar] [CrossRef]
- Hartwig, H.; Dreizler, H. The microwave spectrum of trans-2, 3-dimethyloxirane in torsional excited states. Z. Für Naturforsch. A 1996, 51, 923–932. [Google Scholar] [CrossRef]
- Ilyushin, V.; Rizzato, R.; Evangelisti, L.; Feng, G.; Maris, A.; Melandri, S.; Caminati, W. Almost free methyl top internal rotation: Rotational spectrum of 2-butynoic acid. J. Mol. Spectrosc. 2011, 267, 186–190. [Google Scholar] [CrossRef]
- Brown, G.G.; Dian, B.C.; Douglass, K.O.; Geyer, S.M.; Shipman, S.T.; Pate, B.H. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. Rev. Sci. Instrum. 2008, 79, 053103. [Google Scholar] [CrossRef] [PubMed]
- Kisiel, Z.; Fowler, P.W.; Legon, A.C. Rotational spectra and structures of van der Waals dimers of Ar with a series of fluorocarbons: Ar⋯CH2CHF, Ar⋯CH2CF2, and Ar⋯CHFCF2. J. Chem. Phys. 1991, 95, 2283–2291. [Google Scholar] [CrossRef]
- Kisiel, Z. A simple model for predicting structures of gas-phase van der Waals dimers containing a rare-gas atom. J. Phys. Chem. 1991, 95, 7605–7612. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision C. 01. 2016; Gaussian Inc.: Wallingford, CT, USA, 2016; p. 421. [Google Scholar]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Johnson, E.R.; Becke, A.D. A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections. J. Chem. Phys. 2006, 124, 174104. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Juanes, M.; Usabiaga, I.; León, I.; Evangelisti, L.; Fernández, J.A.; Lesarri, A. The six isomers of the cyclohexanol dimer: A delicate test for dispersion models. Angew. Chem. Int. Ed. 2020, 59, 14081–14085. [Google Scholar] [CrossRef]
- Mayer, K.; West, C.; Marshall, F.E.; Sedo, G.; Grubbs, G.S.; Evangelisti, L.; Pate, B.H. Accuracy of quantum chemistry structures of chiral tag complexes and the assignment of absolute configuration. Phys. Chem. Chem. Phys. 2022, 24, 27705–27721. [Google Scholar] [CrossRef] [PubMed]
- Goerigk, L.; Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 2011, 13, 6670–6688. [Google Scholar] [CrossRef] [PubMed]
- Bunker, P.R.; Jensen, P. Molecular Symmetry and Spectroscopy; NRC Research Press: Ottawa, ON, Canada, 2006; Volume 46853. [Google Scholar]
- Hougen, J.T. Strategies for advanced applications of permutation–inversion groups to the microwave spectra of molecules with large amplitude motions. J. Mol. Spectrosc. 2009, 256, 170–185. [Google Scholar] [CrossRef]
I | II | III | IV | V | |
---|---|---|---|---|---|
A/MHz | 576.17 | 489.09 | 649.65 | 938.74 | 832.23 |
B/MHz | 345.94 | 334.57 | 231.54 | 182.21 | 185.64 |
C/MHz | 298.78 | 218.11 | 184.85 | 163.80 | 179.99 |
µa/D | −1.84 | 1.76 | 1.54 | 2.04 | 1.73 |
µb/D | −0.14 | 0.75 | −1.17 | 0.15 | −0.29 |
µc/D | 0.23 | 0.00 | 0.00 | 0.00 | 0.58 |
ΔE/cm−1 | 0 * | 315 | 443 | 460 | 486 |
ΔE0/cm−1 | 0 * | 308 | 411 | 434 | 450 |
States | 0,2,4 | 1,3,5 |
---|---|---|
A/MHz | 563.740(4) [a] | |
B/MHz | 345.3613(3) | 345.3597(4) |
C/MHz | 294.9384(3) | 294.9382(3) |
ΔE01/MHz | 178.933(4) | |
ΔE23/MHz | 178.757(4) | |
ΔE45/MHz | 179.463(4) | |
Fab01/MHz | 1.168(4) | |
Fab23/MHz | 1.170(4) | |
Fab45/MHz | 1.162(4) | |
DJ/Hz | 17(1) | |
DJK/kHz | 0.21(1) | |
σ [b]/kHz | 9 | |
N [c] | 442 | |
µa/µb/µc [d]/D | y/n/n | |
a (Å) | b (Å) | c (Å) | ||||
---|---|---|---|---|---|---|
|rs| | re | |rs| | re | |rs| | re | |
Ar (PAS monomer) | 0.57i | +0.029 | 0.854(1) | +0.782 | 3.496(1) | −3.444 |
Ar (PAS complex) | 0 | −0.042 | 2.950(1) | +2.883 | 0.554(1) | +0.661 |
De | Eint | Electrostatic | Exch.–Repulsion | Induction | Dispersion | Total | |
---|---|---|---|---|---|---|---|
26BP–Ar | −3.78 | −3.80 | −4.13 | 11.85 | −1.03 | −14.63 | −7.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Maris, A.; Melandri, S.; Lesarri, A.; Evangelisti, L. The Structure of 2,6-Di-tert-butylphenol–Argon by Rotational Spectroscopy. Molecules 2023, 28, 8111. https://doi.org/10.3390/molecules28248111
Li W, Maris A, Melandri S, Lesarri A, Evangelisti L. The Structure of 2,6-Di-tert-butylphenol–Argon by Rotational Spectroscopy. Molecules. 2023; 28(24):8111. https://doi.org/10.3390/molecules28248111
Chicago/Turabian StyleLi, Wenqin, Assimo Maris, Sonia Melandri, Alberto Lesarri, and Luca Evangelisti. 2023. "The Structure of 2,6-Di-tert-butylphenol–Argon by Rotational Spectroscopy" Molecules 28, no. 24: 8111. https://doi.org/10.3390/molecules28248111
APA StyleLi, W., Maris, A., Melandri, S., Lesarri, A., & Evangelisti, L. (2023). The Structure of 2,6-Di-tert-butylphenol–Argon by Rotational Spectroscopy. Molecules, 28(24), 8111. https://doi.org/10.3390/molecules28248111