Optimization Studies and Compositional Oil Analysis of Pequi (Caryocar brasiliense Cambess) Almonds by Supercritical CO2 Extraction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Sample Preparation
3.2. Supercritical CO2 Extraction
3.3. Kinetics of the Pequi Almond Oil Extraction
3.4. Oil Characterization
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Lima, A.; de Silva, A.M.O.e.; Trindade, R.A.; Torres, R.P.; Mancini-Filho, J. Composição Química e Compostos Bioativos Presentes Na Polpa e Na Amêndoa Do Pequi (Caryocar Brasiliense, Camb.). Rev. Bras. Frutic. 2007, 29, 695–698. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.A.; de Assunção, R.M.N.; Vieira, A.T.; de Oliveira, M.F.; Batista, A.C.F. Methylic and Ethylic Biodiesels from Pequi Oil (Caryocar Brasiliense Camb.): Production and Thermogravimetric Studies. Fuel 2014, 136, 10–18. [Google Scholar] [CrossRef]
- Alves, A.M.; Fernandes, D.C.; de Sousa, A.G.O.; Naves, R.V.; Naves, M.M.V. Características Físicas e Nutricionais de Pequis Oriundos Dos Estados de Tocantins, Goiás e Minas Gerais. Braz. J. Food Technol. 2014, 17, 198–203. [Google Scholar] [CrossRef] [Green Version]
- de Santana Magalhães, F.; de Souza Martins Sá, M.; Luiz Cardoso, V.; Hespanhol Miranda Reis, M. Recovery of Phenolic Compounds from Pequi (Caryocar Brasiliense Camb.) Fruit Extract by Membrane Filtrations: Comparison of Direct and Sequential Processes. J. Food Eng. 2019, 257, 26–33. [Google Scholar] [CrossRef]
- do Nascimento-Silva, N.R.R.; Naves, M.M.V. Potential of Whole Pequi (Caryocar Spp.) Fruit—Pulp, Almond, Oil, and Shell—As a Medicinal Food. J. Med. Food 2019, 22, 952–962. [Google Scholar] [CrossRef]
- Ferreira, M.A.; de Oliveira, M.E.S.; Silva, G.A.; Mathioni, S.M.; Mafia, R.G. Capillaureum Caryovora Gen. Sp. Nov. (Cryphonectriaceae) Pathogenic to Pequi (Caryocar Brasiliense) in Brazil. Mycol. Prog. 2019, 18, 385–403. [Google Scholar] [CrossRef]
- Borges, K.A.; Batista, A.C.F.; de Souza Rodrigues, H.; Hernandes Terrones, M.; Tironi Vieira, A.; de Oliveira, M.F. Production of Methyl and Ethyl Biodiesel Fuel from Pequi Oil (Caryocar Brasiliensis Camb.). Chem. Technol. Fuels Oils 2012, 48, 83–89. [Google Scholar] [CrossRef]
- Marques Cardoso, C.M.; Zavarize, D.G.; Gama Vieira, G.E. Transesterification of Pequi (Caryocar Brasiliensis Camb.) Bio-Oil via Heterogeneous Acid Catalysis: Catalyst Preparation, Process Optimization and Kinetics. Ind. Crop. Prod. 2019, 139, 111485. [Google Scholar] [CrossRef]
- Rabbers, A.S.; Rabelo, R.E.; Oliveira, L.P.; Ribeiro, M.; Martins, V.C.A.; Plepis, A.M.G.; Vulcani, V.A.S. Additive Effect of Pulp Pequi Oil (Caryocar Brasiliense Camb.) on the Biocompatibility of Collagen and Gelatin Membranes in Subcutaneous Implants. Arq. Bras. Med. Veterinária Zootec. 2019, 71, 811–818. [Google Scholar] [CrossRef]
- Malacrida, C.R.; Moraes, I.C.F.; de Rosso, V.V.; da Rodrigues, C.E.C.; de Souza, A.C. Effect of the Application of an Enzymatic Pretreatment on Bioactive Compounds of Caryocar Brasiliense Camb Pulp Oil. J. Food Process. Preserv. 2018, 42, e13828. [Google Scholar] [CrossRef]
- da Silva, L.F.B.P.; Cerqueira Poty, J.A.; Martins, M.; de Machado Freitas Coelho, N.P.; Martins Maia Filho, A.L.; da Sena Costa, C.L.A. Anti-inflammatory action of pequi oil associated to ultrasound in tendinitis in rats: Macroscopic and histological analysis. Man. Ther. Posturol. Rehabil. J. 2016, 14, 347. [Google Scholar] [CrossRef]
- Girardi, J.S. Avaliação Da Influência D Ação Anti-Inflamatória Do Óleo de Pequi Associado Ao Ultrassom Na Tendinite Em Ratos: Análise Macroscópica e Histológicas Condições de Cultivo Sobre Os Teores de Compostos de Interesse Presentes Nos Extratos de Erva-Mate (Ilex Paraguariensis) Obtidos Por CO2 a Altas Pressões; Universidade Federal de Santa Catarina: Florianópolis, Brazil, 2010. [Google Scholar]
- Araújo, A.C.M.A.; de Resende Oliveira, É.; Menezes, E.G.T.; Dias, B.O.; Terra, A.W.C.; Queiroz, F. Solvent Effect on the Extraction of Soluble Solids from Murici and Pequi Seeds. J. Food Process. Eng. 2018, 41, e12813. [Google Scholar] [CrossRef]
- Roll, M.M.; Miranda-Vilela, A.L.; Longo, J.P.F.; da Agostini-Costa, T.S.; Grisolia, C.K. The Pequi Pulp Oil (Caryocar Brasiliense Camb.) Provides Protection against Aging-Related Anemia, Inflammation and Oxidative Stress in Swiss Mice, Especially in Females. Genet. Mol. Biol. 2018, 41, 858–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, C.O.T.; Garcia, V.A.D.S.; Gonçalves, R.M.; Leal, I.C.R.; Siqueira, V.L.D.; Filho, L.C.; Cabral, V.F. Supercritical Extraction of Neolignans from Piper Regnelli Var. Pallescens. J. Supercrit. Fluids 2012, 71, 64–70. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Lemos, C.O.T.; Leal, I.C.R.; Nakamura, C.V.; Cortez, D.A.G.; da Silva, E.A.; Cabral, V.F.; Cardozo-Filho, L. Comparing Conventional and Supercritical Extraction of (-)-Mammea A/BB and the Antioxidant Activity of Calophyllum Brasiliense Extracts. Molecules 2013, 18, 6215–6229. [Google Scholar] [CrossRef]
- Pederssetti, M.M.; Palú, F.; da Silva, E.A.; Rohling, J.H.; Cardozo-Filho, L.; Dariva, C. Extraction of Canola Seed (Brassica Napus) Oil Using Compressed Propane and Supercritical Carbon Dioxide. J. Food Eng. 2011, 102, 189–196. [Google Scholar] [CrossRef]
- Silva, M.O.; Camacho, F.P.; Ferreira-Pinto, L.; Giufrida, W.M.; Vieira, A.M.S.; Visentaine, J.V.; Vedoy, D.R.L.; Cardozo-Filho, L. Extraction and Phase Behaviour of Moringa Oleifera Seed Oil Using Compressed Propane. Can. J. Chem. Eng. 2016, 94, 2195–2201. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zha, X.; Mei, Y.; Xia, J.; Jiao, Z. Supercritical Carbon Dioxide Extraction of β-Carotene and α-Tocopherol from Pumpkin: A Box-Behnken Design for Extraction Variables. Anal. Methods 2017, 9, 294–303. [Google Scholar] [CrossRef]
- Shi, J.; Yi, C.; Ye, X.; Xue, S.; Jiang, Y.; Ma, Y.; Liu, D. Effects of Supercritical CO2 Fluid Parameters on Chemical Composition and Yield of Carotenoids Extracted from Pumpkin. LWT-Food Sci. Technol. 2010, 43, 39–44. [Google Scholar] [CrossRef]
- Klein, E.J.; Johann, G.; da Silva, E.A.; Vieira, M.G.A. Mathematical Modeling of Supercritical CO 2 Extraction of Eugenia Pyriformis Cambess. Leaves. Chem. Eng. Commun. 2021, 208, 1543–1552. [Google Scholar] [CrossRef]
- Tatiana Nogueira De Deus Extração e Caracterização de Óleo Do Pequi (Caryocar Brasiliensis Camb.) Para o Uso Sustentável Em Formulações Cosméticas Óleo/Água (o/A); Universidade Católica de Goiás: Goiânia, Brazil, 2008.
- Lopes, R.M.; da Silva, J.P.; Vieira, R.F.; da Silva, D.B.; da Gomes, I.S.; da Agostini-Costa, T.S. Composição de Ácidos Graxos Em Polpa de Frutas Nativas Do Cerrado. Rev. Bras. Frutic. 2012, 34, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Vilela, A.L.; Grisolia, C.K.; Resck, I.S.; Mendonça, M.A. Characterization of the Major Nutritional Components of Caryocar Brasiliense Fruit Pulp by Nmr Spectroscopy. Quim. Nova 2009, 32, 2310–2313. [Google Scholar] [CrossRef]
- Pessoa, A.S.; Podestá, R.; Block, J.M.; Franceschi, E.; Dariva, C.; Lanza, M. Extraction of Pequi (Caryocar Coriaceum) Pulp Oil Using Subcritical Propane: Determination of Process Yield and Fatty Acid Profile. J. Supercrit. Fluids 2015, 101, 95–103. [Google Scholar] [CrossRef]
- Rajaei, A.; Barzegar, M.; Yamini, Y. Supercritical Fluid Extraction of Tea Seed Oil and Its Comparison with Solvent Extraction. Eur. Food Res. Technol. 2005, 220, 401–405. [Google Scholar] [CrossRef]
- Sporring, S.; Bøwadt, S.; Svensmark, B.; Björklund, E. Comprehensive Comparison of Classic Soxhlet Extraction with Soxtec Extraction, Ultrasonication Extraction, Supercritical Fluid Extraction, Microwave Assisted Extraction and Accelerated Solvent Extraction for the Determination of Polychlorinated Biphenyls. J. Chromatogr. A 2005, 1090, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ferrentino, G.; Giampiccolo, S.; Morozova, K.; Haman, N.; Spilimbergo, S.; Scampicchio, M. Supercritical Fluid Extraction of Oils from Apple Seeds: Process Optimization, Chemical Characterization and Comparison with a Conventional Solvent Extraction. Innov. Food Sci. Emerg. Technol. 2020, 64, 102428. [Google Scholar] [CrossRef]
- Liu, S.; Hu, H.; Yu, Y.; Zhao, J.; Liu, L.; Zhao, S.; Xie, J.; Li, C.; Shen, M. Simultaneous Determination of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2021, 14, 1567–1576. [Google Scholar] [CrossRef]
- Sipeniece, E.; Mišina, I.; Qian, Y.; Grygier, A.; Sobieszczańska, N.; Sahu, P.K.; Rudzińska, M.; Patel, K.S.; Górnaś, P. Fatty Acid Profile and Squalene, Tocopherol, Carotenoid, Sterol Content of Seven Selected Consumed Legumes. Plant Foods Hum. Nutr. 2021, 76, 53–59. [Google Scholar] [CrossRef]
- Ahmadkelayeh, S.; Hawboldt, K. Extraction of Lipids and Astaxanthin from Crustacean By-Products: A Review on Supercritical CO2 Extraction. Trends Food Sci. Technol. 2020, 103, 94–108. [Google Scholar] [CrossRef]
- Geow, C.H.; Tan, M.C.; Yeap, S.P.; Chin, N.L. A Review on Extraction Techniques and Its Future Applications in Industry. Eur. J. Lipid Sci. Technol. 2021, 123, 2000302. [Google Scholar] [CrossRef]
- Johner, J.C.F.; Hatami, T.; Zabot, G.L.; Meireles, M.A.A. Kinetic Behavior and Economic Evaluation of Supercritical Fluid Extraction of Oil from Pequi (Caryocar Brasiliense) for Various Grinding Times and Solvent Flow Rates. J. Supercrit. Fluids 2018, 140, 188–195. [Google Scholar] [CrossRef]
- Johner, J.C.F.; Hatami, T.; Meireles, M.A.A. Developing a Supercritical Fluid Extraction Method Assisted by Cold Pressing for Extraction of Pequi (Caryocar Brasiliense). J. Supercrit. Fluids 2018, 137, 34–39. [Google Scholar] [CrossRef]
- Garcia, V.A.D.S.; Cabral, V.F.; Zanoelo, É.F.; da Silva, C.; Filho, L.C. Extraction of Mucuna Seed Oil Using Supercritical Carbon Dioxide to Increase the Concentration of L-Dopa in the Defatted Meal. J. Supercrit. Fluids 2012, 69, 75–81. [Google Scholar] [CrossRef]
- Rogério Favareto Extração de Compostos Bioativos Utilizando CO2 Supercrítico de Espécies Do Cerrado; Instituto Federal de Educação, Ciência e Tecnologia Goiano-Campus Rio Verde: Goiânia, Brazil.
- Souza, A.T.; Benazzi, T.L.; Grings, M.B.; Cabral, V.; Silva, E.A.; Cardozo-Filho, L.; Ceva Antunes, O.A. Supercritical Extraction Process and Phase Equilibrium of Candeia (Eremanthus Erythropappus) Oil Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2008, 47, 182–187. [Google Scholar] [CrossRef]
- Santos Júnior, O.O.; Montanher, P.F.; Bonafé, E.G.; do Prado, I.N.; Maruyama, S.A.; Matsushita, M.; Visentainer, J.V. A Simple, Fast and Efficient Method for Transesterification of Fatty Acids in Foods Assisted by Ultrasound Energy. J. Braz. Chem. Soc. 2014, 25, 1712–1719. [Google Scholar] [CrossRef]
- de Menezes Rodrigues, G.; Cardozo-Filho, L.; da Silva, C. Pressurized Liquid Extraction of Oil from Soybean Seeds. Can. J. Chem. Eng. 2017, 95, 2383–2389. [Google Scholar] [CrossRef]
- Du, M.; Ahn, D.U. Simultaneous Analysis of Tocopherols, Cholesterol, and Phytosterols Using Gas Chromatography. J. Food Sci. 2002, 67, 1696–1700. [Google Scholar] [CrossRef]
- Stat-Ease, I. Design Expert Software Version 7.1.3 2008. Available online: https://design-expert-trial.updatestar.com/en (accessed on 28 November 2022).
- StatSoft, I. Statistica: Data Analysis Software System Version 8.0 2008. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1924761 (accessed on 28 November 2022).
Run | Temperature | Pressure | Flow Rate | Yield |
---|---|---|---|---|
(K) | (MPa) | (g.min−1) | (wt%) | |
1 | 303.15 | 15 | 3.5 | 7.6 |
2 | 333.15 | 15 | 3.5 | 1.1 |
3 | 303.15 | 25 | 3.5 | 20.3 |
4 | 333.15 | 25 | 3.5 | 17.4 |
5 | 303.15 | 20 | 2.0 | 8.1 |
6 | 333.15 | 20 | 2.0 | 4.5 |
7 | 303.15 | 20 | 5.0 | 20.9 |
8 | 333.15 | 20 | 5.0 | 10.6 |
9 | 318.15 | 15 | 2.0 | 2.5 |
10 | 318.15 | 25 | 2.0 | 10.9 |
11 | 318.15 | 15 | 5.0 | 6.3 |
12 | 318.15 | 25 | 5.0 | 27.6 |
13 | 318.15 | 20 | 3.5 | 11.6 |
14 | 318.15 | 20 | 3.5 | 12.1 |
15 | 318.15 | 20 | 3.5 | 11.7 |
Terms | Sum of Squares | Degrees of Freedom | Mean Squares | F-Value | p-Value |
---|---|---|---|---|---|
Model | 750.5 | 6 | 125.1 | 218 | <0.0001 |
T | 67.6 | 1 | 67.6 | 118 | <0.0001 |
P | 431.3 | 1 | 431.3 | 753 | <0.0001 |
F | 195.3 | 1 | 195.3 | 341 | <0.0001 |
T.P | 3.2 | 1 | 3.2 | 5.5 | 0.05 |
T.F | 11.0 | 1 | 11.0 | 19.2 | 0.002 |
P.F | 42.1 | 1 | 42.1 | 73.5 | <0.0001 |
Residual | 4.6 | 8 | 0.6 | ||
Lack of Fit | 4.5 | 6 | 0.7 | 13.6 | 0.07 |
Pure Error | 0.1 | 2 | 0.06 | ||
Cor Total | 755.1 | 14 |
Run | Temperature | Pressure | Flow Rate | Ceq × 1000 a | Yield |
---|---|---|---|---|---|
(K) | (MPa) | (g.min−1) | (goil.cm−3) | (wt%) | |
1 | 303.15 | 15 | 3.5 | 1.87 | 7.6 |
2 | 333.15 | 15 | 3.5 | 0.42 | 1.1 |
3 | 303.15 | 25 | 3.5 | 5.39 | 20.3 |
4 | 333.15 | 25 | 3.5 | 4.78 | 17.4 |
5 | 303.15 | 20 | 2.0 | 3.89 | 8.1 |
6 | 333.15 | 20 | 2.0 | 1.98 | 4.5 |
7 | 303.15 | 20 | 5.0 | 3.89 | 20.9 |
8 | 333.15 | 20 | 5.0 | 1.98 | 10.6 |
9 | 318.15 | 15 | 2.0 | 1.09 | 2.5 |
10 | 318.15 | 25 | 2.0 | 5.11 | 10.9 |
11 | 318.15 | 15 | 5.0 | 1.09 | 6.3 |
12 | 318.15 | 25 | 5.0 | 5.12 | 27.6 |
13–15 e | 318.15 | 20 | 3.5 | 3.03 | 11.8 |
Run | Fatty Acid (%) 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Myristic | Palmitic | Palmitoleic | Stearic | Oleic | Linoleic | Arachidic | Linolenic | Gadoleic | |
1 | 0.35 ± 0.00 c | 37.76 ± 0.04 d.e | 0.41 ± 0.00 a.b | 1.48 ± 0.04 d | 53.66 ± 0.02 c | 6.09 ± 0.01 b | 0.08 ± 0.00 b.c | 0.13 ± 0.00 d | 0.05 ± 0.01 a |
2 | 0.41 ± 0.00 a | 35.18 ± 0.02 f | 0.43 ± 0.01 a | 1.56 ± 0.01 c.d | 54.07 ± 0.03 b | 6.035 ± 0.02 b | 0.01 ± 0.00 a | 0.15 ± 0.00 c | 0.05 ± 0.00 a |
3 | 0.31 ± 0.00 e | 37.31 ± 0.03 f | 0.36 ± 0.01 e.f | 1.76 ± 0.00 a.b.c | 54.23 ± 0.01 a.b | 5.69 ± 0.02 c.d | 0.08 ± 0.01 b | 0.18 ± 0.00 b | 0.06 ± 0.01 a |
4 | 0.27 ± 0.00 f | 37.35 ± 0.00 e.f | 0.32 ± 0.01 g | 1.92 ± 0.06 a.b | 54.48 ± 0.04 a | 5.32 ± 0.00 c.d | 0.07 ± 0.00 c.d | 0.21 ± 0.00 a | 0.05 ± 0.01 a |
5 | 0.33 ± 0.00 d | 38.05 ± 0.12 d | 0.39 ± 0.00 b.c.d | 1.70 ± 0.01 a.b.c.d | 53.58 ± 0.07 c | 5.66 ± 0.05 c.d | 0.08 ± 0.00 c | 0.15 ± 0.00 c | 0.04 ± 0.00 a |
6 | 0.37 ± 0.00 b | 40.56 ± 0.04 a | 0.37 ± 0.00 c.d.e.f | 1.95 ± 0.01 a | 51.36 ± 0.02 g | 5.10 ± 0.00 g | 0.06 ± 0.00 d | 0.17 ± 0.00 b | 0.04 ± 0.00 a |
7 | 0.31 ± 0.00 e | 38.16 ± 0.03 c.d | 0.37 ± 0.00 c.d.e.f | 1.83 ± 0.00 a.b | 53.24 ± 0.05 d.e | 5.78 ± 0.01 c | 0.07 ± 0.00 b.c.d | 0.17 ± 0.00 b | 0.05 ± 0.00 a |
8 | 0.33 ± 0.01 c.d | 38.80 ± 0.05 b | 0.37 ± 0.00 c.d.e.f | 1.69 ± 0.06 b.c.d | 52.87 ± 0.01 f | 5.64 ± 0.02 d.e | 0.07 ± 0.00 c.d | 0.15 ± 0.00 c | 0.05 ± 0.00 a |
9 | 0.32 ± 0.01 d.e | 37.45 ± 0.01 e.f | 0.37 ± 0.01 d.e.f | 1.56 ± 0.04 c.d | 54.26 ± 0.00 a.b | 5.77 ± 0.03 c | 0.07 ± 0.00 c.d | 0.15 ± 0.00 c | 0.04 ± 0.00 a |
10 | 0.33 ± 0.00 c | 0.39 ± 0.05 d | 0.39 ± 0.00 b.c.d.e | 1.18 ± 0.08 e | 53.45 ± 0.04 c.d | 6.25 ± 0.07 a | 0.08 ± 0.00 b.c | 0.15 ± 0.00 c | 0.05 ± 0.00 a |
11 | 0.35 ± 0.00 c | 38.56 ± 0.00 b.c | 0.40 ± 0.00 b.c | 1.73 ± 0.06 a.b.c.d | 52.99 ± 0.03 e.f | 5.77 ± 0.02 c.d | 0.07 ± 0.00 c.d | 0.15 ± 0.00 c | 0.04 ± 0.01 a |
12 | 0.27 ± 0.01 f | 37.13 ± 0.05 f | 0.35 ± 0.00 f.g | 1.92 ± 0.01 a.b | 54.48 ± 0.04 a | 5.52 ± 0.02 e | 0.07 ± 0.00 c.d | 0.21 ± 0.00 a | 0.05 ± 0.00 a |
13–15 a | 0.32 ± 0.01 d.e | 38.13 ± 0.35 d | 0.41 ± 0.00 a.b | 1.84 ± 0.18 a.b | 53.29 ± 0.22 d | 5.69 ± 0.04 c.d | 0.08 ± 0.00 b.c | 0.17 ± 0.01 b | 0.04 ± 0.00 a |
Run | Compound (mg per 100 g Oil) | ||||||
---|---|---|---|---|---|---|---|
Squalene | Y-Tocopherol | Octacosanol | α-Tocopherol | Stigmasterol | Triacontanol | β-Sitosterol | |
1 | 5032.05 ± 59.04 f | 9.17 ± 0.12 e | 27.59 ± 0.15 d | 11.92 ± 0.14 d.e | 133.92 ± 1.64 d | 12.99 ± 0.12 c | 35.96 ± 2.92 b.c |
2 | 14219.82 ± 68.39 a | 27.01 ± 1.11 a | 34.06 ± 0.47 c | 24.65 ± 0.77 ª | 324.88 ± 2.07 a | 16.69 ± 0.86 b | 70.61 ± 1.35 a |
3 | 2972.47 ± 1.62 i | 9.26 ± 0.05 e | 9.89 ± 0.30 g | 9.25 ± 0.87 f.g.h | 90.48 ± 2.92 h | 5.56 ± 0.03 f | 25.68 ± 1.14 d.e.f |
4 | 3069.31 ± 24.20 i | 9.55 ± 0.11 e | 9.59 ± 0.41 g | 7.30 ± 1.39 h | 93.54 ± 4.05 g.h | 7.19 ± 0.21 e.f | 23.73 ± 0.12 d.e.f |
5 | 4225.7 ± 135.21 g | 12.04 ± 0.78 d | 20.73 ± 0.67 e | 9.99 ± 0.19 e.f.g | 119.50 ± 0.33 e | 10.36 ± 0.19 d | 24.05 ± 2.27 d.e.f |
6 | 7076.92 ± 45.31 c | 18.99 ± 0.01 b | 40.65 ± 0.44 b | 16.53 ± 0.39 b | 185.65 ± 0.37 c | 18.82 ± 1.03 b | 39.18 ± 2.52 b |
7 | 3057.3 ± 28.68 i | 8.95 ± 0.38 e | 14.08 ± 0.17 f | 8.54 ± 0.70 g.h | 88.60 ± 1.45 h | 7.83 ± 0.43 e | 20.80 ± 1.56 e.f |
8 | 5507.90 ± 50.45 e | 16.89 ± 0.35 c | 22.52 ± 0.42 e | 11.63 ± 0.22 d.e.f | 143.42 ± 0.44 d | 12.71 ± 0.54 c | 30.20 ± 0.17 c.d |
9 | 9021.06 ± 198.23 b | 18.59 ± 1.04 b.c | 36.91 ± 2.88 c | 14.80 ± 0.57 b.c | 197.97 ± 0.52 b | 16.85 ± 1.13 b | 38.18 ± 0.63 b |
10 | 3756.2 ± 81.36 h | 10.94 ± 0.26 d.e | 10.99 ± 0.27 f.g | 14.00 ± 0.79 c.d | 103.97 ± 1.99 f.g | 5.80 ± 0.21 e.f | 20.60 ± 0.77 f |
11 | 6671.90 ± 105.24 d | 16.82 ± 0.12 c | 22.48 ± 0.46 e | 16.46 ± 0.13 b | 181.58 ± 2.20 c | 11.58 ± 0.19 c.d | 38.36 ± 2.43 b |
12 | 2826.37 ± 63.43 i | 9.48 ± 0.30 e | 3.08 ± 0.06 h | 9.53 ± 0.49 e.f.g.h | 83.55 ± 3.31 h | 2.48 ± 0.46 g | 19.76 ± 1.39 f |
13–15 a | 3848.6 ± 157.25 h | 11.97 ± 0.29 d | 48.77 ± 1.00 a | 8.37 ± 0.07 g.h | 113.37 ± 4.75 e.f | 23.58 ± 0.54 a | 27.22 ± 0.66 d.e |
Factors | Symbol | Unit | Levels | ||
---|---|---|---|---|---|
−1 | 0 | +1 | |||
Temperature | T | K | 303.15 | 318.15 | 333.15 |
Pressure | P | MPa | 15 | 20 | 25 |
Flow rate | F | g.min−1 | 2 | 3.5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateus, L.S.; Dutra, J.M.; Favareto, R.; da Silva, E.A.; Ferreira Pinto, L.; da Silva, C.; Cardozo-Filho, L. Optimization Studies and Compositional Oil Analysis of Pequi (Caryocar brasiliense Cambess) Almonds by Supercritical CO2 Extraction. Molecules 2023, 28, 1030. https://doi.org/10.3390/molecules28031030
Mateus LS, Dutra JM, Favareto R, da Silva EA, Ferreira Pinto L, da Silva C, Cardozo-Filho L. Optimization Studies and Compositional Oil Analysis of Pequi (Caryocar brasiliense Cambess) Almonds by Supercritical CO2 Extraction. Molecules. 2023; 28(3):1030. https://doi.org/10.3390/molecules28031030
Chicago/Turabian StyleMateus, Livia Silva, Juliete Martins Dutra, Rogério Favareto, Edson Antônio da Silva, Leandro Ferreira Pinto, Camila da Silva, and Lucio Cardozo-Filho. 2023. "Optimization Studies and Compositional Oil Analysis of Pequi (Caryocar brasiliense Cambess) Almonds by Supercritical CO2 Extraction" Molecules 28, no. 3: 1030. https://doi.org/10.3390/molecules28031030
APA StyleMateus, L. S., Dutra, J. M., Favareto, R., da Silva, E. A., Ferreira Pinto, L., da Silva, C., & Cardozo-Filho, L. (2023). Optimization Studies and Compositional Oil Analysis of Pequi (Caryocar brasiliense Cambess) Almonds by Supercritical CO2 Extraction. Molecules, 28(3), 1030. https://doi.org/10.3390/molecules28031030