Development of a New Methodology for Dearomative Borylation of Coumarins and Chromenes and Its Applications to Synthesize Boron-Containing Retinoids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reaction Optimization
2.2. Substrate Scope of Dearomative Borylation
2.3. Synthetic Applications of Borylated Coumarins
2.4. Application of Dearomative Borylation Strategy
2.5. Proposed Mechanism of Dearomative Borylation of Oxacycles
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, B.C.; Thapa, P.; Karki, R.; Das, S.; Mahapatra, S.; Liu, T.-C.; Torregroza, I.; Wallace, D.P.; Kambhampati, S.; Van Veldhuizen, P. Retinoic acid signaling pathways in development and diseases. Bioorg. Med. Chem. 2014, 22, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Evans, T.; Kaye, S. Retinoids: Present role and future potential. Br. J. Cancer 1999, 80, 1–8. [Google Scholar] [CrossRef]
- Merlet-Bénichou, C.; Vilar, J.; Lelièvre-Pégorier, M.; Gilbert, T. Role of retinoids in renal development: Pathophysiological implication. Curr. Opin. Nephrol. Hypertens. 1999, 8, 39–43. [Google Scholar] [CrossRef]
- Xu, Q.; Lucio-Cazana, J.; Kitamura, M.; Ruan, X.; Fine, L.G.; Norman, J.T. Retinoids in nephrology: Promises and pitfalls. Kidney Int. 2004, 66, 2119–2131. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Wu, Y.; Liu, R.; Li, Z.; Chen, Y.; Evans, T.; Chuang, P.; Das, B.; He, J.C. Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease. PLoS ONE 2011, 6, e27945. [Google Scholar] [CrossRef] [Green Version]
- Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R. The Chemistry of Heterocycles: Chemistry of Six to Eight Membered N, O, S, P and Se Heterocycles; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Pratap, R.; Ram, V.J. Natural and Synthetic Chromenes, fused Chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev. 2014, 114, 10476–10526. [Google Scholar] [CrossRef]
- Smyth, T.; Ramachandran, V.; Smyth, W. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents 2009, 33, 421–426. [Google Scholar] [CrossRef]
- Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des. 2004, 10, 3813–3833. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Orhan, I.E.; Cordell, G.A.; Nabavi, S.M.; Budzyńska, B. Implication of coumarins towards central nervous system disorders. Pharmacol. Res. 2016, 103, 188–203. [Google Scholar] [CrossRef]
- Kostova, I. Synthetic and natural coumarins as cytotoxic agents. Curr. Med. Chem.-Anti-Cancer Agents 2005, 5, 29–46. [Google Scholar] [CrossRef]
- Kirsch, G.; Abdelwahab, A.B.; Chaimbault, P. Natural and Synthetic Coumarins with Effects on Inflammation. Molecules 2016, 21, 1322. [Google Scholar] [CrossRef]
- Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem. 2016, 123, 236–255. [Google Scholar] [CrossRef]
- Riveiro, M.E.; De Kimpe, N.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: Old compounds with novel promising therapeutic perspectives. Curr. Med. Chem. 2010, 17, 1325–1338. [Google Scholar] [CrossRef]
- Das, B.C.; Shareef, M.A.; Das, S.; Nandwana, N.K.; Das, Y.; Saito, M.; Weiss, L.M. Boron-Containing heterocycles as promising pharmacological agents. Bioorg. Med. Chem. 2022, 63, 116748. [Google Scholar] [CrossRef]
- DeFrancesco, H.; Dudley, J.; Coca, A. Boron Reagents in Synthesis; American Chemical Society: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Zhong, A.; Wang, S.; Shao, Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org. Chem. Front. 2020, 7, 3515–3520. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front. 2021, 8, 4554–4559. [Google Scholar] [CrossRef]
- Ali, F.; Hosmane, N.; Zhu, Y. Boron chemistry for medical applications. Molecules 2020, 25, 828. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Gao, P.; Sun, L.; Kang, D.; Kongsted, J.; Poongavanam, V.; Zhan, P.; Liu, X. Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharm. Sin. B 2021, 11, 3035–3059. [Google Scholar] [CrossRef]
- Hey-Hawkins, E.; Teixidor, C.V. Boron-Based Compounds: Potential and Emerging Applications in Medicine; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Das, B.C.; Nandwana, N.K.; Das, S.; Nandwana, V.; Shareef, M.A.; Das, Y.; Saito, M.; Weiss, L.M.; Almaguel, F.; Hosmane, N.S. Boron chemicals in drug discovery and development: Synthesis and medicinal perspective. Molecules 2022, 27, 2615. [Google Scholar] [CrossRef]
- Torregroza, I.; Evans, T.; Das, B.C. A forward chemical screen using zebrafish embryos with novel 2-substituted 2 h-chromene derivatives. Chem. Biol. Drug Des. 2009, 73, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Faizi, D.J.; Issaian, A.; Davis, A.J.; Blum, S.A. Catalyst-free synthesis of borylated lactones from esters via electrophilic oxyboration. J. Am. Chem. Soc. 2016, 138, 2126–2129. [Google Scholar] [CrossRef] [Green Version]
- Kaldas, S.J.; O’Keefe, K.T.; Mendoza-Sanchez, R.; Yudin, A.K. Amphoteric borylketenimines: Versatile intermediates in the synthesis of borylated heterocycles. Chem.-Eur. J. 2017, 23, 9711–9715. [Google Scholar] [CrossRef]
- Fyfe, J.W.; Watson, A.J. Recent developments in organoboron chemistry: Old dogs, new tricks. Chem 2017, 3, 31–55. [Google Scholar] [CrossRef] [Green Version]
- Coapes, R.B.; Souza, F.E.; Thomas, R.L.; Hall, J.J.; Marder, T.B. Rhodium catalysed dehydrogenative borylation of vinylarenes and 1,1-disubstituted alkenes without sacrificial hydrogenation—A route to 1,1-disubstituted vinylboronates. Chem. Commun. 2003, 9, 614–615. [Google Scholar] [CrossRef]
- Kabalka, G.W.; Das, B.C.; Das, S. Rhodium-catalyzed 1,4-addition reactions of diboron reagents to electron deficient olefins. Tetrahedron Lett. 2002, 43, 2323–2325. [Google Scholar] [CrossRef]
- Schiffner, J.A.; Müther, K.; Oestreich, M. Enantioselective conjugate borylation. Angew. Chem. Int. Ed. 2010, 49, 1194–1196. [Google Scholar] [CrossRef]
- Hartmann, E.; Vyas, D.J.; Oestreich, M. Enantioselective formal hydration of α,β-unsaturated acceptors: Asymmetric conjugate addition of silicon and boron nucleophiles. Chem. Commun. 2011, 47, 7917–7932. [Google Scholar] [CrossRef]
- Hemming, D.; Fritzemeier, R.; Westcott, S.A.; Santos, W.L.; Steel, P.G. Copper-boryl mediated organic synthesis. Chem. Soc. Rev. 2018, 47, 7477–7494. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-F.; Wang, C.-J.; Feng, Q.-Z.; Zhai, J.-J.; Qi, S.-S.; Zhong, A.-G.; Chu, M.-M.; Xu, D.-Q. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para-quinone methides with β-ketoesters. Chem. Commun. 2022, 58, 6653–6656. [Google Scholar] [CrossRef]
- Hu, J.; Ferger, M.; Shi, Z.; Marder, T.B. Recent advances in asymmetric borylation by transition metal catalysis. Chem. Soc. Rev. 2021, 50, 13129–13188. [Google Scholar] [CrossRef]
- Larin, E.M.; Loup, J.; Polishchuk, I.; Ross, R.J.; Whyte, A.; Lautens, M. Enantio- and diastereoselective conjugate borylation/Mannich cyclization. Chem. Sci. 2020, 11, 5716–5723. [Google Scholar] [CrossRef]
- Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Enantioselective borylative dearomatization of indoles through copper(i) catalysis. Angew. Chem. Int. Ed. 2015, 54, 8809–8813. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Shen, J.-J.; Gao, Q.; Xu, S. Synthesis of cyclic chiral α-amino boronates by copper-catalyzed asymmetric dearomative borylation of indoles. Chem. Sci. 2018, 9, 5855–5859. [Google Scholar] [CrossRef] [Green Version]
- Hayama, K.; Takahashi, R.; Kubota, K.; Ito, H. Copper(i)-catalyzed stereoselective silylative dearomatization of indoles and pyrroles using silylboronates. Chem. Lett. 2021, 50, 289–292. [Google Scholar] [CrossRef]
- Hayama, K.; Kojima, R.; Kubota, K.; Ito, H. Synthesis of chiral n-heterocyclic allylboronates via the enantioselective borylative dearomatization of pyrroles. Org. Lett. 2020, 22, 739–744. [Google Scholar] [CrossRef]
- Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Enantioselective synthesis of chiral piperidines via the stepwise dearomatization/borylation of pyridines. J. Am. Chem. Soc. 2016, 138, 4338–4341. [Google Scholar] [CrossRef]
- Xu, M.; Ouyang, Y.; Wang, L.; Zhang, S.; Li, P. Enantioselective synthesis of cyclic α-aminoboronates via copper-catalyzed dearomative borylation of 4-quinolinols. Chem. Commun. 2022, 58, 3677–3680. [Google Scholar] [CrossRef]
- Dahiya, G.; Pappoppula, M.; Aponick, A. Configuration sampling with five-membered atropisomeric p,n-ligands. Angew. Chem. Int. Ed. 2021, 60, 19604–19608. [Google Scholar] [CrossRef]
- Xie, J.-B.; Lin, S.; Qiao, S.; Li, G. Asymmetric catalytic enantio- and diastereoselective boron conjugate addition reactions of α-functionalized α,β-unsaturated carbonyl substrates. Org. Lett. 2016, 18, 3926–3929. [Google Scholar] [CrossRef]
- Anguiano, J.; Garner, T.P.; Mahalingam, M.; Das, B.C.; Gavathiotis, E.; Cuervo, A.M. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat. Chem. Biol. 2013, 9, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Das, B.C.; Aljitawi, O.; Kumar, A.; Das, S.; Van Veldhuizen, P. Magmas inhibition in prostate cancer: A novel target for treatment-resistant disease. Cancers 2022, 14, 2732. [Google Scholar] [CrossRef]
- Cook, B.; Walker, N.; Zhang, Q.; Chen, S.; Evans, T. The small molecule DIPQUO promotes osteogenic differentiation via inhibition of glycogen synthase kinase 3-beta signaling. J. Biol. Chem. 2021, 296, 100696. [Google Scholar] [CrossRef]
- Das, B.C.; Yadav, P.; Das, S.; He, J.C. A novel procedure for the synthesis of borylated quinolines and its application in the development of potential boron-based homeodomain interacting protein kinase 2 (HIPK2) inhibitors. RSC Adv. 2022, 12, 24187–24191. [Google Scholar] [CrossRef]
- Zheng, T.-Y.; Zhou, Y.-Q.; Yu, N.; Li, Y.-L.; Wei, T.; Peng, L.; Ling, Y.; Jiang, K.; Wei, Y. Deconstructive insertion of oximes into coumarins: Modular synthesis of dihydrobenzofuran-fused pyridones. Org. Lett. 2022, 24, 2282–2287. [Google Scholar] [CrossRef]
- Das, B.C.; Tang, X.-Y.; Evans, T. Design and synthesis of boron containing potential pan-RAR inverse agonists. Tetrahedron Lett. 2012, 53, 1316–1318. [Google Scholar] [CrossRef]
- Sai, K.K.S.; Das, B.C.; Sattiraju, A.; Almaguel, F.G.; Craft, S.; Mintz, A. Radiolabeling and initial biological evaluation of [18F]KBM-1 for imaging RAR-α receptors in neuroblastoma. Bioorg. Med. Chem. Lett. 2017, 27, 1425–1427. [Google Scholar]
Entry | [Cu] (10 mol%) | Ligand (10 mol%) | Base | Additive | Conversion 2 (%) | |
---|---|---|---|---|---|---|
2a | 2a′ | |||||
1 | CuCl | Xphos | NaOtBu | MeOH | 30 | 50 |
2 | CuI | Xphos | NaOtBu | MeOH | 20 | 55 |
3 | CuCl | Xantphos | NaOtBu | MeOH | 55 | 20 |
4 | CuCl | Rac-Binap | NaOtBu | MeOH | 35 | 10 |
5 | CuCl | PPh3 | NaOtBu | MeOH | 60 | - |
6 | CuCl | P(nBu)3 | NaOtBu | MeOH | 75 | - |
7 | CuCl | PCy3 | NaOtBu | MeOH | 82 | - |
8 | CuCl | PCy3 | NaOtBu | t-BuOH | 50 | 15 |
9 | CuCl | PCy3 | NaOtBu | t-amyl-OH | 30 | 25 |
10 | CuCl | PCy3 | NaOtBu | n-PrOH | 38 | 15 |
11 | CuCl | PCy3 | KOtBu | MeOH | 60 | 10 |
12 | CuCl | PCy3 | LiOtBu | MeOH | 55 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, B.C.; Yadav, P.; Das, S.; Saito, M.; Evans, T. Development of a New Methodology for Dearomative Borylation of Coumarins and Chromenes and Its Applications to Synthesize Boron-Containing Retinoids. Molecules 2023, 28, 1052. https://doi.org/10.3390/molecules28031052
Das BC, Yadav P, Das S, Saito M, Evans T. Development of a New Methodology for Dearomative Borylation of Coumarins and Chromenes and Its Applications to Synthesize Boron-Containing Retinoids. Molecules. 2023; 28(3):1052. https://doi.org/10.3390/molecules28031052
Chicago/Turabian StyleDas, Bhaskar C., Pratik Yadav, Sasmita Das, Mariko Saito, and Todd Evans. 2023. "Development of a New Methodology for Dearomative Borylation of Coumarins and Chromenes and Its Applications to Synthesize Boron-Containing Retinoids" Molecules 28, no. 3: 1052. https://doi.org/10.3390/molecules28031052
APA StyleDas, B. C., Yadav, P., Das, S., Saito, M., & Evans, T. (2023). Development of a New Methodology for Dearomative Borylation of Coumarins and Chromenes and Its Applications to Synthesize Boron-Containing Retinoids. Molecules, 28(3), 1052. https://doi.org/10.3390/molecules28031052