Application of Doehlert Experimental Design for Optimization of a New-Based Hydrophilic Interaction Solid-Phase Extraction of Phenolic Acids from Olive Oils
Abstract
:1. Introduction
2. Results and Discussions
2.1. Screening Approach
2.2. Application of Doehlert Design to Optimize Experimental Variables
2.2.1. Experimental Design
2.2.2. Analysis of Significant Factors
2.2.3. Model Fitting and Statistical Analysis
2.2.4. Equation with Coded Factors
2.2.5. Effects of Interactions of the Different Factors on Extraction Yield
2.3. Determination of Optimal Conditions
2.4. Application on Tunisian Olive Oils Samples
3. Materials and Methods
3.1. Samples
3.2. Reagents
3.3. Instrumental Analysis
3.4. Solid-Phase Extraction Procedure (SPE)
3.5. Experimental Design and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ. Sci. Pollut. Res. 2022, 29, 81112–81129. [Google Scholar] [CrossRef] [PubMed]
- Reboredo-Rodríguez, P.; Varela-López, A.; Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Zhang, J.; Manna, P.P.; Bompadre, S.; Quiles, J.L.; et al. Phenolic compounds isolated from olive oil as nutraceutical tools for the prevention and management of cancer and cardiovascular diseases. Int. J. Mol. Sci. 2018, 19, 2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cömert, E.D.; Gökmen, V. Evolution of food antioxidants as a core topic of food science for a century. Food Res. Int. 2018, 105, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction, and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S.J. Chemistry and health of olive oil phenolics. Crit. Rev. Food Sci. Nutr. 2008, 49, 218–236. [Google Scholar] [CrossRef] [Green Version]
- Weiskirchen, S.; Weiskirchen, R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv. Nutr. 2016, 7, 706–718. [Google Scholar] [CrossRef] [Green Version]
- Mazzocchi, A.; Leone, L.; Agostoni, C.; Pali-Schöll, I. The Secrets of the Mediterranean Diet. Does [Only] Olive Oil Matter? Nutrients 2019, 11, 2941. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br. J. Pharmacol. 2020, 177, 1241–1257. [Google Scholar] [CrossRef] [Green Version]
- Cicerale, S.; Lucas, L.; Keast, R. Antimicrobial, antioxidant, and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 2012, 23, 129–135. [Google Scholar] [CrossRef]
- Flori, L.; Donnini, S.; Calderone, V.; Zinnai, A.; Taglieri, I.; Venturi, F.; Testai, L. The Nutraceutical Value of Olive Oil and Its Bioactive Constituents on the Cardiovascular System. Focusing on Main Strategies to Slow Down Its Quality Decay during Production and Storage. Nutrients 2019, 11, 1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becerra-Herrera, M.; Vélez-Martín, A.; Ramos-Merchante, A.; Richter, P.; Beltran, R.; Sayago, A. Characterization and evaluation of phenolic profiles and color as potential discriminating features among Spanish extra virgin olive oils with protected designation of origin. Food Chem. 2018, 241, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.B.; Rocchetti, G.; Montesano, D.; Ali, S.B.; Guasmi, F.; Grati-Kamoun, N.; Lucini, L. Discrimination of Tunisian and Italian extra-virgin olive oils according to their phenolic and sterolic fingerprints. Food Res. Int. 2018, 106, 920–927. [Google Scholar] [CrossRef]
- Lorini, A.; Aranha, B.C.; Antunes, B.D.F.; Otero, D.M.; Jacques, A.C.; Zambiazi, R.C. Metabolic profile of olive leaves of different cultivars and collection times. Food Chem. 2021, 345, 128758. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Marć, M.; Szczepańska, N.; Namieśnik, J. New polymeric materials for solid phase extraction. Crit. Rev. Anal. Chem. 2017, 47, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Ricciutelli, M.; Marconi, S.; Boarelli, M.C.; Caprioli, G.; Sagratini, G.; Ballini, R.; Fiorini, D. Olive oil polyphenols: A quantitative method by high-performance liquid-chromatography diode-array detection for their determination and the assessment of the related health. J. Chromatogr. A 2017, 1481, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Procida, G.; Cichelli, A.; Compagnone, D.; Maggio, R.M.; Cerretani, L.; Del Carlo, M. Influence of chemical composition of olive oil on the development of volatile compounds during frying. Eur. Food Res. Technol. 2009, 230, 217–229. [Google Scholar] [CrossRef]
- Rohloff, J. Analysis of Phenolic and Cyclic Compounds in Plants Using Derivatization Techniques in Combination with GC-MS-Based Metabolite Profiling. Molecules 2015, 20, 3431–3462. [Google Scholar] [CrossRef] [Green Version]
- Pérez, M.; López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Lamuela-Raventós, R.M.; Martin-Belloso, O.; Vallverdú-Queralt, A. Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants 2021, 10, 417. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Li, D. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: A review. Anal. Chim. Acta 2013, 799, 8–22. [Google Scholar] [CrossRef]
- Aydar, A.Y. Emerging Extraction Technologies in Olive Oil Production. In Technological Innovation in the Olive Oil Production Chain; IntechOpen: London, UK, 2019. [Google Scholar]
- Khouryieh, H.A. Novel and emerging technologies used by the U.S. food processing industry. Innov. Food Sci. Emerg. Technol. 2021, 67, 102559. [Google Scholar] [CrossRef]
- Fritsche-Guenther, R.; Gloaguen, Y.; Bauer, A.; Opialla, T.; Kempa, S.; Fleming, C.A.; Redmond, H.P.; Kirwan, J.A. Optimized Workflow for On-Line Derivatization for Targeted Metabolomics Approach by Gas Chromatography-Mass Spectrometry. Metabolites 2021, 11, 888. [Google Scholar] [CrossRef] [PubMed]
- Luque-Muñoz, A.; Tapia, R.; Haidour, A.; Justicia, J.; Cuerva, J.M. Direct determination of phenolic secoiridoids in olive oil by ultra-high performance liquid chromatography-triple quadruple mass spectrometry analysis. Sci. Rep. 2019, 9, 15545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcón Flores, M.I.; Romero-González, R.; Garrido Frenich, A.; Martínez Vidal, J.L. Analysis of phenolic compounds in olive oil by solid-phase extraction and ultra-high performance liquidchromatography–tandem mass spectrometry. Food Chem. 2012, 134, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Mizzi, L.; Chatzitzika, C.; Gatt, R.; Valdramidis, V. HPLC Analysis of Phenolic Compounds and Flavonoids with Overlapping Peaks. Food Technol. Biotechnol. 2020, 58, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Peñarrieta, J.M.; Alvarado, J.A.; Ǻkesson, B.; Bergenståhl, B. Separation of phenolic compounds from foods by reversed-phase high-performance liquid chromatography. Rev. Boliv. Quím. 2007, 24, 1–4. [Google Scholar]
- Jiménez, M.S.; Velarte, R.; Castillo, J.R. Direct determination of phenolic compounds and phospholipids in virgin olive oil by micellar chromatography. Food Chem. 2007, 100, 8–14. [Google Scholar] [CrossRef]
- Kefi, B.B.; Baccouri, S.; Torkhani, R.; Koumba, S.; Martin, P.; M’Hamdi, N. Application of Response Surface Methodology to Optimize Solid-Phase Extraction of Benzoic Acid and Sorbic Acid from Food Drinks. Foods 2022, 11, 1257. [Google Scholar] [CrossRef]
- Bendini, A.; Bonoli, M.; Cerretani, L.; Biguzzi, B.; Lercker, G.; Gallina Toschi, G. Liquid-liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods. J. Chromatogr. A 2003, 985, 425–433. [Google Scholar] [CrossRef]
- Hsiao, H.Y.; Chen, R.L.C.; Cheng, T.J. Determination of tea fermentation degree by rapid micellar electrokinetic chromatography. Food Chem. 2010, 120, 632–636. [Google Scholar] [CrossRef]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef] [PubMed]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Winterton, N. The green solvent: A critical perspective. Clean Technol. Environ. Policy 2021, 23, 2499–2522. [Google Scholar] [CrossRef] [PubMed]
- Mencin, M.; Mikulic-Petkovsek, M.; Veberič, R.; Terpinc, P. Development and Optimisation of Solid-Phase Extraction of Extractable and Bound Phenolic Acids in Spelt (Triticum spelta L.) Seeds. Antioxidants 2021, 10, 1085. [Google Scholar] [CrossRef]
- Fu, Q.; Liang, T.; Zhang, X.; Du, Y.; Guo, Z.; Liang, X. Carbohydrate separation by hydrophilic interaction liquid chromatography on a “click” maltose column. Carbohydr. Res. 2010, 345, 2690–2697. [Google Scholar] [CrossRef]
- Khosravi, A.; Razavi, S.H.; Fadda, A.M. Advanced assessments on innovative methods to improve the bioaccessibility of polyphenols in wheat. Process Biochem. 2020, 88, 1–14. [Google Scholar] [CrossRef]
- Zwir-Ferenc, A.; Biziuk, M. Solid-Phase extraction technique—Trends, opportunities, and applications. Pol. J. Environ. Stud. 2006, 15, 677–690. [Google Scholar]
- Da Silva, P.S.; Viell, F.L.G.; Ineu, R.P.; Bona, E.; Dias, M.I.; Ferreira, I.C.; Gonçalves, O.H.; Leimann, F.V.; Cardozo-Filho, L. Determination of an optimum extraction region for the recovery of bioactive compounds from olive leaves (Olea europaea L.) using green dynamic pressurized liquid extraction. Braz. J. Chem. Eng 2022, 39, 1–19. [Google Scholar] [CrossRef]
- Sanahuja, A.B.; Landete, M.P.; Martínez, M.I.D.; Moya, M.S.P.; García, A.V. Optimization of Volatile Compounds Extraction from Industrial Celery (Apium graveolens) By-Products by Using Response Surface Methodology and Study of Their Potential as Antioxidant Sources. Foods 2021, 10, 2664. [Google Scholar] [CrossRef]
- Maranata, G.J.; Surya, N.O.; Hasanah, A.N. Optimizing factors affecting solid phase extraction performances of molecular imprinted polymer as a recent sample preparation technique. Heliyon 2021, 7, e05934. [Google Scholar] [CrossRef]
- Yahya, N.A.; Abdul Wahab, A.; Abdul Hamid, M.; Mahat, N.A.; Mohamed Huri, M.A.; Attan, N.; Hashim, S.E. Statistical optimization and characterization of acoustically extracted ananas comosus peel powder with enhanced antioxidant capacity. J. Teknol. (Sci. Eng.) 2020, 82, 1–10. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content, and antioxidant activity. LWT-Food Sci. Technol. 2017, 79, 178–189. [Google Scholar] [CrossRef]
- Sood, A.; Gupta, M. Extraction process optimization for bioactive compounds in pomegranate peel. Food Biosci. 2015, 12, 100–106. [Google Scholar] [CrossRef]
- Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Sep. Purif. Technol. 2018, 194, 40–47. [Google Scholar] [CrossRef]
- Bezzera, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Sharmila, G.; Nikitha, V.S.; Ilaiyarasi, S.; Rajasekai, V.; Kumar, N.M.; Muthukumaran, K.; Muthukumaran, C. Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2016, 84, 13–21. [Google Scholar] [CrossRef]
- Arruda, H.S.; Perreira, G.A.; Pastore, G.M. Optimization of extraction parameters of total phenolics from Annona crassiflora Mart. (Araticum) fruits using response surface methodology. Food Anal. Method 2017, 10, 100–110. [Google Scholar] [CrossRef]
- Ferrone, V.; Todaro, S.; Carlucci, M.; Fontana, A.; Ventrella, A.; Carlucci, G.; Milanetti, E. Optimization by response surface methodology of a dispersive magnetic solid-phase extraction exploiting magnetic graphene nanocomposite coupled with UHPLC-PDA for simultaneous determination of new oral anticoagulants (NAOs) in human plasma. J. Pharm. Biomed. Anal. 2019, 11, 2992. [Google Scholar] [CrossRef]
- Chávez-Moreno, C.A.; Hinojosa-Reyes, L.; Ruiz-Ruiz, E.J.; Hernández-Ramírez, A.; Guzmán-Mar, J.L. Optimization of solid phase extraction of parabens and benzophenones in water samples using a combination of Plakett-Burman and Box-Behnken designs. J. Sep. Sci. 2018, 41, 4488–4497. [Google Scholar] [CrossRef]
- Pastor-Belda, M.; Vinas, P.; Campillo, N.; Hernandez-Cordoba, M. Magnetic solid phase extraction with CoFe2O4/oleic acid nanoparticles coupled to gas chromatography-mass spectrometry for the determination of alkylphenols in baby foods. Food Chem. 2017, 221, 76–81. [Google Scholar] [CrossRef]
- Fratoddi, I.; Rapa, M.; Testa, G.; Venditti, I.; Scaramuzzo, F.A.; Vinci, G. Response surface methodology for the optimization of phenolic compounds extraction from extra virgin olive oil with functionalized gold nanoparticles. Microchem. J. 2018, 138, 430–437. [Google Scholar] [CrossRef]
- Lefsih, K.; Giacomazza, D.; Dahmoune, F.; Mangione, M.R.; Bulone, D.; San Biagio, P.L.; Madani, K. Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization. Food Chem. 2017, 221, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod. 2014, 61, 31–40. [Google Scholar] [CrossRef]
- Maran, J.P.; Manikandan, S.; Nivetha, C.V.; Dinesh, R. Ultrasound-assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face-centered response surface design. Arab. J. Chem. 2017, 10, S1145–S1157. [Google Scholar] [CrossRef] [Green Version]
- Doehlert, D.H. Uniform Shell Design. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1970, 19, 231–239. [Google Scholar] [CrossRef]
- Madureira, J.; Melgar, B.; Santos-Buelga, C.; Margaça, F.M.A.; Ferreira, I.C.F.R.; Barros, L.; Cabo Verde, S. Phenolic Compounds from Irradiated Olive Wastes: Optimization of the Heat-Assisted Extraction Using Response Surface Methodology. Chemosensors 2021, 9, 231. [Google Scholar] [CrossRef]
- Böhmer-Maas, B.W.; Otero, D.M.; Zambiazi, R.C.; Aranha, B.C. Optimization of the extraction of phenolic compounds from olive pomace using response surface methodology. Rev. Ceres 2020, 67, 181–190. [Google Scholar] [CrossRef]
- Zuorro, A. Modelling of polyphenol recovery from olive pomace by response surface methodology. Int. Rev. Model. Simul. 2014, 7, 1023–1028. [Google Scholar] [CrossRef]
N° Exp | X1 (%) | X2 (mL) | X3 | Extraction Yield (%) |
---|---|---|---|---|
1 | 100 | 9 | 2 | 61.5 |
2 | 50 | 9 | 2 | 45.5 |
3 | 87.5 | 9 | 3 | 43.5 |
4 | 62.5 | 9 | 1 | 44 |
5 | 87.5 | 9 | 0.5 | 35 |
6 | 62.5 | 9 | 3 | 35 |
7 | 87.5 | 12 | 2.5 | 53 |
8 | 62.5 | 6 | 1.5 | 57.5 |
9 | 87.5 | 6 | 1.5 | 73.5 |
10 | 75 | 6 | 3 | 62.5 |
11 | 62.5 | 12 | 2.5 | 36.5 |
12 | 75 | 12 | 1 | 39.5 |
13 | 75 | 9 | 2 | 72 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 1917.29 | 9 | 213.03 | 9.20 | 0.0047 |
X1-Methanol | 800.00 | 1 | 800.00 | 34.56 | 0.0092 |
X2-Volume | 693.78 | 1 | 693.78 | 29.97 | 0.0120 |
X3-pH | 0.0313 | 1 | 0.0313 | 0.0014 | 0.0043 |
X1X2 | 45.56 | 1 | 45.56 | 1.97 | 0.0025 |
X1X3 | 0.5625 | 1 | 0.5625 | 0.0243 | 0.0088 |
X2X3 | 0.2500 | 1 | 0.2500 | 0.0108 | 0.0092 |
X12 | 195.57 | 1 | 195.57 | 8.45 | 0.0062 |
X22 | 282.89 | 1 | 282.89 | 12.22 | 0.0039 |
X32 | 211.75 | 1 | 211.75 | 9.15 | 0.0056 |
Residual | 69.44 | 3 | 23.15 |
Phenolic Acids | Extra Virgin Oil Type 1 | Extra Virgin Oil Type 2 | Extra Virgin Oil Type 3 | Olive Pomace Oil | Oil Extracted by Cold Pressing |
---|---|---|---|---|---|
Gallic acid | 0.51 | - | 7.5 | 0.5 | - |
Gentisic acid | 12.5 | 21 | 33 | 4 | 15 |
p-coumaric acid | - | - | 0.5 | - | - |
Salicylic acid | 0.37 | 56 | 92 | - | 33 |
Benzoic acid | 17 | 9 | 83 | - | 8 |
o-coumaric acid | - | 3 | - | 0.6 | 6.32 |
T-cinnamic acid | 0.02 | 0.15 | 2 | - | 4.5 |
Total acid | 30.4 | 89.15 | 218 | 5.1 | 66.82 |
Factor | Coded Level | |||
---|---|---|---|---|
−1 | 0 | +1 | ||
X1 | Percentage of Methanol (%) | 50 | 75 | 100 |
X2 | Volume (mL) | 6 | 9 | 12 |
X3 | pH | 1 | 2 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kefi, B.B.; Nefzi, K.; Koumba, S.; M’Hamdi, N.; Martin, P. Application of Doehlert Experimental Design for Optimization of a New-Based Hydrophilic Interaction Solid-Phase Extraction of Phenolic Acids from Olive Oils. Molecules 2023, 28, 1073. https://doi.org/10.3390/molecules28031073
Kefi BB, Nefzi K, Koumba S, M’Hamdi N, Martin P. Application of Doehlert Experimental Design for Optimization of a New-Based Hydrophilic Interaction Solid-Phase Extraction of Phenolic Acids from Olive Oils. Molecules. 2023; 28(3):1073. https://doi.org/10.3390/molecules28031073
Chicago/Turabian StyleKefi, Bochra Bejaoui, Khaoula Nefzi, Sidrine Koumba, Naceur M’Hamdi, and Patrick Martin. 2023. "Application of Doehlert Experimental Design for Optimization of a New-Based Hydrophilic Interaction Solid-Phase Extraction of Phenolic Acids from Olive Oils" Molecules 28, no. 3: 1073. https://doi.org/10.3390/molecules28031073
APA StyleKefi, B. B., Nefzi, K., Koumba, S., M’Hamdi, N., & Martin, P. (2023). Application of Doehlert Experimental Design for Optimization of a New-Based Hydrophilic Interaction Solid-Phase Extraction of Phenolic Acids from Olive Oils. Molecules, 28(3), 1073. https://doi.org/10.3390/molecules28031073