Potential Impact of Prosthetic Biomaterials on the Periodontium: A Comprehensive Review
Abstract
:1. Introduction
2. Biomaterials Used in Fixed Dental Prosthesis
3. Periodontal Health in Patients with Fixed Dental Prosthesis
4. Changes in the Composition of the Subgingival Microbiota Related to the Use of Fixed Dental Prosthesis
5. Oral Biomarkers
5.1. Classification of Oral Biomarkers
5.2. Biomarkers of Inflammation
Biomarkers of Inflammation in Relationship to the Use of Fixed Dental Prosthesis
TNF-α
IL-1β
IL-6
IL-8
6. Potential Biomarkers of Periodontal Disease
6.1. Azurocidin
6.2. Fractalkine (CX3CL1) and Its Receptor (CX3CR1)
7. Strategies for the Resolution of Inflammation Caused by the Use of Different Prosthetic Biomaterials
8. Future Perspectives
- The search for restorative materials or alloys with a composition as similar as possible to dental structures, which not only provoke a lower inflammatory response, but also favor periodontal health, i.e., materials that can permanently release ions that are bacteriostatic or selective bactericides.
- The search for better luting materials that, if they spill into the periodontium, are not a retentive factor for bacteria, that can degrade easily in the oral environment, but at the same time that do not degrade inside the restoration.
- Achieving an optimal marginal seal of the restorations, as close as possible to the natural cement-enamel bond, which will improve as the CAD/CAM systems for intraoral and extraoral scanning for the impression and fabrication of the restorations become more and more precise.
9. Materials and Methods
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrei, M.; Dinischiotu, A.; Didilescu, A.C.; Ionita, D.; Demetrescu, I. Periodontal materials and cell biology for guided tissue and bone regeneration. Ann. Anat. 2018, 216, 164–169. [Google Scholar] [CrossRef]
- Dahlen, G.; Fejerskov, O.; Manji, F. Current concepts and alternative perspective on periodontal disease. BMC Oral Health 2020, 20, 235. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Lamster, I.B.; Levin, L. Current concepts in the management of periodontitis. Int. Dent. J. 2021, 6, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Srimaneepong, V.; Heboyan, A.; Zafar, M.S.; Khurshid, Z.; Marya, A.; Fernandes, G.V.O.; Rokaya, D. Fixed prosthetic restorations and periodontal health: A narrative review. J. Funct. Biomater. 2022, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Janu, U.; Chiou, L.L.; Gandhi, K.K.; Palomo, L.; John, V. Periodontal health and systemic conditions. Dent. J. 2020, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Heboyan, A.; Manrikyan, M.; Markaryan, M.; Vardanyan, I. Changes in the parameters of gingival crevicular fluid in masticatory function restoration by various prosthodontic construct ions. Int. J. Pharm. Sci. Res. 2020, 12, 2088–2093. [Google Scholar]
- Kassebaum, N.J.; Smith, A.G.C.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.J.L.; Marcenes, W.; GBD 2015 Oral Health Collaborators. Global, regional, and National prevalence, incidence, and Disability-Adjusted life year for oral conditions for 195 countries, 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. J. Dent. Res. 2017, 4, 380–387. [Google Scholar] [CrossRef]
- Martínez-García, M.; Castrejón-Pérez, R.C.; Rodríguez-Hernández, A.P.; Sandoval-Motta, S.; Vallejo, M.; Borges-Yáñez, S.A.; Hernández-Lemus, E. Incidence of arterial hypertension in people with periodontitis and characterization of the oral and subgingival microbiome: A study protocol. Front. Cardiovasc. Med. 2022, 8, 763293. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of new classification and case definition. J. Periodontol. 2018, 45, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Tsuchida, S.; Satoh, M.; Takiwaki, M.; Nomura, F. Current status of proteomic technologies for discovering and identifying gingival crevicular fluid biomarkers for periodontal disease. Int. J. Mol. Sci. 2018, 26, 86. [Google Scholar] [CrossRef] [Green Version]
- Heboyan, A. Marginal and internal fit of fixed prosthodontic constructions: A literature review. IJDRR 2019, 2, 19. [Google Scholar] [CrossRef]
- Heboyan, A.; Vardanyan, A.; Avetisyan, A. Cement selection in dental practice. World Sci. 2019, 2, 4–9. [Google Scholar]
- Monteiro, D.R.; De Souza Batista, V.E.; Caldeirã, A.C.; Jacinto, R.; Pessan, J.P. Oral prosthetic microbiology: Aspects related to the oral microbiome, Surface Properties, and strategies for controlling biofilms. Biofouling 2021, 37, 353–371. [Google Scholar] [CrossRef] [PubMed]
- Serra-Pastor, B.; Bustamante-Hernández, N.; Fons-Font, A.; Solá-Ruíz, M.F.; Ravilla-León, M.; Agustín-Panadero, R. Periodontal behavior and patient satisfaction of anterior teeth restored with single zirconia crowns using a biological oriented preparation technique: A 6-year prospective clinical study. J. Clin. Med. 2021, 6, 3482. [Google Scholar] [CrossRef] [PubMed]
- Kontonasaki, E.; Rigos, A.E.; Ilia, C.; Istantsos, T. Monolithic zirconia: An Update to Current knowledge. Optical properties, wear, and clinical performance. Dent. J. 2019, 2, 90. [Google Scholar] [CrossRef] [Green Version]
- Warreth, A.; Elkareimi, Y. All-ceramic restorations: A review of the literature. Saudi Dent. J. 2020, 32, 365–372. [Google Scholar] [CrossRef]
- Da Silva, L.H.; Lima, E.; Miranda, R.B.; Favero, S.S.; Lohbauer, U.; Cesar, P.F. Dental ceramics: A review of new materials and processing methods. Braz. Oral Res. 2017, 31, 133–146. [Google Scholar] [CrossRef]
- Takaoka, Y.; Akiba, Y.; Nagasawa, M.; Ito, A.; Masui, Y.; Akiba, N.; Eguchi, K.; Miyazawa, H.; Tabeta, K.; Uoshima, K. The relationship between dental metal allergy, periodontitis, and palmoplantar pustulosis: An observational study. J. Prosthodont. Res. 2022, 30, 438–444. [Google Scholar] [CrossRef]
- Rokaya, D.; Bohara, S.; Srimaneepong, V.; Kongkiatkamon, S.; Khurshid, Z.; Heboyan, A.; Zafar, M.S. Metallic Biomaterials for Medical and Dental Prosthetic Applications. In Functional Biomaterials; Jana, S., Ed.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Rademacher, S.W.; Zaura, E.; Kleverlaaan, C.J.; Buijs, M.J.; Crielaard, W.; Loos, B.G.; Laine, M.L. Qualitative and quantitative differences in the subgingival microbiome of the restored and unrestored teeth. J. Periodontal Res. 2019, 54, 405–412. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Sfikas, A.K.; Kamnis, S.; Tsolka, P.; Agathopoulos, S. Influence of heat treatment on the microstructure and the physical and mechanical properties of dental highly translucent zirconia. J. Adv. Prosthodont. 2022, 14, 96–107. [Google Scholar] [CrossRef]
- Heboyan, A.; Marya, A.; Syed, A.U.Y.; Khurshid, Z.; Zafar, M.S.; Rokaya, D.; Anastasyan, M. In vitro microscopic evaluation of metal- and zirconium-oxide-based crowns’ marginal fit. Pesqui Bras. Odontopediatria Clín. Integr. 2022, 22, e210144. [Google Scholar] [CrossRef]
- Ko, T.J.; Byrd, K.M.; Kim, S.A. The chairside periodontal diagnostic toolkit: Past, present, and future. Diagnostics 2021, 22, 932. [Google Scholar] [CrossRef] [PubMed]
- Steigmann, L.; Maekawa, S.; Sima, C.; Travan, S.; Wang, C.W.; Giannobile, W.V. Biosensor and Lab-on-a-chip Biomarker-identifying Technologies for Oral and Periodontal Diseases. Front. Pharmacol. 2020, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Marya, A.; Rokaya, D.; Heboyan, A.; Fernandes, G.V.d.O. Biomolecular and Biochemical Aspects of the Oral Cavity. Molecules 2022, 24, 8676. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, Z.; Wang, X. Comparison of short-term restorative effects and periodontal health status of restorations made of different materials in full-crown restoration of mandibular premolar tooth defects. Dis. Markers 2022, 1, 3682741. [Google Scholar] [CrossRef]
- Alrahlah, A.; Altwaim, M.; Alshuwaier, A.; Eldesouky, M.; Alzahrani, K.M.; Attar, E.A.; Alshahrani, A.; Abrar, E.; Vohra, F.; Abduljabbar, T. Influence of ceramic lumineers on inflammatory periodontal parameters and gingival crevicular fluid IL-6 and TNF- α levels-A clinical trial. Appl. Sci. 2021, 11, 2829. [Google Scholar] [CrossRef]
- Elmagd, A.A.A.; Sabry, D.; Mohammed, E. Interleukin-1β activity in gingival crevicular fluid of abutment teeth with temporary fixed restorations versus final fixed restorations: Prospective observational study. Saudi Dent. J. 2021, 33, 322–327. [Google Scholar] [CrossRef]
- Saravanakumar, P.; Veeravalli, P.; Kumar, A.; Mohamed, K.; Mani, U.; Grover, M.; Thangarajan, T.S. Effect of different crown materials on the interleukin-one beta content of gingival crevicular fluid endodontically treated molars: An original research. Cureus 2017, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.K.; Kasa, V.K.; Padakandla, P.; Togau, H.; Kalagatla, S.; Chandra, S.N. Evaluation of chemokines in gingival crevicular fluid in children with dental caries and stainless steel crowns: A clinic-biochemical study. J. Indian Soc. Pedod. Prev. Dent. 2017, 34, 237–239. [Google Scholar] [CrossRef]
- Ariaans, K.; Heussen, N.; Schiffer, H.; Wienert, A.L.; Plümäkers, B.; Lothar, R.; Wolfart, S. Use of molecular indicators of inflammation to assess the biocompatibility of all-ceramic restorations. J. Clin. Periodontol. 2016, 43, 173–179. [Google Scholar] [CrossRef]
- Sakallioğlu, E.E.; Lütfioğlu, M.; Sakallioğlu, U.; Ceylan, G.K.; Pamuk, F.; Dede, F.Ö.; Dede, D. Gingival crevicular fluid levels of neuropeptides following dental restorations. J. Appl. Biomater. Funct. Mater. 2015, 13, 186–193. [Google Scholar] [CrossRef]
- Chang, K.-C.J.; Wheater, M.A.; Jacobs, L.C.; Litonjua, L.A. Interleukins in gingival crevicular fluid in patients with definitive full-coverage restorations. Compend. Contin. Educ. Dent. 2014, 35, 18–24. [Google Scholar]
- Yu, L.; Su, J.; Zou, D.; Mariano, Z. The concentrations of IL-8 and IL-6 in gingival crevicular fluid during nickel-chromium alloy porcelain crown restoration. J. Mater. Sci. Mater. Med. 2013, 24, 1717–1722. [Google Scholar] [CrossRef] [PubMed]
- Kushlinskii, N.E.; Solovykh, E.A.; Karaoglanova, T.B.; Boyar, U.; Gershtein, E.S.; Troshin, A.A.; Maksimovskaya, L.N.; Yanushevich, O.O. Matrix metalloproteinases and inflammatory cytokines in oral fluid of patients with chronic generalized periodontitis and various construction materials. Bull. Exp. Biol. Med. 2012, 153, 72–76. [Google Scholar] [CrossRef]
- Passariello, C.; Puttini, M.; Virga, A.; Gigola, P. Microbiological and host factors are involved in promoting the periodontal failure of metaloceramic crowns. Clin. Oral Investig. 2012, 16, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Moretti, L.A.; Barros, R.R.; Costa, P.P.; Oliveira, F.S.; Ribeiro, F.J.; Novaes, A.B., Jr.; Palioto, D.B. The influence of restorations and prosthetic crowns finishing lines on inflammatory levels after non-surgical periodontal therapy. J. Int. Acad. Periodontol. 2011, 13, 65–72. [Google Scholar] [PubMed]
- Erdemir, E.O.; Baran, I.; Nalcaci, R.; Apan, T. IL-6 and IL-8 levels in GCF of the teeth supporting fixed partial denture. Oral Dis. 2010, 16, 83–88. [Google Scholar] [CrossRef]
- Weishaupt, P.; Bernimoulin, J.P.; Lange, K.P.; Rothe, S.; Naumann, M.; Hägewald, S. Clinical and inflammatory effects of galvano-ceramic and metal-ceramic crowns on periodontal tissues. J. Oral Rehabil. 2007, 34, 941–947. [Google Scholar] [CrossRef]
- Kurtiş, B.; Tüter, G.; Korkmaz, T.; Yücel, A.; Serdar, M.; Özcan, G. Clinical examination and interleukin-1β levels in gingival crevicular fluid in patients treated with removable partial dentures. Int. J. Prosthodont. 2003, 3, 59–63. [Google Scholar]
- Özen, J.; Beydemir, B.; Serdar, M.A.; Dalkiz, M.; Saygun, I.; Özdemir, A. The effect of fixed restoration materials on the IL-1β content of gingival crevicular fluid. Turk. J. Med. Sci. 2001, 3, 365–369. [Google Scholar]
- Mirchandani, B.; Zhou, T.; Heboyan, A.; Yodmongkol, S.; Buranawat, B. Biomechanical Aspects of Various Attachments for Implant Overdentures: A Review. Polymers 2021, 19, 3248. [Google Scholar] [CrossRef] [PubMed]
- McLaren, E.A.; Figueira, J. Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection. Compend. Contin. Educ. Dent. 2015, 6, 406–416. [Google Scholar]
- Hao, Y.; Huang, X.; Zhou, X.; Ren, B.; Peng, X.; Cheng, L. Influence of dental prosthesis and restorative materials interface on oral biofilms. Int. J. Mol. Sci. 2018, 14, 3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.W.; Moussi, J.; Drury, J.L.; Wataha, J.C. Zirconia in biomedical applications. Exp. Rev. Med. Devices 2016, 10, 954–963. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Ghulam, O.; Krsoum, M.; Binmahmoud, S.; Taher, H.; Elmalky, W.; Zafar, M.S. Revolution of Current Dental Zirconia: A Comprehensive Review. Molecules 2022, 5, 1699. [Google Scholar] [CrossRef]
- Heboyan, A.; Manrikyan, M.; Zafar, M.S.; Rokaya, D.; Nushikyan, R.; Vardanyan, I.; Vardanyan, A.; Khurshid, Z. Bacteriological evaluation of gingival crevicular fluid in teeth restored using fixed dental prostheses: An in vivo study. Int. J. Mol. Sci. 2021, 22, 5463. [Google Scholar] [CrossRef]
- Abduo, J.; Lyons, K.M. Interdisciplinary interface between fixed prosthodontics and periodontics. Periodontol. 2000 2017, 74, 40–62. [Google Scholar] [CrossRef]
- Ercoli, C.; Tarnow, D.; Poggio, C.E.; Tsigarida, A.; Ferrari, M.; Caton, J.G.; Chochlidakis, K. The relationships between tooth-supported fixed dental prostheses and restorations and the periodontium. J. Prosthodont. 2021, 30, 305–317. [Google Scholar] [CrossRef]
- Heboyan, A.; Zafar, M.S.; Rokaya, D.; Khurshid, Z. Insights and Advancements in Biomaterials for Prosthodontics and Implant Dentistry. Molecules 2022, 27, 5116. [Google Scholar] [CrossRef]
- Heboyan, A.; Zafar, M.S.; Karobari, M.I.; Tribst, J.P.M. Insights into Polymeric Materials for Prosthodontics and Dental Implantology. Materials 2022, 15, 5383. [Google Scholar] [CrossRef] [PubMed]
- Karobari, M.I.; Siddhartan, S.; Adil, A.H.; Khan, M.M.; Venugopal, A.; Rocaya, D.; Heboyan, A.; Marya, C.M.; Marya, A. Modifiable and Non-modifiable Risk Factors Affecting Oral and Periodontal Health and Quality of Life in South Asia. Open Dent. J. 2022, 16, 1874–2106. [Google Scholar] [CrossRef]
- Chu, S.J.; Kan, J.Y.; Lee, E.A.; Lin, G.H.; Jahangiri, L.; Nevins, M.; Wang, H.L. Restorative emergence profile for single-tooth implants in healthy periodontal patients: Clinical guidelines and decision-Making strategies. Int. J. Periodontics Restor. Dent. 2019, 40, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Malpartida-Carrillo, V.; Tinedo-Lopez, P.L.; Guerrero, M.E.; Amaya-Pajares, S.P.; Özcan, M.; Rösing, C.K. Periodontal phenotype: A review of historical and Current classifications evaluating different methods and characteristics. J. Esthet. Restor. Dent. 2020, 33, 432–445. [Google Scholar] [CrossRef]
- Yin, X.J.; Wei, B.Y.; Ke, X.P.; Zhang, T.; Jiang, M.Y.; Luo, X.Y.; Sun, H.Q. Correlation between clinical parameters of crown and gingival morphology of anterior teeth and periodontal biotypes. BMC Oral Health 2020, 19, 59. [Google Scholar] [CrossRef] [Green Version]
- Aguirre-Zorzano, L.A.; Vallejo-Aisa, F.J.; Estefanía-Fresco, R. Supportive periodontal therapy and periodontal biotype as prognostic factors in implants placed in patients with a history of periodontitis. Med. Oral Patol. Oral Cir. Bucal 2013, 1, 786–792. [Google Scholar] [CrossRef]
- Avetisyan, A.; Markaryan, M.; Rokaya, D.; Tovani-Palone, M.R.; Zafar, M.S.; Khurshid, Z.; Vardanyan, A.; Heboyan, A. Characteristics of periodontal tissues in prosthetic treatment with fixed dental prostheses. Molecules 2021, 2, 1331. [Google Scholar] [CrossRef]
- Isler, S.C.; Uraz, A.; Kaymaz, O.; Cetiner, D. An evaluation of the relationship between periimplant soft tissue biotype and the severity of periimplantitis: A cross-sectional study. Int. J. Oral Maxillofac. Implants 2019, 34, 187–196. [Google Scholar] [CrossRef]
- Zheng, Z.; Ao, X.; Xie, P.; Jiang, F.; Chen, W. The biological width around implant. J. Prosthodont. Res. 2021, 24, 11–18. [Google Scholar] [CrossRef]
- Vlachodimou, E.; Fragkioudakis, I.; Vouros, I. Is there an association between the gingival phenotype and the width of keratinized gingiva? A systematic review. Dent. J. 2021, 23, 34. [Google Scholar] [CrossRef]
- Heboyan, A.; Syed, A.U.I.; Rokaya, D.; Cooper, P.R.; Manrikyan, M.; Markaryan, M. Cytomorphometric analysis of inflammation dynamics in the periodontium following the use of fixed dental prostheses. Molecules 2020, 12, 4650. [Google Scholar] [CrossRef] [PubMed]
- León- Martínez, R.; Montiel-Company, J.M.; Bellot-Arcís, C.; Solá-Ruíz, M.F.; Selva-Otaolaurruchi, E.; Agustín-Panadero, R. Periodontal behavior around teeth prepared with finishing line for restoration with fixed prostheses. A systematic review. J. Clin. Med. 2020, 17, 249. [Google Scholar] [CrossRef] [Green Version]
- Ercoli, C.; Caton, J.G. Dental prostheses and tooth-related factors. J. Clin. Periodontol. 2018, 89, 223–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, M.A.; Diaz, P.I.; Van Dyke, T.E. The role of the microbiota in periodontal disease. Periodontol. 2000 2020, 83, 14–25. [Google Scholar] [CrossRef]
- Gopalakrishnan, U.; Murthy, R.T.; Felicita, A.S.; Alshehri, A.; Awadh, W.; Almaki, A.; Vinothkumar, T.S.; Baeshen, H.A.; Bhandi, S.; Kathir, A.; et al. Sulfate-reducing bacteria in patients undergoing fixed orthodontic treatment. Int. Dent. J. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, M.; Karobari, M.I.; Heboyan, A.; Mohamed, R.N.; Mustafa, M.; Basheer, S.N.; Desai, V.; Batool, S.; Ahmed, N.; Zeshan, B. Synthesis of Silver Nanoparticles from Extracts of Wild Ginger (Zingiber zerumbet) with Antibacterial Activity against Selective Multidrug Resistant Oral Bacteria. Molecules 2022, 27, 2007. [Google Scholar] [CrossRef] [PubMed]
- Socransky, S.S.; Haffajee, A.D. Periodontal microbial ecology. Periodontol. 2000 2005, 38, 135–187. [Google Scholar] [CrossRef]
- Ptasiewicz, M.; Grywalska, E.; Mertowska, P.; Glowniak, I.K.; Baran, A.P.; Rystwej, P.N.; Chalas, R. Armed to the teeth- The oral mucosa immunity system and microbiota. Int. J. Mol. Sci. 2022, 14, 882. [Google Scholar] [CrossRef]
- Di Stefano, M.; Polizzi, A.; Santonocito, S.; Romano, A.; Lombardi, T.; Isola, G. Impact of oral microbiome in periodontal health and periodontitis: A critical review on prevention and treatment. Int. J. Mol. Sci. 2022, 5, 5142. [Google Scholar] [CrossRef]
- Tuominen, H.; Rautava, J. Oral microbiota and cancer development. Pathobiology 2021, 88, 116–126. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Li, J.; Chen, Z.S. Microbiota in health and diseases. Signal Transduct. Target Ther. 2022, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- Teles, R.P.; Gursky, L.C.; Faveri, M.; Rosa, E.A.; Teles, F.R.F.; Feres, M.; Socransky, S.S.; Haffajee, A.D. Relationships between subgingival microbiota and GCF biomarkers in generalized aggressive periodontitis. J. Clin. Periodontol. 2010, 37, 313–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Castro, N.S.; Vázquez-Villamar, M.; Muñoz-Valle, J.F.; Reyes-Fernández, S.; Serna-Radilla, V.O.; García-Arellano, S.; Castro-Alarcón, N. Relationship between TNF-a, MMP-8 and MMP-9 levels in gingival crevicular fluid and the subgingival microbiota in periodontal disease. Odontology 2019, 108, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Abusleme, L.; Hoare, A.; Hong, B.Y.; Diaz, P.I. Microbial signatures of health, gingivitis and periodontitis. Periodontol. 2000 2021, 86, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Esparbès, P.; Legrand, A.; Bandiaky, O.N.; Carpentier, M.C.; Martin, H.; Montassier, E.; Soueidan, A. Subgingival microbiota and cytokines profile changes in patients with periodontitis: A pilot study comparing healthy and diseased sites in the same oral cavities. Microorganisms 2021, 9, 2364. [Google Scholar] [CrossRef]
- Mahendra, J.; Palathingal, P.; Mahendra, L.; Alzahrani, K.J.; Banjer, H.J.; Alsharif, K.F.; Halawani, I.F.; Muralidharan, J.; Annamalai, P.T.; Verma, S.S.; et al. Impact of red complex bacteria and TNF- α levels on the diabetic and renal status of chronic kidney disease patients the presence and absence of periodontitis. Biology 2022, 16, 451. [Google Scholar] [CrossRef]
- Berger, D.; Rakhamimova, A.; Pollack, A.; Loewy, Z. Oral biofilms: Development, Control, and Analysis. High Throughput 2018, 7, 1–8. [Google Scholar]
- Mubaraki, M.Q.; Moaleem, M.M.A.; Alzahrani, A.H.; Shariff, M.; Alqahtani, S.M.; Porwal, A.; Al-Sanabani, F.A.; Bhandi, S.; Tribst, J.P.M.; Heboyan, A.; et al. Assessment of Conventionally and Digitally Fabricated Complete Dentures: A Comprehensive Review. Materials 2022, 15, 3868. [Google Scholar] [CrossRef]
- Dobrzynski, M.; Pajaczkowska, M.; Nowicka, J.; Jaworski, A.; Kosior, P.; Szymonowicz, M.; Kuropka, P.; Rybak, Z.; Bogucki, Z.A.; Filipiak, J.; et al. Study of surface structure changes for selected ceramics used in the CAD/CAM system on the degree of microbial colonization, In Vitro test. Biomed. Res. Int. 2019, 12, 130806. [Google Scholar] [CrossRef] [Green Version]
- Dantas, T.; Padrão, J.; Da Silva, M.R.; Pinto, P.; Madeira, S.; Vaz, P.; Zille, A.; Silva, F. Bacteria co-culture adhesion on different texturized zirconia surfaces. J. Mech. Behav. Biomed. Mater. 2021, 123, 104786. [Google Scholar] [CrossRef]
- Wang, J.C.; Lai, C.H.; Listgasten, M.A. Porphyromonas gingivalis, Prevotella intermedia and Bacteroides forsythus in plaque subjacent to bridge pontics. J. Clin. Periodontol. 1998, 25, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Delucchi, F.; Bagnasco, F.; Pera, F.; Di Tullio, N.; Pesce, P. Analysis of the subgingival microbiota in implant-supported full-arch rehabilitations. Dent. J. 2020, 5, 104. [Google Scholar] [CrossRef] [PubMed]
- Tamrakar, A.K.; Murali, G.; Singh, S.; Shakila, R. Evaluation of subgingival microbiota around single tooth implants. J. Oral Biol. Craniofac. Res. 2020, 10, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, R.C.; Martu, M.A.; Luchian, I.; Sufaru, I.G.; Maftei, G.A.; Ioanid, N.; Martu, S.; Tatarciuc, M. Microbiologic profiles of patients with dental prosthetic treatment and periodontitis before and after photoactivation therapy—Randomized clinical trial. Microorganisms 2021, 9, 713. [Google Scholar] [CrossRef]
- Vardhan, P.K.; Paramashivaiah, R.; Prabhuji, M.L.V.; Bhavikatti, S.K.; Basha, S.; Arora, S.; Basheer, S.N.; Peeran, S.W.; Aldowah, O.; Heboyan, A. The Effect of Photodynamic Therapy on the Early Outcome of Implants Placed on Patients with Periodontitis. Photonics 2022, 9, 480. [Google Scholar] [CrossRef]
- Gul, S.S.; Abdulkareem, A.A.; Sha, A.M.; Rawlinson, A. Diagnostic accuracy of oral fluids biomarkers profile to determine the current and future status of periodontal and peri-implant diseases. Diagnostics 2020, 10, 838. [Google Scholar] [CrossRef]
- Bibi, T.; Khurshid, Z.; Rehman, A.; Imran, E.; Srivastava, K.C.; Shrivastava, D. Gingival crevicular fluid (GCF): A diagnostic tool for the detection of the periodontal health and diseases. Molecules 2021, 26, 1208. [Google Scholar] [CrossRef]
- Papagerakis, P.; Zheng, L.; Kim, D.; Said, R.; Ehlert, A.A.; Chung, K.K.M.; Papagerakis, S. Saliva and gingival crevicular fluid (GCF) collection for biomarker screening. Methods Mol. Biol. 2019, 1922, 549–562. [Google Scholar]
- Majeed, Z.N.; Philip, K.; Alabsi, A.M.; Pushparajan, S.; Swaminathan, D. Identification of gingival crevicular fluid sampling, analytical methods, and oral biomarkers for the diagnosis and monitoring of periodontal diseases: A systematic Review. Dis. Markers 2016, 1, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Bostanci, N.; Belibasakis, G.N. Gingival crevicular fluid and its immune mediators in the proteomic era. Periodontol. 2000 2018, 76, 68–84. [Google Scholar] [CrossRef]
- Ghallab, N.A. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: Review of the current evidence. Arch. Oral Biol. 2018, 87, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Rakic, M.; Pejcic, N.; Perunovic, N.; Vojvodic, D. A roadmap towards precision periodontics. Medicina 2021, 57, 233. [Google Scholar] [CrossRef]
- Hussain, A.; Tebyaniyan, H.; Khayatan, D. The Role of Epigenetic in Dental and Oral Regenerative Medicine by Different Types of Stem Cells: A Comprehensive Overview. Stem. Cells Int. 2022, 2022, 5304860. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yin, Y.; Tian, M.; Liu, T.; Li, X.; Chen, S. Long non-coding RNAs: Emerging roles in periodontitis. J. Periodontal Res. 2021, 56, 848–862. [Google Scholar] [CrossRef] [PubMed]
- Santonocito, S.; Polizzi, A.; Palazzo, G.; Isola, G. The emerging role of microRNA in periodontitis: Pathophysiology, clinical potential and future molecular perspectives. Int. J. Mol. Sci. 2021, 22, 5456. [Google Scholar] [CrossRef] [PubMed]
- Jiao, K.; Walsh, L.J.; Ivanovski, S.; Han, P. The emerging regulatory role of circular RNAs in periodontal tissues and cells. Int. J. Mol. Sci. 2021, 22, 4636. [Google Scholar] [CrossRef]
- Shaddox, L.M.; Morford, L.A.; Nibali, L. Periodontal health and disease: The contribution of genetics. Periodontol. 2000 2021, 85, 161–181. [Google Scholar] [CrossRef]
- Akkaya, H.Ü.; Yilmaz, H.E.; Narin, F.; Sağlam, M. Evaluation of galectin -3, peptidylarginine deiminase-4, and tumor necrosis factor-α levels in gingival crevicular fluid for periodontal health, gingivitis, and stage III grade C periodontitis: A pilot study. J. Periodontol. 2021, 93, 80–88. [Google Scholar] [CrossRef]
- Arvikar, S.L.; Hasturk, H.; Strle, K.; Stephens, D.; Bolster, M.B.; Collier, D.S.; Kantarci, A.; Steere, A.C. Periodontal inflammation and distinct inflammatory profiles in saliva and gingival crevicular fluid compared with serum and joints in rheumatoid arthritis patients. J. Periodontol. 2021, 92, 1379–1391. [Google Scholar] [CrossRef]
- Nair, V.; Grover, V.; Arora, S.; Das, G.; Ahmad, I.; Ohri, A.; Sainudeen, S.; Saluja, P.; Saha, A. Comparative evaluation of gingival crevicular fluid interleukin-17, 18 and 21 in different stages of periodontal health and disease. Medicina 2022, 3, 1042. [Google Scholar] [CrossRef]
- Mootha, A.; Malaiappan, S.; Milstein, D.M.J.; Karthikeyan, G.; Varghese, S.S.; Jayakumar, N.D. Comparison of interleukin-21 levels and its correlation with clinical parameters among healthy individuals, chronic periodontitis, and aggressive periodontitis patients. J. Clin. Transl. Res. 2021, 2, 84–92. [Google Scholar]
- Rodríguez-Montaño, R.; Bernard-Medina, A.G.; Oregon-Romero, E.; Martínez-Rodríguez, V.M.D.C.; Pita-López, M.L.; Gómez-Meda, B.C.; Guerrero-Velázquez, C. IL-23/IL-17 axis and soluble receptors isoforms sIL-23R and sIL-17RA in patients with rheumatoid arthritis-presenting periodontitis. J. Clin. Lab. Anal. 2021, 35, e23963. [Google Scholar] [CrossRef] [PubMed]
- Nalmpantis, D.; Gatou, A.; Fragkioudakis, I.; Margariti, A.; Skoura, L.; Sakellari, D. Azurocidin in gingival crevicular fluid as a potential biomarker of chronic periodontitis. J. Periodontal Res. 2019, 55, 209–214. [Google Scholar] [CrossRef]
- Balci, N.; Cekici, A.; Kurgan, S.; Sahinkaya, S.; Serdar, M. Potential biomarkers reflecting inflammation in patients with severe periodontitis: Fractalkine (CX3CL1) and its receptor (CX3CR1). J. Periodontal Res. 2021, 56, 589–596. [Google Scholar] [CrossRef]
- Loo, G.V.; Bertrand, M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2022, 15, 1–15. [Google Scholar]
- Aggarwal, B.B.; Gupta, S.C.; Kim, J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012, 19, 651–665. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.uniprot.org/uniprotkb/P01375/entry (accessed on 20 November 2022).
- Aggarwal, B.B.; Kohr, W.J.; Hass, P.E.; Moffat, B.; Spencer, S.A.; Henzel, W.J.; Bringman, T.S.; Nedwin, G.E.; Goeddel, D.V.; Harkins, R.N. Human tumor necrosis factor. Production, purification, and characterization. J. Biol. Chem. 1985, 25, 2345–2354. [Google Scholar] [CrossRef]
- Parameswaran, N.; Patial, S. Tumor necrosis factor- α signaling in macrophages. Crit. Rev. Eukaryot. Gene. Expre. 2010, 20, 87–103. [Google Scholar] [CrossRef]
- Mehta, A.K.; Gracias, D.T.; Croft, M. TNF activity and T cells. Cytokine 2018, 101, 14–18. [Google Scholar] [CrossRef]
- Medara, N.; Lenzo, J.C.; Walsh, K.A.; Reynolds, E.C.; Darby, I.B.; O’ Brien-Simpson, N.M. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis. Cytokine 2021, 138, 155340. [Google Scholar] [CrossRef]
- Horiuchi, T.; Mitoma, H.; Harashima, S.I.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-alpha: Structure, function and interaction with anti-TNF agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.; Zeng, X.; Tu, W.J.; Zhao, J. Tumor necrosis factor- α: The net marker of stroke. Dis. Markers 2022, 27, 2395269. [Google Scholar] [CrossRef] [PubMed]
- Ilday, N.O.; Celik, N.; Dilsiz, A.; Alp, H.H.; Aydin, T.; Seven, N.; Kiziltunç, A. The effects of overhang amalgam restoration on levels of cytokines, gingival crevicular fluid volume and some periodontal parameters. Am. J. Dent. 2016, 29, 266–270. [Google Scholar] [PubMed]
- Celik, N.; Askin, S.; Gul, M.A.; Seven, N. The effect of restorative materials on cytokines in gingival crevicular fluid. Arch. Oral Biol. 2017, 84, 139–144. [Google Scholar] [CrossRef]
- Hakim, L.K.; Yazdanian, M.; Alam, M.; Abbasi, K.; Tebyaniyan, H.; Tahmasebi, E.; Khayatan, D.; Seifalian, A.; Ranjbar, R.; Yazdanian, A. Biocompatible and Biomaterials Application in Drug Delivery System in Oral Cavity. Evid. Based Complement. Alternat. Med. 2021, 13, 9011226. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, E.T.; Yazdanian, M.; Alam, M.; Tebyanian, H.; Tafazoli, A.; Tahmasebi, E.; Ranjbar, R.; Yazdanian, A.; Seifalian, A. Current natural bioactive materials in bone and tooth regeneration in dentistry: A comprehensive overview. J. Mater. Res. Technol. 2021, 13, 2078–2114. [Google Scholar] [CrossRef]
- Tahmasebi, E.; Alam, M.; Yazdanian, M.; Tebyanian, H.; Yazdanian, A.; Seifalian, A.; Mosaddad, S.A. Current biocompatible materials in oral regeneration: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2020, 5, 11731–11755. [Google Scholar] [CrossRef]
- Barzegar, P.E.F.; Ranjbar, R.; Yazdanian, M.; Tahmasebi, E.; Alam, A.; Abbasi, K.; Tebyaniyan, H.; Barzegar, K.E.F. The current natural/chemical materials and innovative technologies in periodontal diseases therapy and regeneration: A narrative review. Mater. Today Commun. 2022, 32, 104099. [Google Scholar] [CrossRef]
- Papathanasiou, E.; Conti, P.; Carinci, F.; Lauritano, D.; Theoharides, T.C. IL-1 superfamily members and periodontal diseases. J. Dent. Res. 2020, 99, 1425–1434. [Google Scholar] [CrossRef]
- Cheng, R.; Wu, Z.; Li, M.; Shao, M.; Hu, T. Interleukin- 1β is a potential therapeutic target for periodontitis: A narrative review. Int. J. Oral Sci. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Murakami, T.; Takahata, Y.; Hata, K.; Nishimura, R. Role of interleukin-1 and inflammasomes in oral disease. J. Oral Biosci. 2020, 62, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Gomes, F.I.; Brito-Aragão, M.G.; Barroso-Barbosa, F.C.; Marques, B.M.; Teixeiraa-Pinto, V.P.; Vasconcelos-Chaves, H. Inflammatory cytokines interleukin-1β and tumour necrosis factor-α- Novel biomarkers for the detection of periodontal diseases: A literature review. J. Oral Maxillofac. Res. 2016, 7, 1–10. [Google Scholar]
- Bent, R.; Moll, L.; Grabbe, S.; Bros, M. Interleukin-1 Beta—A Friend of Foe in Malignancies? Int. J. Mol. Sci. 2018, 19, 2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Checchi, V.; Maravic, T.; Bellini, P.; Generali, L.; Consolo, U.; Breschi, L.; Mazzoni, A. The role of matrix metalloproteinases in periodontal disease. Int. J. Environ. Res. Public Health 2020, 17, 4923. [Google Scholar] [CrossRef]
- Luchian, I.; Goriuc, A.; Sandu, D.; Covasa, M. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int. J. Mol. Sci. 2022, 4, 1806. [Google Scholar] [CrossRef]
- Stefanović, V.; Ervin, T.; Tatjana, K.; Džihan, A.; Mia, R.; Aleksandra, P.C.; Aleksandar, A.; Danilo, V. The effect of dental caries and restorative biomaterials on IL-1β and TNF-α levels in the gingival crevicular fluid. Vojnosaint. Pregl. 2021, 78, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, 1–16. [Google Scholar] [CrossRef]
- Kishimoto, T. Inteleukin-6: Discovery of a pleiotropic cytokine. Arthritis Res. Ther. 2006, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rose-John, S. Interleukin-6 Family Cytokines. Cold Spring Harb. Perspect. Biol. 2018, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Feng, L.; Wu, H.; Xie, X.D. The association of IL-6 and IL-6R gene polymorphisms with chronic periodontitis in a Chinese population. Oral Dis. 2014, 20, 69–75. [Google Scholar] [CrossRef]
- Matsuki, Y.; Yamamoto, T.; Hara, K. Detection of inflammatory cytokine messenger (mRNA)—Expressing cells in human inflamed gingiva by combined in situ hybridization and immunohistochemistry. Immunology 1992, 76, 42–47. [Google Scholar] [PubMed]
- Groeger, S.; Meyle, J. Oral mucosal epithelial cells. Front. Immunol. 2019, 14, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, C.R.; Myrillas, T.T. The role of IL-6 in the pathogenesis of periodontal disease. Oral Dis. 1998, 4, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, R.; Ka, K.; Huang, T.; Khalili, S.; Nguyen, B.H.; Nicolau, B.; Tran, S.D. Tumor necrosis-α and interleukin-6: Potential interorgan inflammatory mediators contributing to destructive periodontal disease in obesity or metabolic syndrome. Mediat. Inflamm. 2013, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Naruishi, K.; Nagata, T. Biological effects of interleukin-6 on gingival fibroblasts: Cytokine regulation in periodontitis. J. Cell. Physiol. 2018, 233, 6393–6400. [Google Scholar] [CrossRef]
- Polepalle, T.; Moogala, S.; Boggarapul, S.; Pesala, D.S.; Palagi, F.B. Acute phase proteins and their role in periodontitis: A review. J. Clin. Diagn. Res. 2015, 9, 1–5. [Google Scholar] [CrossRef]
- Schmalz, G.; Schuster, U.; Schweilk, H. Influence of metals on IL-6 release in vitro. Biomaterials 1998, 19, 1689–1694. [Google Scholar] [CrossRef]
- Klinder, A.; Seyfarth, A.; Hansmann, D.; Bader, R.; Heincke, A.J. Inflammatory response of human peripheral blood mononuclear cells and osteoblasts incubated with metallic and ceramic submicron particles. Front. Immunol. 2018, 25, 831. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.; Yoshimoto, T.; Kajiya, M.; Ouhara, K.; Matsuda, S.; Takemura, T.; Akutagawa, K.; Takeda, K.; Mizuno, N.; Kurihara, H. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease. Jpn. Dent. Sci. Rev. 2018, 54, 66–75. [Google Scholar] [CrossRef]
- Mlachkova, A.; Popova, C.; Doseva, V. Presence of IL-8 gene polymorphism and IL-8 serum levels in patients with chronic periodontitis- Literature review. Folia Med. 2020, 30, 253–257. [Google Scholar] [CrossRef]
- Nakayama, M.; Ohara, N. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases. Jpn. Dent. Sci. Rev. 2017, 53, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Baggiolini, M.; Clark-Lewis, I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992, 307, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waugh, D.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finoti, L.S.; Nepomuceno, R.; Pigossi, S.C.; Corbi, S.C.; Secolin, R.; Scarel-Caminaga, R.M. Association between interleukin-8 levels and chronic periodontal disease: A PRISMA-compliant systematic review and meta-analysis. Medicine 2017, 96, e6932. [Google Scholar] [CrossRef] [PubMed]
- Alrabeah, G.O.; Brett, P.; Knowles, J.C.; Petridis, H. The effect of metal ions released from different dental implant-abutment couples on osteoblast function and secretion of bone resorbing mediators. J. Dent. 2017, 66, 91–101. [Google Scholar] [CrossRef]
- Linder, A.; Soehnlein, O.; Akesson, P. Roles of heparin-binding protein in bacterial infections. J. Innate Immun. 2010, 2, 431–438. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, G.; He, Q.; Shen, J.; Xu, L.; Zhu, P.; Zhao, M. A promising candidate: Heparin-Binding protein steps onto the stage of sepsis prediction. J. Immunol. Res. 2019, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Edens, H.A.; Parkos, C.A. Neutrophil transedothelial migration and alteration in vascular permeability: Focus on neutrophil-derived azurocidin. Curr. Opin. Hematol. 2003, 10, 25–30. [Google Scholar] [CrossRef]
- Watorek, W. Azurocidin- inactive serine proteinase homolog acting as a multifunctional inflammatory mediator. Acta Biochim Pol. 2003, 50, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Soehnlein, O.; Lindbom, L. Neutrophil-derived azurocidin alarms the immune system. J. Leukoc. Biol. 2009, 85, 344–351. [Google Scholar] [CrossRef]
- Fisher, J.; Linder, A. Heparin-binding protein: A key player in the pathophysiology of organ dysfunction in sepsis. J. Intern. Med. 2017, 281, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Guzman, Y.A.; Sakellari, D.; Papadimitriou, K.; Floudas, C.A. High-throughput proteomic analysis of candidate biomarker changes in gingival crevicular fluid after treatment of chronic periodontitis. J. Periodontal Res. 2018, 53, 853–869. [Google Scholar] [CrossRef] [PubMed]
- Leppilahti, J.M.; Hernández-Ríos, P.; Gamonal, J.A.; Tervahartiala, T.; Brignardello-Petersen, R.; Mantyla, P.; Sorsa, T.; Hernández, M. Matrix metalloproteinases and myeloperoxidase in gingival crevicular fluid provide site-specific diagnostic value for chronic periodontitis. J. Clin. Periodontol. 2014, 41, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Heo, S.H.; Lee, J.M.; Cho, J.Y. Identification of azurocidin as a potential periodontitis biomarker by a proteomic analysis of gingival crevicular fluid. Proteome Sci. 2011, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997, 14, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Lloyd, C.; Zhou, H.; Dolich, S.; Deeds, J.; Gonzalo, J.A.; Vath, J.; Gosselin, M.; Ma, J.; Dussault, B.; et al. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 1997, 5, 611–617. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O. The chemokine superfamily revisited. Immunity 2012, 25, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Korbecki, J.; Simińska, D.; Kojder, K.; Grochans, S.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Fractalkine/CX3CL1 in neoplastic process. Int. J. Mol. Sci. 2021, 25, 3723. [Google Scholar]
- Bazan, J.F.; Bacon, K.B.; Hardiman, G.; Wang, W.; Soo, K.; Rossi, D.; Greaves, D.R.; Zlotnik, A.; Schall, T.J. A new class of membrane-bound chemokine with a C3C motif. Nature 1997, 13, 640–644. [Google Scholar] [CrossRef]
- White, G.E.; Greaves, D.R. Fractalkine: A survivor’s guide: Chemokines as antiapoptotic mediators. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 589–894. [Google Scholar] [CrossRef] [Green Version]
- Buskermolen, J.K.; Roffel, S.; Gibbs, S. Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets. J. Cell. Physiol. 2017, 232, 2996–3005. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, D. Fractalkine/CX3CR1 and atherosclerosis. Clin. Chim. Acta 2011, 11, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.A.; Beamer, M.; Ahmed, S. Factalkine/CX3CL1: A potential new target for inflammatory diseases. Mol. Interv. 2010, 10, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandur, E.; Tamási, K.; Pap, R.; Jánosa, G.; Sipos, K. Modulatory effects of fractalkine on inflammatory response and iron metabolism of lipopolysaccharide and lipoteichoic acid-activated THP-1 macrophages. Int. Mol. Sci. 2022, 27, 2629. [Google Scholar] [CrossRef] [PubMed]
- Garton, K.J.; Gough, P.J.; Blobel, C.P.; Murphy, G.; Greaves, D.R.; Dempsey, P.J.; Raines, E.W. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 2001, 12, 37993–38001. [Google Scholar] [CrossRef]
- Hundhausen, C.; Misztela, D.; Berkhout, T.A.; Broadway, N.; Saftig, P.; Reiss, K.; Hartmann, D.; Fahrenholz, F.; Postina, R.; Matthews, V.; et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 2003, 15, 1186–1195. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Jiang, L.; Bian, C.; Xing, Y.; Yishakea, M.; Dong, J. Role of CX3CL1 in diseases. Arch. Immunol. Ther. Exp. 2016, 64, 371–383. [Google Scholar] [CrossRef]
- Yilmaz, D.; Gönüllü, E.; Gürsoy, M.; Könönen, E.; Gürsoy, U.K. Salivary and serum concentrations of monocyte chemoattractant protein-1, macrophage inhibitory factor, and fractalkine in relation to rheumatoid arthritis and periodontitis. J. Periodontol. 2021, 92, 1295–1305. [Google Scholar] [CrossRef]
- Panezai, J.; Ali, A.; Ghaffar, A.; Benchimol, D.; Altamash, M.; Klinge, B.; Engström, P.E.; Larsson, A. Upregulation of circulating inflammatory biomarkers under the influence of periodontal disease in rheumatoid arthritis patients. Cytokine 2020, 131, 155117. [Google Scholar] [CrossRef] [PubMed]
- Merino, J.J.; Cabaña-Muñoz, M.E.; Toledano, A.; Garcimartín, A.; Benedí, J.; Camacho-Alonso, F.; Parmigiani-Izquierdo, J.M. Elevated Systemic L-Kynurenine/L-Tryptophan Ratio and Increased IL-1 Beta and Chemokine (CX3CL1, MCP-1) Proinflammatory Mediators in Patients with Long-Term Titanium Dental Implants. J. Clin. Med. 2019, 2, 1386. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, Y.; Nakanishi, T.; Nakae, H.; Matsuo, T. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, in periodontal diseased tissue. Clin. Exp. Immunol. 2005, 139, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Sälzer, S.; Graetz, C.; Dörfer, C.E.; Slot, D.E.; Van der Weijden, F.A. Contemporary practices for mechanical oral hygiene to prevent periodontal disease. Periodontol. 2000 2020, 1, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, A.; Ranjbar, R.; Yazdanian, M.; Tahmasebi, E.; Alam, M.; Abbasi, K.; Hosseini, Z.S.; Tebyaniyan, H. The Current Antimicrobial and Antibiofilm Activities of Synthetic/Herbal/Biomaterials in Dental Application. Biomed. Res. Int. 2022, 2, 8856025. [Google Scholar] [CrossRef]
- Soudi, A.; Yazdanian, M.; Ranjbar, R.; Tebyanian, H.; Yazdanian, A.; Tahmasebi, E.; Keshvad, A.; Seifalian, A. Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI J. 2021, 20, 454–489. [Google Scholar]
- Moghadam, E.T.; Yazdanian, M.; Tahmasebi, E.; Tebyanian, H.; Ranjbar, R.; Yazdanian, A.; Seifalian, A.; Tafazoli, A. Current herbal medicine as an alternative treatment in dentistry: In vitro, in vivo and clinical studies. Eur. J. Pharmacol. 2020, 889, 173665. [Google Scholar] [CrossRef] [PubMed]
- Darby, I. Risk factors for periodontitis & peri-implantitis. Periodontol. 2000 2022, 1, 9–12. [Google Scholar]
- Baima, G.; Corana, M.; Iaderosa, G.; Romano, F.; Citterio, F.; Meoni, G.; Tenori, L.; Aimetti, M. Metabolomics of gingival crevicular fluid to identify biomarkers for periodontitis: A systematic review with meta-analysis. J. Periodontal Res. 2021, 4, 633–645. [Google Scholar] [CrossRef]
- Ruiz, J.S.B.; Velázquez, C.G.; Esquivias, F.M.; Pérez, L.A.M.; Flores, J.M.G. Innate and adaptative immunity of periodontal disease. From etiology to alveolar bone loss. Oral Dis. 2021, 6, 1441–1447. [Google Scholar]
- Pan, W.; Wang, Q.; Chen, Q. The cytokine network involved in the host immune response to periodontitis. Int. J. Oral Sci. 2019, 3, 30. [Google Scholar] [CrossRef]
Prosthetic Restorative Material | Biomarkers | Oral Fluid | Measurement Method | Biomarker Concentration and Main Findings | Reference |
---|---|---|---|---|---|
Metal-porcelain crowns with Cr-Co based alloy Zirconium dioxide crowns | CRP TNF-α YKL-40 Resistin AST ALP | GCF Serum | ELISA | CRP and TNF-α levels increased after placement of metal-porcelain prostheses compared with zirconia prostheses Metal-porcelain: YKL-40:56.32 ± 10.12 pg/mL. Resistin: 8.36 ± 2.01 pg/mL AST: 3.55 ± 1.01 pg/mL ALP: 3.55 ± 0.88 pg/mL Zirconium: YKL-40: 42.35 ± 9.65 pg/mL Resistin: 5.24 ± 1.65 pg/mL AST: 3.01 ± 0.80 pg/mL ALP: 3.11 ± 0.60 pg/mL | [26] |
Ceramic Lumineers | IL-6 TNF-α | GCF | Luminex | IL-6 Baseline: 5.4 ± 3.6 pg/mL Week 4: 15.6 ± 8.2 pg/mL Week 12: 7.8 ± 6.2 pg/mL Week 24: 7.4 ± 5.2 pg/mL TNF-α Baseline: 13.7 ± 5.8 pg/mL Week 4: 65.3 ± 16.2 pg/mL Week 12: 25 ± 10.2 pg/mL Week 24: 21.3 ± 7.6 pg/mL | [27] |
Temporary polymethylmethacrylate crowns Fixed zirconia crown | IL-1β | GCF | ELISA | IL-1β Group 1(Before temporary crown cementation): 13,587 pg/mL. Group 2 (2 weeks after temporary crown placement and before fixed crown placement): 9602 pg/mL. Group 3 (2 weeks after fixed crown placement): 6293 pg/mL | [28] |
Porcelain Metal Crowns: Ceramic surface and metal surface Zirconia | IL-1β | GCF | ELISA | IL-1β Baseline: Ceramic:109.63 ± 14.49 pg/mL. Metal: 135.29 ± 18.63 pg/mL Zirconia: 86.57 ± 12.52 pg/mL 45 days: Ceramic: 106.80 ± 13.17 pg/mL Metal: 133.54 ± 18.89 pg/mL Zirconia: 87.54 ± 11.10 pg/mL 90 days: Ceramic: 102.25 ± 13.21 pg/mL Metal: 141.98 ± 27.72 pg/mL Zirconia: 79.88 ± 13.66 pg/mL | [29] |
Stainless steel crowns | MIP-1 α MIP-1 β | GCF | ELISA | MIP-1 α: 682.55 ± 59.97 pg/mL MIP-1 β: 884.35 ±125.46 pg/mL | [30] |
Lithium disilicate veneers Zirconia veneers Zirconia crowns | IL-1β IL-1ra aMMP-8 | GCF | ELISA | Lithium disilicate veneers: IL-1β: 68.05 ± 50.80 pg/mL IL-1ra: 35.35 ± 2.355 pg/mL aMMP-8: 32.51 ± 33.08 pg/mL Zirconia veneers: IL-1β: 55.77 ± 37.33 pg/mL IL-1ra: 36.78 ± 20.87 pg/mL aMMP-8: 16.39 ± 10.10 pg/mL Zirconia crowns: IL-1β: 57.76 ± 61.10 pg/mL IL-1ra: 24.15 ± 21.67 pg/mL aMMP-8: 35.62 ± 35.60 pg/mL | [31] |
Porcelain-metal crowns: Metal surface and ceramic surface Composite restorations Amalgam restorations | Substance P Neurokinin A Calcitonin gene-related peptide IL-1 α IL-1β PGE2 | GCF | ELISA | Surface metal: Substance P: 3.85 (3.5–4.26) pg/mL Neurokinin A: 9.55 (0.04–10.3) pg/mL Calcitonin gene-related peptide: 5.71 (5.10–6.35) pg/mL IL-1 α: 0.68 (0.36–1.59) pg/mL IL-1β: 0.93 (0.64–1.09) pg/mL PGE2: 0.65 (0.56–0.87) pg/mL Ceramic surface: Substance P: 7.36 (3.69–13.49) pg/mL Neurokinin A: 9.61 (9.02–10.41) pg/mL Calcitonin gene-related peptide: 5.76 (5.10–6.25) pg/mL IL-1 α: 0.61 (0.10–2.12) pg/mL IL-1β: 0.81 (0.63–1.11) pg/mL PGE2: 0.63 (0.59–0.79) pg/mL | [32] |
Full-coverage definitive restorations with different levels of crown margin placement | IL-1 α IL-8 | GCF | ELISA | Supragingival margin: IL-1 α: 53.8 ± 9.7 pg/mL IL-8: 49.9 ± 9.7 pg/mL Equigingival margin: IL-1 α: 110.5 ± 23.3 pg/mL IL-8: 131.4 ± 27.5 pg/mL | [33] |
Ceramic metal crowns With Ni-Cr alloy | IL-8 IL-6 | GCF | ELISA | IL-8 Before restoration: 76.03 ± 31.49 pg/mL 1 week after: 79.13 ± 29.01 pg/mL 3 months after: 88.50 ± 30.46 pg/mL 6 months after: 82.87 ± 31.05 pg/mL IL-6 Before restoration: 265.97 ± 13.35 pg/mL 1 week after: 291.62 ± 17.75 pg/mL 3 months after: 311.34 ± 12.80 pg/mL 6 months after: 317 ± 14.45 pg/mL | [34] |
Metal and metal-ceramic prosthetic restorations with Cr-Co and Ni-Cr alloys | MMP-2 MMP-8 MMP-9 IL-1β IL-6 TNF-α TIMP-1 TIMP-2 | GCF | ELISA | Patients with prosthetic restorations and periodontitis have increased levels of TNF- α, MMP-8, IL-1β and IL-6 compared to patients without prosthetic restorations | [35] |
Metal ceramic crowns Divided into healthy, gingivitis and periodontitis affected sites | IL-1β IL-6 TNF-α | GCF | ELISA | Sites affected with gingivitis and periodontitis were associated with significantly increased secretion of inflammatory cytokines in FCG compared to healthy sites | [36] |
Crowns with different levels of placement of their margins | IL-1β MMP-2 | GCF | ELISA | L-1β Before nonsurgical therapy: Supragingival margins: 49.6 pg/mL Gingival margins: 74.5 pg/mL Subgingival margins: 101.6 pg/mL After non-surgical therapy: Supragingival margins: 17.3 pg/mL Gingival margins: 65.7 pg/mL Subgingival margins: 57.7 pg/mL MMP-2 values were not detectable, because they are below the detection threshold of this test. | [37] |
Abutment teeth supporting a fixed metal-ceramic partial denture | IL-6 IL-8 | GCF | ELISA | IL-6 Initial values: 0.86 ± 1.21 pg/mL 1 month later: 0.99 ± 1.30 pg/mL 3 months later: 0.57 ± 0.68 pg/mL IL-8 Initial values: 0.93 ± 0.81 pg/mL 1 month after: 0.91 ± 0.65 pg/mL 3 months after: 0.50 ± 0.34 pg/ml | [38] |
Galvanic-ceramic crowns Metal-ceramic crowns | IgG | GCF | ELISA | IgG Baseline: 542.28 ± 1078.54 pg/mL 12 months after: 264.61 ± 532.24 pg/mL 24 months later: 390.41 ± 908.62 pg/mL | [39] |
Abutment teeth supporting a removable partial denture made of metal (Cr-Co alloy) and acrylic resin. | IL-1β | GCF | ELISA | IL-1β Baseline: 133.1 ± 52.1 pg/mL 9 months later: 122.7 ± 30.1 pg/mL | [40] |
Ceramic metal crowns: Group 1: Cr-Ni-M alloy ceramics. Group 2: Ceramics Group 3: Au-Pt-In alloyed ceramics | IL-1β | GCF | ELISA | IL-1β Group 1: 95.31 ± 29.19 pg/mL Group 2: 93.63 ± 45.06 pg/mL Group 3: 103.4 ± 54.34 pg/mL | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcón-Sánchez, M.A.; Heboyan, A.; Fernandes, G.V.d.O.; Castro-Alarcón, N.; Romero-Castro, N.S. Potential Impact of Prosthetic Biomaterials on the Periodontium: A Comprehensive Review. Molecules 2023, 28, 1075. https://doi.org/10.3390/molecules28031075
Alarcón-Sánchez MA, Heboyan A, Fernandes GVdO, Castro-Alarcón N, Romero-Castro NS. Potential Impact of Prosthetic Biomaterials on the Periodontium: A Comprehensive Review. Molecules. 2023; 28(3):1075. https://doi.org/10.3390/molecules28031075
Chicago/Turabian StyleAlarcón-Sánchez, Mario Alberto, Artak Heboyan, Gustavo Vicentis de Oliveira Fernandes, Natividad Castro-Alarcón, and Norma Samanta Romero-Castro. 2023. "Potential Impact of Prosthetic Biomaterials on the Periodontium: A Comprehensive Review" Molecules 28, no. 3: 1075. https://doi.org/10.3390/molecules28031075
APA StyleAlarcón-Sánchez, M. A., Heboyan, A., Fernandes, G. V. d. O., Castro-Alarcón, N., & Romero-Castro, N. S. (2023). Potential Impact of Prosthetic Biomaterials on the Periodontium: A Comprehensive Review. Molecules, 28(3), 1075. https://doi.org/10.3390/molecules28031075