Successive Solvent Extraction, Characterization and Antioxidant Activities of Cardoon Waste (Leaves and Stems) Extracts: Comparative Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.1.1. Yield
2.1.2. FTIR Spectroscopy
2.1.3. Spectrophotometric Determination
2.1.4. TAC
2.1.5. DPPH Free Radical Scavenging Activity
3. Materials and Methods
3.1. Chemical Products
3.2. Equipment
3.3. Plant Material
Successive Extraction
3.4. Physicochemical and Phytochemical Characterizations
3.4.1. FTIR Spectroscopy
3.4.2. Total Phenolic Content (TPC)
3.4.3. Total Flavonoid Content (TFC)
3.4.4. Condensed Tannins (CT)
3.4.5. Total Antioxidant Capacity (TAC)
3.4.6. 2,2-.diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mandim, F.; Petropoulos, S.A.; Pinela, J.; Dias, M.I.; Giannoulis, K.D.; Kostić, M.; Soković, M.; Queijo, B.; Santos-Buelga, C.; Ferreira, I.C.; et al. Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chem. 2021, 369, 130875. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Varriale, S.; Porta, R.; Naviglio, D.; Spennato, M.; Gardossi, L.; Giosafatto, C.V.L.; Pezzella, C. A biorefinery approach for the conversion of Cynara cardunculus biomass to active films. Food Hydrocoll. 2021, 122, 107099. [Google Scholar] [CrossRef]
- Brás, T.; Paulino, A.F.C.; Neves, L.A.; Crespo, J.G.; Duarte, M.F. Ultrasound assisted extraction of cynaropicrin from Cynara cardunculus leaves: Optimization using the response surface methodology and the effect of pulse mode. Ind. Crop. Prod. 2020, 150, 112395. [Google Scholar] [CrossRef]
- Shallan, M.A.; Ali, M.A.; Meshrf, W.A.; Marrez, D.A. In vitro antimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var scolymus L.) bracts and receptacles ethanolic extract. Biocatal. Agric. Biotechnol. 2020, 29, 101774. [Google Scholar] [CrossRef]
- Nabih, M.H.; El Hajam, M.; Boulika, H.; Chiki, Z.; Ben Tahar, S.; Kandri, N.I.; Zerouale, A. Preparation and characterization of activated carbons from cardoon “Cynara Cardunculus” waste: Application to the adsorption of synthetic organic dyes. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Kostić, M.; Soković, M.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Phenolic Composition and Biological Properties of Cynara cardunculus L. var altilis Petioles: Influence of the Maturity Stage. Antioxidants 2021, 10, 1907. [Google Scholar] [CrossRef]
- Samavardhana, K.; Supawititpattana, P.; Jittrepotch, N.; Rojsuntornkitti, K.; Kongbangkerd, T. Effects of extracting conditions on phenolic compounds and antioxidant activity from different grape processing byproducts. Int. Food Res. J. 2015, 22, 1169–1179. [Google Scholar]
- Kaur, N.; Singh, B.; Sharma, S.; Kumar, R. Refinement of a protocol for the assessment of antioxidative activities of normal maize (NM) and quality protein maize (QPM). J. Food Process. Preserv. 2020, 44. [Google Scholar] [CrossRef]
- Belwal, T.; Chemat, F.; Venskutonis, R.P.; Cravotto, G.; Jaiswal, K.D.; Bhatt, D.I.; Devkota, P.H.; Luo, Z. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends Anal. Chem. 2020. [Google Scholar] [CrossRef]
- El Hajam, M.; Kandri, N.I.; Plavan, G.-I.; Harrath, A.H.; Mansour, L.; Boufahja, F.; Zerouale, A. Pb2+ ions adsorption onto raw and chemically activated Dibetou sawdust: Application of experimental designs. J. King Saud Univ.-Sci. 2020, 32, 2176–2189. [Google Scholar] [CrossRef]
- Hema, A.; Koala, M. Caractérisation d ’ extraits totaux de colorants à usage textile de dix plantes tinctoriales du Burkina Faso Benjamin Bazié, Adama Hema, Moumouni Koala. J. Soc. Ouest-Afr. Chim. 2020, 049, 31–40. [Google Scholar]
- Schulz, H.; Baranska, M.; Quilitzsch, R.; Schütze, W. Determination of alkaloids in capsules, milk and ethanolic extracts of poppy (Papaver somniferum L.) by ATR-FT-IR and FT-Raman spectroscopy. Analyst 2004, 129, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. J. Appl. Res. Med. Aromat. Plants 2018, 11, 12–17. [Google Scholar] [CrossRef]
- El Hajam, M.; Kandri, N.I.; Harrach, A.; El Khomsi, A.; Zerouale, A. Physicochemical characterization of softwood waste “Cedar” and hardwood waste “Mahogany”: Comparative study. Mater. Today: Proc. 2019, 13, 803–811. [Google Scholar] [CrossRef]
- El Hajam, M.; Kandri, N.I.; Zerouale, A.; Wang, X.; Gustafsson, J.; Wang, L.; Mäkilä, E.; Hupa, L.; Xu, C. Lignocellulosic Nanocrystals from Sawmill Waste as Biotemplates for Free-Surfactant Synthesis of Photocatalytically Active Porous Silica. ACS Appl. Mater. Interfaces 2022, 14, 19547–19560. [Google Scholar] [CrossRef] [PubMed]
- Boulika, H.; El Hajam, M.; Nabih, M.H.; Karim, I.R.; Kandri, N.I.; Zerouale, A. Definitive screening design applied to cationic & anionic adsorption dyes on Almond shells activated carbon: Isotherm, kinetic and thermodynamic studies. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Toubal, S.; Elhaddad, D.; Bouchenak, O.; Yahiaoui, K.; Sadaoui, N.; Arab, K. L’importance des extraits d’Urtica dioica L. dans la lutte contre Culex pipiens (Linné, 1758). J. Environ. Sci. Technol. 2018, 4, 60–68. [Google Scholar]
- Selka, M.A.; Achouri, M.Y.; Chenafa, A. Activités antioxydantes et antimicrobiennes des feuilles de Vitis vinifera L. d ’ Algérie Antioxidant and antimicrobial activities of Algerian Vitis vinifera L. leaves. Alger. J. Pharm 2022, 4, 23–32. [Google Scholar]
- Gupta, A.D.; Pundeer, V.; Bande, G.; Dhar, S.; Ranganath, I.R.; Kumari, G.S. Evaluation of antioxidant activity of four folk antidiabetic medicinal plants of India. Pharmacologyonline 2009, 1, 200–208. [Google Scholar]
- Dieng, S.I.M.; Fall, A.D.; Diatta-Badji, K.; Sarr, A.; Sene, M.; Sene, M.; Mbaye, A.; Diatta, W.; Bassene, E. Evaluation de l’activité antioxydante des extraits hydro-ethanoliques des feuilles et écorces de Piliostigma thonningii Schumach. Int. J. Biol. Chem. Sci. 2017, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Nabih, M.H.; El Hajam, M.; Boulika, H.; Hassan, M.M.; Kandri, N.I.; Hedfi, A.; Zerouale, A.; Boufahja, F. Physicochemical Characterization of Cardoon “Cynara cardunculus” Wastes (Leaves and Stems): A Comparative Study. Sustainability 2021, 13, 13905. [Google Scholar] [CrossRef]
- Bourgou, S.; Beji, R.S.; Medini, F.; Ksouri, R. Effet du solvant et de la méthode d’extraction sur la teneur en composés phénoliques et les potentialités antioxydantes d’Euphorbia helioscopia. Agric. Biotechnol. 2016, 28, 1649–1655. [Google Scholar]
- El-Guendouz, S.; Aazza, S.; Lyoussi, B.; Bankova, V.; Popova, M.; Neto, L.; Faleiro, M.L.; Miguel, M.D.G. Moroccan Propolis: A Natural Antioxidant, Antibacterial, and Antibiofilm against Staphylococcus aureus with No Induction of Resistance after Continuous Exposure. Evid.-Based Complement. Altern. Med. 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ghedadba, N.; Hambaba, L.; Ayachi, A.; Aberkane, M.C.; Bousselsela, H.; Oueld-Mokhtar, S.M. Polyphénols totaux, activités antioxydante et antimicrobienne des extraits des feuilles de Marrubium deserti de Noé. Phytotherapie 2015, 13, 118–129. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999. [Google Scholar] [CrossRef] [PubMed]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and Mechanisms of Antioxidant Activity using the DPPH. Free Radical Method. LWT-Food Sci. Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
Solvent | Yield% | |||
---|---|---|---|---|
Soxhlet Extraction | Ultrasonic Assisted Extraction | |||
Leaves | Stems | Leaves | Stems | |
Hexane | 1.93 ± 0.85 | 1.95 ± 0.06 | 19.40 ± 1.15 | 13.00 ± 1.87 |
Ethanol | 16.37 ± 0.46 | 15.20 ± 1.32 | 24.00 ± 2.36 | 17.20 ± 0.95 |
Distilled water | 29.40 ± 1.47 | 24.51 ± 0.86 | 33.00 ± 4.98 | 25.40 ± 3.25 |
Total | 47.7 ± 2.78 | 41.66 ± 2.24 | 76.4 ± 8.49 | 55.6 ± 6.07 |
Hexane Extract | Ethanol Extract | Water Extract | |||
---|---|---|---|---|---|
Wavenumber (cm−1) | Assignment | Wavenumber (cm−1) | Assignment | Wavenumber (cm−1) | Assignment |
2916 | O-H (carboxylic acid) | 3300 | O-H (alcohol) | 3300 | O-H (alcohol) |
2848 | C-H (elongation) | 2918–2916 | O-H (carboxylic acid) | 1596 | C=C (aromatic cycle) |
1708 | C=C (alcene) | 1708 | C=C (alcene) | 1389 | C-O (ether oxide) |
1461 | C=O (elongation) | 1596 | C=C (aromatic cycle) | 1253 | C-O |
1389 | N-H (deformation) | 1389 | C-O (ether oxide) | 1036 | C-N (amines) |
1168 | C-N (elongation) | 1253 | C-O | 1000–500 | C-H |
721 | C-N (deformation) | 1036 | C-N (amines) | - | - |
- | - | 1000–500 | C-H | - | - |
Samples | Phenolics (mg GAE/g FM) | Flavonoids (mg QE/g FM) | Condensed Tannins (mg CE/g FM) | |
---|---|---|---|---|
Leaves | Hexane extract | 32.472 ± 3.988 | 0.200 ± 0.005 | 0.302 ± 0.010 |
Ethanol extract | 82.524 ± 10.661 | 2.8624 ± 0.264 | 11.912 ± 4.394 | |
Water extract | 579.375 ± 3.662 | 5.1204 ± 0.361 | 18.446 ± 4.674 | |
Stems | Hexane extract | 25.392 ± 4.313 | 0.201 ± 0.016 | 0.982 ± 0.025 |
Ethanol extract | 108.404 ± 3.174 | 2.9323 ± 0.357 | 12.115 ± 4.664 | |
Water extract | 264.906 ± 3.500 | 5.0237 ± 0.386 | 18.166 ± 4.747 |
Samples | TAC (mg Ascorbic Acid Equivalents/g Fresh Matter) | |
---|---|---|
Leaves | Ethanol extract | 84.76 ± 3.83 |
Water extract | 534.72 ± 3.83 | |
Stems | Ethanol extract | 179.41 ± 11.09 |
Water extract | 215.70 ± 8.87 |
Concentration (µg/mL) | % of Inhibition | |||
---|---|---|---|---|
Water Extract | Ethanol Extract | |||
Leaves | Stems | Leaves | Stems | |
8000 | 77.10 ± 0.210 | 82.63 ± 0.700 | 84.33 ± 0.061 | 91.83 ± 0.062 |
butylated hydroxytoluene (BHT) | ||||
500 | 76.78 ± 0.001 |
Samples | DPPH Scavenging IC50 (μg/mL) | |
---|---|---|
Range of BHT | 53.642 | |
Leaves | Ethanol extract | 1118.667 |
Water extract | 2077.491 | |
Steams | Ethanol extract | 1539.396 |
Water extract | 1248.185 |
Equipment | Brand Name |
---|---|
Automatic Mill | IKA tube Mill control |
Oven | Binder |
UV Spectrophotometer | Biobase |
Spectrometer | FTIR Bruker Vertex 70 |
Soxhlet Extractor | Heating Mantle |
Ultrasound | Elma |
Electronic Balance | Nahita |
Rotavapor | Büchi R-114 |
Refrigerator | Siera |
Cartridge Glasses | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajji Nabih, M.; Boulika, H.; El Hajam, M.; Alghonaim, M.I.; Kandri, N.I.; Alsalamah, S.A.; Boufahja, F. Successive Solvent Extraction, Characterization and Antioxidant Activities of Cardoon Waste (Leaves and Stems) Extracts: Comparative Study. Molecules 2023, 28, 1129. https://doi.org/10.3390/molecules28031129
Hajji Nabih M, Boulika H, El Hajam M, Alghonaim MI, Kandri NI, Alsalamah SA, Boufahja F. Successive Solvent Extraction, Characterization and Antioxidant Activities of Cardoon Waste (Leaves and Stems) Extracts: Comparative Study. Molecules. 2023; 28(3):1129. https://doi.org/10.3390/molecules28031129
Chicago/Turabian StyleHajji Nabih, Meryem, Hamza Boulika, Maryam El Hajam, Mohammed I. Alghonaim, Noureddine Idrissi Kandri, Sulaiman A. Alsalamah, and Fehmi Boufahja. 2023. "Successive Solvent Extraction, Characterization and Antioxidant Activities of Cardoon Waste (Leaves and Stems) Extracts: Comparative Study" Molecules 28, no. 3: 1129. https://doi.org/10.3390/molecules28031129
APA StyleHajji Nabih, M., Boulika, H., El Hajam, M., Alghonaim, M. I., Kandri, N. I., Alsalamah, S. A., & Boufahja, F. (2023). Successive Solvent Extraction, Characterization and Antioxidant Activities of Cardoon Waste (Leaves and Stems) Extracts: Comparative Study. Molecules, 28(3), 1129. https://doi.org/10.3390/molecules28031129