Multivariate Analysis of Essential Oil Composition of Artemisia annua L. Collected from Different Locations in Korea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Color of Korean A. annua Essential Oils
2.2. Chemical Variations of Korean A. annua Essential Oils
2.3. Multivariate Analysis
2.3.1. Cluster Analysis
2.3.2. Principal Component Analysis (PCA)
2.3.3. Correlation Analysis
3. Materials and Methods
3.1. Collection and Cultivation of Korean A. annua Seeds
3.2. Extraction of Essential Oils
3.3. Identification of Essential Oil Components by GC-MS Analysis
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus Artemisia. Arch. Pharm. Res. 2021, 44, 439–474. [Google Scholar] [CrossRef] [PubMed]
- Bilia, A.R.; Santomauro, F.; Sacco, C.; Bergonzi, M.C.; Donato, R. Essential oil of Artemisia annua L.: An extraordinary component with numerous antimicrobial properties. Evid. Based Complement. Altern. Med. 2014, 2014, 159819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharopov, F.S.; Salimov, A.; Numonov, S.; Safomuddin, A.; Bakri, M.; Salimov, T.; Setzer, W.N.; Habasi, M. Chemical composition, antioxidant, and antimicrobial activities of the essential oils from Artemisia annua L. growing wild in Tajikistan. Nat. Prod. Commun. 2020, 15, 927. [Google Scholar] [CrossRef]
- Feng, X.; Cao, S.; Qiu, F.; Zhang, B. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol. Ther. 2020, 216, 107650. [Google Scholar] [CrossRef]
- Lee, Y.N. New Flora of Korea; Hyangmunsa Press: Seoul, Republic of Korea, 2006; pp. 327–334. (In Korean) [Google Scholar]
- National Insititute of Korean History (NIKH). The veritable records of the Joseon Dynasty. National Insititute of Korean History. 2005. Available online: http://sillok.history.go.kr/id/wda_400060 (accessed on 1 December 2022). (In Korean)
- Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin. Cancer Biol. 2017, 46, 65–83. [Google Scholar] [CrossRef]
- Haq, F.U.; Roman, M.; Ahmad, K.; Rahman, S.U.; Shah, S.M.A.; Suleman, N.; Ullah, S.; Ahmad, I.; Ullah, W. Artemisia annua: Trials are needed for COVID-19. Phytother. Res. 2020, 34, 2423–2424. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Guo, L.; Qiu, Z.; Huang, L.; Qu, X. Differences in chemical constituents of Artemisia annua L. from different geographical regions in China. PLoS ONE 2017, 12, e0183047. [Google Scholar] [CrossRef] [Green Version]
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. Genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, G.D.; Haider, F.; Dwivedi, P.D.; Singh, A.; Naqvi, A.A. Essential oil constituents of Artemisia annua during different growth periods at monsoon conditions of subtropical north Indian plains. J. Essent. Oil Res. 2003, 15, 248–250. [Google Scholar] [CrossRef]
- Hong, M.J.; Kim, M.J.; Kim, S. Biological activities of sweet wormwood (Artemisia annua L.). Korean J. Weed Turf. Sci. 2021, 10, 243–263. (In Korean) [Google Scholar]
- Ćavar, S.; Maksimović, M.; Vidic, D.; Parić, A. Chemical composition and antioxidant and antimicrobial activity of essential oil of Artemisia annua L. from Bosnia. Ind. Crop. Prod. 2012, 37, 479–485. [Google Scholar] [CrossRef]
- Hwang, D.I.; Won, K.J.; Kim, D.Y.; Yoon, S.W.; Park, J.H.; Kim, B.; Lee, H.M. Anti-adipocyte differentiation activity and chemical composition of essential oil from Artemisia annua. Nat. Prod. Commun. 2016, 11, 539–542. [Google Scholar] [PubMed]
- Hong, M.J.; Deepa, P.; Lee, K.Y.; Kim, K.; Sowndhararajan, K.; Kim, S. Chemical diversity of essential oils from Korean native populations of Agastache rugosa (Korean Mint). Molecules 2022, 27, 6341. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Sowndhararajan, K.; Kim, S. Variations in the chemical composition of essential oils in native populations of Korean thyme, Thymus quinquecostatus Celak. Molecules 2022, 27, 7203. [Google Scholar] [CrossRef]
- Zhigzhitzhapova, S.V.; Dylenova, E.P.; Gulyaev, S.M.; Randalova, T.E.; Taraskin, V.V.; Tykheev, Z.A.; Radnaeva, L.D. Composition and antioxidant activity of the essential oil of Artemisia annua L. Nat. Prod. Res. 2019, 34, 2668–2671. [Google Scholar] [CrossRef]
- Radulović, N.S.; Randjelović, P.J.; Stojanović, N.M.; Blagojević, P.D.; Stojanović-Radić, Z.Z.; Ilić, I.R.; Djordjević, V.B. Toxic essential oils. Part II: Chemical, toxicological, pharmacological and microbiological profiles of Artemisia annua L. volatiles. Food Chem. Toxicol. 2013, 58, 37–49. [Google Scholar] [CrossRef]
- Holm, Y.; Laakso, I.; Hiltunen, R.; Galambosi, B. Variation in the essential oil composition of Artemisia annua L. of different origin cultivated in Finland. Flavour Frag. J. 1997, 12, 241–246. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Horgan, T.; Schlegel, V.; Simonnet, X. Distillation time effect on essential oil yield, composition, and antioxidant capacity of sweet sagewort (Artemisia annua L.) oil. HortScience 2013, 48, 1288–1292. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.D. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 2010, 15, 7603–7698. [Google Scholar] [CrossRef] [Green Version]
- Goel, D.; Singh, V.; Ali, M.; Mallavarupu, G.R.; Kumar, S. Essential oils of petal, leaf and stem of the antimalarial plant Artemisia annua. J. Nat. Med. 2007, 61, 187–191. [Google Scholar] [CrossRef]
- Janaćković, P.; Rajčević, N.; Gavrilović, M.; Novaković, J.; Giweli, A.; Stešević, D.; Marin, P.D. Essential oil composition of five Artemisia (Compositae) species in regards to chemophenetics. Biochem. Syst. Ecol. 2019, 87, 103960. [Google Scholar] [CrossRef]
- Shin, S. In vitro effects of essential oils from the aerial parts of Artemisia annua L. against antibiotic-susceptible and -resistant strains of Salmenella typhimurium. J. Pharm. Soc. Korea 2007, 51, 355–360. (In Korean) [Google Scholar]
- Bhakuni, R.S.; Jain, D.C.; Sharma, R.P.; Kumar, S. Secondary metabolites of Artemisia annua and their biological activity. Curr. Sci. 2001, 80, 35–48. [Google Scholar]
- Charles, D.J.; Cebert, E.; Simon, J.E. Characterization of the essential oil of Artemisia annua L. J. Essent. Oil Res. 1991, 3, 33–39. [Google Scholar] [CrossRef]
- Liu, H.; Guo, S.-S.; Lu, L.; Li, D.; Liang, J.; Huang, Z.-H.; Zhou, Y.-M.; Zhang, W.-J.; Du, S. Essential oil from Artemisia annua aerial parts: Composition and repellent activity against two storage pests. Nat. Prod. Res. 2021, 35, 822–825. [Google Scholar] [CrossRef]
- Tzenkova, R.; Kamenarska, Z.; Draganov, A.; Atanassov, A. Composition of Artemisia annua essential oil obtained from species growing wild in Bulgaria. Biotechnol. Biotechnol. Equip. 2010, 24, 1833–1835. [Google Scholar] [CrossRef] [Green Version]
- Marinas, I.C.; Oprea, E.; Chifiriuc, M.C.; Badea, I.A.; Buleandra, M.; Lazar, V. Chemical Composition and Antipathogenic Activity of Artemisia annua Essential Oil from Romania. Chem Biodivers. 2015, 12, 1554–1564. [Google Scholar] [CrossRef]
- Santomauro, F.; Donato, R.; Pini, G.; Sacco, C.; Ascrizzi, R.; Bilia, A.R. Liquid and Vapor-Phase Activity of Artemisia annua Essential Oil against Pathogenic Malassezia spp. Planta Med. 2018, 84, 160–167. [Google Scholar] [CrossRef]
- Risaliti, L.; Pini, G.; Ascrizzi, R.; Donato, R.; Sacco, C.; Bergonzi, M.C.; Salvatici, M.C.; Bilia, A.R. Artemisia annua essential oil extraction, characterization, and incorporation in nanoliposomes, smart drug delivery systems against Candida species. J. Drug Deliv. Sci. Technol. 2020, 59, 101849. [Google Scholar] [CrossRef]
- Wêglarz, Z.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Baczek, K. The quality of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare) Cultivated in the temperate climate of Central Europe. Foods 2020, 9, 1671. [Google Scholar] [CrossRef]
- Haider, S.Z.; Andola, H.C.; Mohan, M. Constituents of Artemisia gmelinii Weber ex Stechm. from Uttarakhand Himalaya: A Source of Artemisia Ketone. Indian J. Pharm. Sci. 2012, 74, 265–267. [Google Scholar] [PubMed] [Green Version]
- Chen, W.; Vermaak, I.; Viljoen, A. Camphor—A fumigant during the Black Death and a coveted fragrant wood in ancient Egypt and Babylon—A review. Molecules 2013, 18, 5434–5454. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Soković, M. Camphor and Eucalyptol-Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. Int. J. Mol. Sci. 2021, 22, 483. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.M.; Peng, J.Q.; Chen, Y.; Tao, L.; Zhang, Y.Y.; Fu, L.Y.; Long, Q.D.; Shen, X.C. 1,8-Cineole: A review of source, biological activities, and application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, M.; Steuer, C. α-Pinene: A never-ending story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Bai, J.; Chen, C.; Plotto, A.; Baldwin, E.A.; Gmitter, F.G. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes. J. Sci. Food Agric. 2018, 98, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Vella, F.M.; Calandrelli, R.; Cautela, D.; Fiume, I.; Pocsfalvi, G.; Laratta, B. Chemometric Screening of Fourteen Essential Oils for Their Composition and Biological Properties. Molecules 2020, 25, 5126. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Co., Ltd.: Carol Stream, IL, USA, 2007. [Google Scholar]
No. | Samples | Yield (%) | Color | No. | Samples | Yield (%) | Color | No. | Samples | Yield (%) | Color |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | AA1 | 0.237 | Y | 36 | AA40 | 0.288 | DY | 71 | AA78 | 0.689 | DY |
2 | AA2 | 0.527 | DY | 37 | AA41 | 0.046 | Y | 72 | AA80 | 0.645 | PY |
3 | AA3 | 0.142 | DY | 38 | AA42 | 0.107 | DY | 73 | AA82 | 0.697 | PY |
4 | AA4 | 0.311 | Y | 39 | AA43 | 0.076 | DY | 74 | AA83 | 0.664 | Y |
5 | AA5 | 0.723 | PY | 40 | AA44 | 0.038 | PY | 75 | AA84 | 0.647 | PY |
6 | AA6 | 0.227 | DY | 41 | AA45 | 0.038 | Y | 76 | AA85 | 0.617 | Y |
7 | AA7 | 0.088 | DY | 42 | AA46 | 0.041 | DY | 77 | AA86 | 0.500 | DY |
8 | AA11 | 0.360 | Y | 43 | AA47 | 0.060 | Y | 78 | AA87 | 0.745 | Y |
9 | AA12 | 0.377 | DY | 44 | AA48 | 0.058 | DY | 79 | AA88 | 0.690 | PY |
10 | AA13 | 0.223 | DY | 45 | AA49 | 0.059 | Y | 80 | AA89 | 0.561 | PY |
11 | AA14 | 0.440 | PY | 46 | AA50 | 0.039 | DY | 81 | AA90 | 0.932 | PY |
12 | AA15 | 0.335 | Y | 47 | AA51 | 0.064 | Y | 82 | AA91 | 1.088 | PY |
13 | AA16 | 0.330 | PY | 48 | AA52 | 0.037 | DY | 83 | AA92 | 0.629 | PY |
14 | AA17 | 0.435 | Y | 49 | AA53 | 0.049 | Y | 84 | AA93 | 0.792 | PY |
15 | AA18 | 0.273 | DY | 50 | AA54 | 0.063 | DY | 85 | AA94 | 0.895 | PY |
16 | AA20 | 0.194 | DY | 51 | AA55 | 0.085 | DY | 86 | AA95 | 0.983 | PY |
17 | AA21 | 0.367 | DY | 52 | AA56 | 0.041 | PY | 87 | AA96 | 1.063 | PY |
18 | AA22 | 0.257 | DY | 53 | AA57 | 0.059 | PY | 88 | AA97 | 1.060 | PY |
19 | AA23 | 0.426 | Y | 54 | AA58 | 0.050 | PY | 89 | AA98 | 0.818 | PY |
20 | AA24 | 0.490 | DY | 55 | AA59 | 0.061 | Y | 90 | AA99 | 0.751 | PY |
21 | AA25 | 0.533 | Y | 56 | AA60 | 0.046 | PY | 91 | AA100 | 0.744 | PY |
22 | AA26 | 0.492 | DY | 57 | AA61 | 0.630 | Y | 92 | AA101 | 0.767 | PY |
23 | AA27 | 0.305 | DY | 58 | AA62 | 0.720 | PY | 93 | AA102 | 0.913 | PY |
24 | AA28 | 0.526 | DY | 59 | AA63 | 0.772 | PY | 94 | AA103 | 0.798 | PY |
25 | AA29 | 0.519 | Y | 60 | AA64 | 0.827 | PY | 95 | AA104 | 0.762 | PY |
26 | AA30 | 0.213 | Y | 61 | AA65 | 0.624 | PY | 96 | AA105 | 0.574 | PY |
27 | AA31 | 0.369 | Y | 62 | AA66 | 0.581 | PY | 97 | AA106 | 0.771 | PY |
28 | AA32 | 0.137 | DY | 63 | AA67 | 0.652 | PY | 98 | AA107 | 0.903 | PY |
29 | AA33 | 0.380 | Y | 64 | AA68 | 0.566 | Y | 99 | AA108 | 0.561 | PY |
30 | AA34 | 0.355 | Y | 65 | AA69 | 0.606 | PY | 100 | AA109 | 0.663 | PY |
31 | AA35 | 0.311 | DY | 66 | AA70 | 0.624 | PY | 101 | AA110 | 0.566 | PY |
32 | AA36 | 0.267 | DY | 67 | AA71 | 0.650 | PY | 102 | AA111 | 0.536 | PY |
33 | AA37 | 0.214 | DY | 68 | AA72 | 0.891 | PY | 103 | AA112 | 0.926 | PY |
34 | AA38 | 0.361 | DY | 69 | AA74 | 0.501 | Y | ||||
35 | AA39 | 0.337 | Y | 70 | AA75 | 0.910 | PY |
Chemotypes | Content Ratio (%) | Samples |
---|---|---|
Artemisia ketone (75) | 20.51–83.82 | AA1, AA2, AA4, AA5, AA6, AA11, AA12, AA13, AA14, AA15, AA16, AA17, AA20, AA21 AA22, AA24, AA25, AA26, AA27, AA28, AA32, AA33, AA34, AA35, AA36, AA37, AA38, AA39, AA40, AA61, AA62, AA63, AA64, AA65, AA66, AA67, AA68, AA69, AA70, AA71, AA72, AA74, AA75, AA78, AA80, AA82, AA83, AA85, AA86, AA87, AA88, AA89, AA90, AA91, AA92, AA93, AA94, AA95, AA96, AA97, AA98, AA99, AA100, AA101, AA102, AA103, AA104, AA105, AA106, AA107, AA108, AA109, AA110, AA111, AA112 |
Camphor (1) | 25.05 | AA30 |
β-Cubebene (5) | 13.90–22.52 | AA47, AA48, AA51, AA55, AA57 |
Eucalyptol (4) | 15.07–43.01 | AA23, AA29, AA31, AA84 |
α-Pinene (1) | 21.16 | AA18 |
β-Selinene (17) | 20.05–46.29 | AA3, AA7, AA41, AA42, AA43, AA44, AA45, AA46, AA49, AA50, AA52, AA53, AA54, AA56, AA58, AA59, AA60 |
Group | Major Compound | Chemical Characteristics |
---|---|---|
I | Artemisia ketone | Monoterpenoids content ratio in the essential oil is dominant (monoterpenoids content ratio > 64%; artemisia ketone ratio > 41%). |
II | β-Selinene | Sesquiterpenoids content ratio in the essential oil is dominant(sesquiterpenoids content ratio > 37%; β-selinene > 20%) |
III | Eucalyptol, β-cubebene | Monoterpenoids and sesquiterpenoids content ratio in the essential oil is similar (monoterpenoids content:sesquiterpenoids content = 1:1) |
No. | Chemical Name | Code | Principal Components | ||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | |||
1 | Santolina triene | C1 | −0.540 | 0.092 | −0.066 |
2 | α-Pinene | C2 | 0.249 | 0.408 | 0.088 |
3 | Camphene | C3 | 0.303 | 0.526 | 0.085 |
4 | β-Pinene | C4 | 0.174 | 0.654 | 0.054 |
5 | Yomogi alcohol | C5 | −0.516 | 0.148 | 0.126 |
6 | α-Terpinene | C6 | 0.264 | 0.771 | −0.115 |
7 | p-Cymene | C7 | 0.403 | 0.315 | 0.186 |
8 | Limonene | C8 | 0.269 | 0.569 | −0.185 |
9 | Eucalyptol | C9 | 0.113 | 0.807 | −0.523 |
10 | Artemisia ketone | C10 | −0.998 | −0.063 | −0.026 |
11 | Sabinene hydrate | C11 | 0.057 | 0.446 | −0.291 |
12 | Artemisia alcohol | C12 | −0.619 | 0.105 | 0.027 |
13 | 3-Isopentenyl isovalerate | C13 | −0.288 | 0.133 | −0.094 |
14 | Pinocarveol | C14 | 0.245 | 0.382 | 0.093 |
15 | Camphor | C15 | 0.325 | 0.395 | 0.028 |
16 | Pinocarvone | C16 | 0.148 | 0.326 | 0.089 |
17 | Terpinen-4-ol | C17 | 0.361 | 0.774 | −0.110 |
18 | α-Terpineol | C18 | 0.161 | 0.810 | −0.401 |
19 | 3-Hexenyl isovalerate | C19 | −0.167 | 0.265 | −0.168 |
20 | α-Longipinene | C20 | −0.019 | −0.046 | −0.293 |
21 | α-Copaene | C21 | 0.267 | 0.010 | 0.229 |
22 | Benzyl isovalerate | C22 | 0.641 | −0.371 | −0.006 |
23 | β-Cubebene | C23 | 0.687 | −0.262 | 0.442 |
24 | β-Caryophyllene | C24 | 0.716 | −0.245 | 0.275 |
25 | β-Farnesene | C25 | −0.418 | 0.279 | −0.064 |
26 | α-Humulene | C26 | 0.292 | 0.048 | 0.189 |
27 | β-Chamigrene | C27 | −0.241 | 0.199 | 0.010 |
28 | β-Selinene | C28 | 0.708 | −0.598 | −0.371 |
29 | γ-Elemene | C29 | 0.647 | −0.093 | 0.411 |
30 | Butylated hydroxytoluene | C30 | −0.243 | 0.038 | 0.136 |
31 | δ-Cadinene | C31 | 0.670 | −0.221 | 0.188 |
32 | Caryophyllene oxide | C32 | 0.469 | −0.193 | 0.261 |
33 | α-Muurolol | C33 | 0.673 | −0.380 | 0.311 |
34 | Vulgarone B | C34 | −0.331 | 0.160 | −0.144 |
35 | Lanceol | C35 | 0.611 | −0.313 | 0.399 |
Proportion of variance (%) | 82.554 | 8.738 | 3.616 | ||
Cumulative proportion (%) | 82.554 | 91.283 | 94.899 |
PC | Correlation | Relevant Chemicals |
---|---|---|
PC1 | Positive (+) | β-Caryophyllene, β-selinene, β-cubebene, α-muurolol |
Negative (−) | Artemisia ketone, artemisia alcohol | |
PC2 | Positive (+) | α-Terpineol, eucalyptol, terpinene-4-ol, α-terpinene |
No. | Sample Code | Sampling Site | No. | Sample Code | Sampling Site | No. | Sample Code | Sampling Site |
---|---|---|---|---|---|---|---|---|
1 | AA1 | Wonju | 39 | AA39 | Ulsan | 77 | AA77 | Yanggu |
2 | AA2 | Hwacheon | 40 | AA40 | Bonghwa | 78 | AA78 | Yanggu |
3 | AA3 | Chuncheon | 41 | AA41 | Imsil | 79 | AA79 | Yanggu |
4 | AA4 | Yangyang | 42 | AA42 | Imsil | 80 | AA80 | Yanggu |
5 | AA5 | Sokcho | 43 | AA43 | Jeonju | 81 | AA81 | Yanggu |
6 | AA6 | Goseong | 44 | AA44 | Nonsan | 82 | AA82 | Yanggu |
7 | AA7 | Inje | 45 | AA45 | Daejeon | 83 | AA83 | Seoul |
8 | AA8 | Yanggu | 46 | AA46 | Hanam | 84 | AA84 | Seoul |
9 | AA9 | Yangpyeong | 47 | AA47 | Pyeongtaek | 85 | AA85 | Sungnam |
10 | AA10 | Jeongseon | 48 | AA48 | Sejong | 86 | AA86 | Sungnam |
11 | AA11 | Hongcheon | 49 | AA49 | Sejong | 87 | AA87 | Incheon |
12 | AA12 | Hoengseong | 50 | AA50 | Hanam | 88 | AA88 | Incheon |
13 | AA13 | Pyeongchang | 51 | AA51 | Ulsan | 89 | AA89 | Incheon |
14 | AA14 | Namyangju | 52 | AA52 | Ulsan | 90 | AA90 | Daejeon |
15 | AA15 | Pocheon | 53 | AA53 | Bonghwa | 91 | AA91 | Yeongcheon |
16 | AA16 | Gapyeong | 54 | AA54 | Bonghwa | 92 | AA92 | Mungyeong |
17 | AA17 | Chungju | 55 | AA55 | Gwangju | 93 | AA93 | Bonghwa |
18 | AA18 | Danyang | 56 | AA56 | Yongin | 94 | AA94 | Gimcheon |
19 | AA19 | Jecheon | 57 | AA57 | Hongcheon | 95 | AA95 | Bonghwa |
20 | AA20 | Yeongwol | 58 | AA58 | Seoul | 96 | AA96 | Yeongju |
21 | AA21 | Hongcheon | 59 | AA59 | Seoul | 97 | AA97 | Ulsan |
22 | AA22 | Hongcheon | 60 | AA60 | Samcheok | 98 | AA98 | Ulsan |
23 | AA23 | Chuncheon | 61 | AA61 | Seoul | 99 | AA99 | Ulsan |
24 | AA24 | Chuncheon | 62 | AA62 | Seoul | 100 | AA100 | Ulsan |
25 | AA25 | Hwacheon | 63 | AA63 | Seoul | 101 | AA101 | Changwon |
26 | AA26 | Hwacheon | 64 | AA64 | Seoul | 102 | AA102 | Changwon |
27 | AA27 | Chuncheon | 65 | AA65 | Seoul | 103 | AA103 | Changnyeong |
28 | AA28 | Chuncheon | 66 | AA66 | Seoul | 104 | AA104 | Sacheon |
29 | AA29 | Hongcheon | 67 | AA67 | Seoul | 105 | AA105 | Guri |
30 | AA30 | Pyeongtaek | 68 | AA68 | Anyang | 106 | AA106 | Gapyeong |
31 | AA31 | Yongin | 69 | AA69 | Goyang | 107 | AA107 | Ganghwa |
32 | AA32 | Wonju | 70 | AA70 | Nonsan | 108 | AA108 | Paju |
33 | AA33 | Incheon | 71 | AA71 | Yeoju | 109 | AA109 | Inje |
34 | AA34 | Anyang | 72 | AA72 | Yeoju | 110 | AA110 | Ansan |
35 | AA35 | Seoul | 73 | AA73 | Yanggu | 111 | AA111 | Yongin |
36 | AA36 | Changwon | 74 | AA74 | Yanggu | 112 | AA112 | Chulwon |
37 | AA37 | Ulsan | 75 | AA75 | Yanggu | |||
38 | AA38 | Ulsan | 76 | AA76 | Yanggu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, M.; Kim, M.; Jang, H.; Bo, S.; Deepa, P.; Sowndhararajan, K.; Kim, S. Multivariate Analysis of Essential Oil Composition of Artemisia annua L. Collected from Different Locations in Korea. Molecules 2023, 28, 1131. https://doi.org/10.3390/molecules28031131
Hong M, Kim M, Jang H, Bo S, Deepa P, Sowndhararajan K, Kim S. Multivariate Analysis of Essential Oil Composition of Artemisia annua L. Collected from Different Locations in Korea. Molecules. 2023; 28(3):1131. https://doi.org/10.3390/molecules28031131
Chicago/Turabian StyleHong, Minji, Minju Kim, Haejung Jang, Sela Bo, Ponnuvel Deepa, Kandhasamy Sowndhararajan, and Songmun Kim. 2023. "Multivariate Analysis of Essential Oil Composition of Artemisia annua L. Collected from Different Locations in Korea" Molecules 28, no. 3: 1131. https://doi.org/10.3390/molecules28031131