Influence of Substituents in a Six-Membered Chelate Ring of HG-Type Complexes Containing an N→Ru Bond on Their Stability and Catalytic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Initial 2-vinylbenzylamines 1, 2, and 3
2.2. Synthesis of Ruthenium Complexes
2.3. XRD Analysis of Ruthenium Complexes
2.4. Evaluation of Catalytic Properties
3. Materials and Methods
3.1. General Remarks
3.2. Experimental Procedures
3.3. Single-Crystal XRD Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Handbook of Metathesis: Catalyst Development, 1st ed.; Grubbs, R.H. (Ed.) Wiley: Amsterdam, The Netherlands, 2003; ISBN 978-3-527-30616-9. [Google Scholar]
- van der Schaaf, P.A.; Kolly, R.; Kirner, H.-J.; Rime, F.; Mühlebach, A.; Hafner, A. Synthesis and Reactivity of Novel Ruthenium Carbene Catalysts. X-ray Structures of [RuCl2(#CHSC6H5)(PiPr3)2] and [RuCl2(CHCH2CH2-C,N-2-C5H4N)(PiPr3)]. J. Organomet. Chem. 2000, 606, 65–74. [Google Scholar] [CrossRef]
- Ung, T.; Hejl, A.; Grubbs, R.H.; Schrodi, Y. Latent Ruthenium Olefin Metathesis Catalysts That Contain an N-Heterocyclic Carbene Ligand. Organometallics 2004, 23, 5399–5401. [Google Scholar] [CrossRef] [Green Version]
- Nechmad, N.B.; Lemcoff, N.G. Sulfur-Chelated Ruthenium Olefin Metathesis Catalysts. Synlett 2021, 32, 258–266. [Google Scholar] [CrossRef]
- Alassad, N.; Nechmad, N.B.; Phatake, R.S.; Reany, O.; Lemcoff, N.G. Steric and Electronic Effects in Latent S-Chelated Olefin Metathesis Catalysts. Catal. Sci. Technol. 2023. advanced article. [Google Scholar] [CrossRef]
- Monsigny, L.; Kajetanowicz, A.; Grela, K. Ruthenium Complexes Featuring Unsymmetrical N-Heterocyclic Carbene Ligands–Useful Olefin Metathesis Catalysts for Special Tasks. Chem. Rec. 2021, 21, 3648–3661. [Google Scholar] [CrossRef] [PubMed]
- Lexer, C.; Burtscher, D.; Perner, B.; Tzur, E.; Lemcoff, N.G.; Slugovc, C. Olefin Metathesis Catalyst Bearing a Chelating Phosphine Ligand. J. Organomet. Chem. 2011, 696, 2466–2470. [Google Scholar] [CrossRef]
- Tzur, E.; Szadkowska, A.; Ben-Asuly, A.; Makal, A.; Goldberg, I.; Woźniak, K.; Grela, K.; Lemcoff, N.G. Studies on Electronic Effects in O-, N- and S-Chelated Ruthenium Olefin-Metathesis Catalysts. Chem. Eur. J. 2010, 16, 8726–8737. [Google Scholar] [CrossRef]
- Kajetanowicz, A.; Grela, K. Nitro and Other Electron Withdrawing Group Activated Ruthenium Catalysts for Olefin Metathesis Reactions. Angew. Chem. Int. Ed. 2021, 60, 13738–13756. [Google Scholar] [CrossRef]
- Kost, T.; Sigalov, M.; Goldberg, I.; Ben-Asuly, A.; Lemcoff, N.G. Latent Sulfur Chelated Ruthenium Catalysts: Steric Acceleration Effects on Olefin Metathesis. J. Organomet. Chem. 2008, 693, 2200–2203. [Google Scholar] [CrossRef]
- Żukowska, K.; Pump, E.; Pazio, A.E.; Woźniak, K.; Cavallo, L.; Slugovc, C. Consequences of the Electronic Tuning of Latent Ruthenium-Based Olefin Metathesis Catalysts on Their Reactivity. Beilstein J. Org. Chem. 2015, 11, 1458–1468. [Google Scholar] [CrossRef]
- Hussain, R.; Iqbal, S.; Shah, M.; Rehman, W.; Khan, S.; Rasheed, L.; Rahim, F.; Dera, A.A.; Kehili, S.; Elkaeed, E.B.; et al. Synthesis of Novel Benzimidazole-Based Thiazole Derivatives as Multipotent Inhibitors of α-Amylase and α-Glucosidase: In Vitro Evaluation along with Molecular Docking Study. Molecules 2022, 27, 6457. [Google Scholar] [CrossRef] [PubMed]
- Kośnik, W.; Lichosyt, D.; Śnieżek, M.; Janaszkiewicz, A.; Woźniak, K.; Malińska, M.; Trzaskowski, B.; Kajetanowicz, A.; Grela, K. Ruthenium Olefin Metathesis Catalysts Bearing a Macrocyclic N-Heterocyclic Carbene Ligand: Improved Stability and Activity. Angew. Chem. Int. Ed. 2022, 61, in press. [Google Scholar] [CrossRef]
- Taran, O.P.; Miroshnikova, A.V.; Baryshnikov, S.V.; Kazachenko, A.S.; Skripnikov, A.M.; Sychev, V.V.; Malyar, Y.N.; Kuznetsov, B.N. Reductive Catalytic Fractionation of Spruce Wood over Ru/C Bifunctional Catalyst in the Medium of Ethanol and Molecular Hydrogen. Catalysts 2022, 12, 1384. [Google Scholar] [CrossRef]
- Czarnocki, S.; Monsigny, L.; Sienkiewicz, M.; Kajetanowicz, A.; Grela, K. Ruthenium Olefin Metathesis Catalysts Featuring N-Heterocyclic Carbene Ligands Tagged with Isonicotinic and 4-(Dimethylamino)Benzoic Acid Rests: Evaluation of a Modular Synthetic Strategy. Molecules 2021, 26, 5220. [Google Scholar] [CrossRef] [PubMed]
- Kajetanowicz, A.; Chwalba, M.; Gawin, A.; Tracz, A.; Grela, K. Non-Glovebox Ethenolysis of Ethyl Oleate and FAME at Larger Scale Utilizing a Cyclic (Alkyl)(Amino)Carbene Ruthenium Catalyst. Eur. J. Lipid Sci. Technol. 2020, 122, 1900263. [Google Scholar] [CrossRef]
- Czarnocki, S.J.; Czeluśniak, I.; Olszewski, T.K.; Malinska, M.; Woźniak, K.; Grela, K. Rational and Then Serendipitous Formation of Aza Analogues of Hoveyda-Type Catalysts Containing a Chelating Ester Group Leading to a Polymerization Catalyst Family. ACS Catal. 2017, 7, 4115–4121. [Google Scholar] [CrossRef]
- Basak, T.; Grudzień, K.; Barbasiewicz, M. Remarkable Ability of the Benzylidene Ligand To Control Initiation of Hoveyda–Grubbs Metathesis Catalysts. Eur. J. Inorg. Chem. 2016, 2016, 3513–3523. [Google Scholar] [CrossRef]
- Grela, K.; Harutyunyan, S.; Michrowska, A. A Highly Efficient Ruthenium Catalyst for Metathesis Reactions. Angew. Chem. 2002, 114, 4210–4212. [Google Scholar] [CrossRef]
- Cheng-Sánchez, I.; Sarabia, F. Recent Advances in Total Synthesis via Metathesis Reactions. Synthesis 2018, 50, 3749–3786. [Google Scholar] [CrossRef] [Green Version]
- Jacques, R.; Pal, R.; Parker, N.A.; Sear, C.E.; Smith, P.W.; Ribaucourt, A.; Hodgson, D.M. Recent Applications in Natural Product Synthesis of Dihydrofuran and -Pyran Formation by Ring-Closing Alkene Metathesis. Org. Biomol. Chem. 2016, 14, 5875–5893. [Google Scholar] [CrossRef]
- Phatake, R.S.; Nechmad, N.B.; Reany, O.; Lemcoff, N.G. Highly Substrate-Selective Macrocyclic Ring Closing Metathesis. Adv. Synth. Catal. 2022, 364, 1465–1472. [Google Scholar] [CrossRef]
- Nechmad, N.B.; Kobernik, V.; Tarannam, N.; Phatake, R.; Eivgi, O.; Kozuch, S.; Lemcoff, N.G. Reactivity and Selectivity in Ruthenium Sulfur-Chelated Diiodo Catalysts. Angew. Chem. Int. Ed. 2021, 60, 6372–6376. [Google Scholar] [CrossRef] [PubMed]
- Siano, V.; D’Auria, I.; Grisi, F.; Costabile, C.; Longo, P. Activity and Stereoselectivity of Ru-Based Catalyst Bearing a Fluorinated Imidazolinium Ligand. Open Chem. 2011, 9, 605–609. [Google Scholar] [CrossRef]
- Olefin Metathesis: Theory and Practice; Grela, K. (Ed.) Wiley: Hoboken, NJ, USA, 2014; ISBN 978-1-118-71156-9. [Google Scholar]
- Butilkov, D.; Frenklah, A.; Rozenberg, I.; Kozuch, S.; Lemcoff, N.G. Highly Selective Olefin Metathesis with CAAC-Containing Ruthenium Benzylidenes. ACS Catal. 2017, 7, 7634–7637. [Google Scholar] [CrossRef]
- Sytniczuk, A.; Kajetanowicz, A.; Grela, K. Fishing for the Right Catalyst for the Cross-Metathesis Reaction of Methyl Oleate with 2-Methyl-2-Butene. Catal. Sci. Technol. 2017, 7, 1284–1296. [Google Scholar] [CrossRef] [Green Version]
- Kumandin, P.A.; Antonova, A.S.; Alekseeva, K.A.; Nikitina, E.V.; Novikov, R.A.; Vasilyev, K.A.; Sinelshchikova, A.A.; Grigoriev, M.S.; Polyanskii, K.B.; Zubkov, F.I. Influence of the N→Ru Coordinate Bond Length on the Activity of New Types of Hoveyda–Grubbs Olefin Metathesis Catalysts Containing a Six-Membered Chelate Ring Possessing a Ruthenium–Nitrogen Bond. Organometallics 2020, 39, 4599–4607. [Google Scholar] [CrossRef]
- Polyanskii, K.B.; Alekseeva, K.A.; Raspertov, P.V.; Kumandin, P.A.; Nikitina, E.V.; Gurbanov, A.V.; Zubkov, F.I. Hoveyda–Grubbs Catalysts with an N→Ru Coordinate Bond in a Six-Membered Ring. Synthesis of Stable, Industrially Scalable, Highly Efficient Ruthenium Metathesis Catalysts and 2-Vinylbenzylamine Ligands as Their Precursors. Beilstein J. Org. Chem. 2019, 15, 769–779. [Google Scholar] [CrossRef]
- Slugovc, C.; Burtscher, D.; Stelzer, F.; Mereiter, K. Thermally Switchable Olefin Metathesis Initiators Bearing Chelating Carbenes: Influence of the Chelate’s Ring Size. Organometallics 2005, 24, 2255–2258. [Google Scholar] [CrossRef]
- Pump, E.; Leitgeb, A.; Kozłowska, A.; Torvisco, A.; Falivene, L.; Cavallo, L.; Grela, K.; Slugovc, C. Variation of the Sterical Properties of the N-Heterocyclic Carbene Coligand in Thermally Triggerable Ruthenium-Based Olefin Metathesis Precatalysts/Initiators. Organometallics 2015, 34, 5383–5392. [Google Scholar] [CrossRef]
- Shcheglova, N.M.; Kolesnik, V.D.; Ashirov, R.V.; Krasnokutskaya, E.A. Latent Ruthenium Carbene Complexes with Six-Membered N- and S-Chelate Rings. Russ. Chem. Bull. 2016, 65, 490–497. [Google Scholar] [CrossRef]
- Messina, M.S.; Maynard, H.D. Modification of Proteins Using Olefin Metathesis. Mater. Chem. Front. 2020, 4, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Bespalova, N.B.; Afanas’ev, V.V.; Polyanskiy, K.B. RU2545176 C1 Catalyst of Metathesis Polymerisation of Dicyclopentadiene and Method of Obtaining Thereof. Available online: https://patents.google.com/patent/RU2545176C1/en (accessed on 29 January 2014).
- Afanas’ev, V.V.; Dolgina, T.M.; Bespalova, N.B. RU2393171 C1 Dicyclopentadiene Metathesis Polymerisation Catalyst, Preparation Method Thereof and Polymerisation Method. Available online: https://patents.google.com/patent/RU2393171C1/en (accessed on 10 December 2008).
- Ashirov, R.V.; Bozhenkova, G.S.; Kiselev, S.A.; Zamanova, M.G. RU2578593 C1 Ruthenium Catalyst, Method for Production Thereof and Use in Metathesis Reaction. Available online: https://patents.google.com/patent/RU2578593C1/en (accessed on 29 December 2014).
- Choi, T.-L.; Grubbs, R.H. Controlled Living Ring-Opening-Metathesis Polymerization by a Fast-Initiating Ruthenium Catalyst. Angew. Chem. Int. Ed. 2003, 42, 1743–1746. [Google Scholar] [CrossRef]
- Gawin, A.; Pump, E.; Slugovc, C.; Kajetanowicz, A.; Grela, K. Ruthenium Amide Complexes—Synthesis and Catalytic Activity in Olefin Metathesis and in Ring-Opening Polymerisation. Eur. J. Inorg. Chem. 2018, 2018, 1766–1774. [Google Scholar] [CrossRef]
- Perecim, G.P.; Rodrigues, A.; Raminelli, C. A Convenient Formation of Aporphine Core via Benzyne Chemistry: Conformational Analysis and Synthesis of (R)-Aporphine. Tetrahedron Lett. 2015, 56, 6848–6851. [Google Scholar] [CrossRef]
- Rheiner, A.; Brossi, A. Synthesen in Der Isochinolinreihe Zum HOFMANN’schen Abbau 1-Phenäthylsubstituierter 1,2,3,4-Tetrahydroisochinoline. Helv. Chim. Acta 1962, 45, 2590–2600. [Google Scholar] [CrossRef]
- Kafka, S.; Trška, P.; Kytner, J.; Taufmann, P.; Ferles, M. Hydroboration of N,N-Dimethyl(2-Vinylbenzyl)Amine. Collect. Czech. Chem. Commun. 1987, 52, 2047–2056. [Google Scholar] [CrossRef]
- Nascimento, D.L.; Davy, E.C.; Fogg, D.E. Merrifield Resin-Assisted Routes to Second-Generation Catalysts for Olefin Metathesis. Catal. Sci. Technol. 2018, 8, 1535–1544. [Google Scholar] [CrossRef]
- Monsaert, S.; Drozdzak, R.; Dragutan, V.; Dragutan, I.; Verpoort, F. Indenylidene-Ruthenium Complexes Bearing Saturated N-Heterocyclic Carbenes: Synthesis and Catalytic Investigation in Olefin Metathesis Reactions. Eur. J. Inorg. Chem. 2008, 2008, 432–440. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Kingsbury, J.S.; Harrity, J.P.A.; Bonitatebus, P.J.; Hoveyda, A.H. A Recyclable Ru-Based Metathesis Catalyst. J. Am. Chem. Soc. 1999, 121, 791–799. [Google Scholar] [CrossRef]
- SAINT, V8.40B 2020 Cif File Entries for the Purdue Quest Diffractometer (June 2020); Bruker AXS Inc.: Madison, WI, USA, 2020.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Cryst. 2015, C71, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Entry | 1 | Yield of 1, % | 2 | Yield of 2, % | 3 | Yield of 3, % |
---|---|---|---|---|---|---|
a | 84 ☑ | 53 ☒ | 75 ☑ | |||
b | 72 ☑ | 42 ☒ | 70 ☑ | |||
c | 78 ☑ | 50 ☒ | 68 ☒☑ | |||
d | 85 ☑ | ☑—corresponding styrenes are suitable for the preparation of ruthenium complexes | 81 ☑ | |||
☒—corresponding styrenes are unsuitable for the preparation of ruthenium complexes |
Entry | 4 | Solvent, Time | Yield of 4, % | 5 | Solvent, Time | Yield of 5, % | 6 | Solvent, Time | Yield of 6, % |
---|---|---|---|---|---|---|---|---|---|
a | PhMe, 1.5 h | 78 ☑ X-ray * | PhMe/ heptane (1:5), 40 min | 74 ☑ X-ray * | PhMe/ heptane (1:5), 0.5–2 h | 0 ☒ | |||
b | PhMe, 1.5 h | 79 ☑ X-ray * | PhMe/ heptane (1:5), 40 min | 58 ☑ X-ray * | PhMe/ heptane (1:5), 0.5–2 h | 0 ☒ | |||
c | PhMe, 1.5 h | 71 ☑ X-ray * | PhMe/ heptane (1:5), 0.5–2 h | 5 ☒☑ | PhMe/ heptane (1:5), 0.5–2 h | 0 ☒ | |||
d | PhMe/ heptane (1:5), 40 min | 80 ☑ | PhMe/ heptane (1:5), 40 min | 77 ☑ X-ray * | ☑—the corresponding ruthenium complex can be synthesized | ||||
☒—the corresponding ruthenium complex cannot be synthesized |
Entry | Compound | Bond Lengths, Å | Angle, ° | |||
---|---|---|---|---|---|---|
N→Ru | Ru=C | Ru-C | Cl-Ru-Cl | RuC4/RuNC Planes | ||
4a | 2.267 | 1.823 | 2.041 | 157.83 | 58.84 | |
4b | 2.263 | 1.822 | 2.047 | 161.08 | 57.24 | |
4c * | 2.265 | 1.823 | 2.042 | 161.36 | 57.76 | |
5a | 2.265 | 1.828 | 2.040 | 161.54 | 58.76 | |
5b | 2.272 | 1.829 | 2.059 | 159.02 | 55.26 | |
5d | 2.353 2.371 | 1.808 1.841 | 2.005 2.030 | 167.71 168.22 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilyev, K.A.; Antonova, A.S.; Volchkov, N.S.; Logvinenko, N.A.; Nikitina, E.V.; Grigoriev, M.S.; Novikov, A.P.; Kouznetsov, V.V.; Polyanskii, K.B.; Zubkov, F.I. Influence of Substituents in a Six-Membered Chelate Ring of HG-Type Complexes Containing an N→Ru Bond on Their Stability and Catalytic Activity. Molecules 2023, 28, 1188. https://doi.org/10.3390/molecules28031188
Vasilyev KA, Antonova AS, Volchkov NS, Logvinenko NA, Nikitina EV, Grigoriev MS, Novikov AP, Kouznetsov VV, Polyanskii KB, Zubkov FI. Influence of Substituents in a Six-Membered Chelate Ring of HG-Type Complexes Containing an N→Ru Bond on Their Stability and Catalytic Activity. Molecules. 2023; 28(3):1188. https://doi.org/10.3390/molecules28031188
Chicago/Turabian StyleVasilyev, Kirill A., Alexandra S. Antonova, Nikita S. Volchkov, Nikita A. Logvinenko, Eugeniya V. Nikitina, Mikhail S. Grigoriev, Anton P. Novikov, Vladimir V. Kouznetsov, Kirill B. Polyanskii, and Fedor I. Zubkov. 2023. "Influence of Substituents in a Six-Membered Chelate Ring of HG-Type Complexes Containing an N→Ru Bond on Their Stability and Catalytic Activity" Molecules 28, no. 3: 1188. https://doi.org/10.3390/molecules28031188
APA StyleVasilyev, K. A., Antonova, A. S., Volchkov, N. S., Logvinenko, N. A., Nikitina, E. V., Grigoriev, M. S., Novikov, A. P., Kouznetsov, V. V., Polyanskii, K. B., & Zubkov, F. I. (2023). Influence of Substituents in a Six-Membered Chelate Ring of HG-Type Complexes Containing an N→Ru Bond on Their Stability and Catalytic Activity. Molecules, 28(3), 1188. https://doi.org/10.3390/molecules28031188