Hydrogen Absorption Reactions of Hydrogen Storage Alloy LaNi5 under High Pressure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrogen Absorption and Desorption Reactions below 1 MPa
2.2. Hydrogen Absorption Reactions at 1.6 GPa and 473 K
2.3. Hydrogen Absorption Reactions in the Range of 1–10 GPa
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schlapbach, L.; Züttel, A. Hydrogen-Storage Materials for Mobile Applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Züttel, A. Materials for Hydrogen Storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Crivello, J.-C.; Dam, B.; Denys, R.V.; Dornheim, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; de Jongh, P.; Latroche, M.; Milanese, C.; et al. Review of Magnesium Hydride–Based Materials: Development and Optimisation. Appl. Phys. A 2016, 122, 97. [Google Scholar] [CrossRef] [Green Version]
- Hirscher, M.; Yartys, V.A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R.C.; Broom, D.P.; Buckley, C.E.; Chang, F.; Chen, P.; et al. Materials for Hydrogen-Based Energy Storage Past, Recent Progress and Future Outlook. J. Alloys Compd. 2020, 827, 153548. [Google Scholar] [CrossRef]
- Pasquini, L.; Sakaki, S.; Akiba, E.; Allendorf, M.D.; Cho, Y.W.; Alvares, E.; Ares, J.D.; Badai, D.; Bricco, M.; von Colbe, J.B.; et al. Magnesium- and Intermetallic Alloys-Based Hydrides for Energy Storage: Modelling, Synthesis and Properties. Prog. Energy 2022, 4, 032007. [Google Scholar] [CrossRef]
- Orimo, S.; Nakamori, Y.; Eliseo, J.R.; Züttel, A.; Jensen, C.M. Complex Hydrides for Hydrogen Storage. Chem. Rev. 2007, 107, 4111–4132. [Google Scholar] [CrossRef] [PubMed]
- Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and Physical Solutions for Hydrogen Storage. Angew. Chem. Int. Ed. 2009, 48, 6608–6630. [Google Scholar] [CrossRef]
- Takagi, S.; Orimo, S. Recent Progress in Hydrogen-Rich Materials from the Perspective of Bonding Flexibility of Hydrogen. Scr. Mater. 2015, 109, 1–5. [Google Scholar] [CrossRef]
- Sato, T.; Takagi, S.; Deledda, S.; Hauback, B.C.; Orimo, S. Extending the Applicability of the Goldschmidt Tolerance Factor to Arbitrary Ionic Compounds. Sci. Rep. 2016, 6, 23592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Mochizuki, T.; Ikeda, K.; Honda, T.; Otomo, T.; Sagayama, H.; Yang, H.; Luo, W.; Lombardo, L.; Züttel, A.; et al. Crystal Structural Investigations for Understanding the Hydrogen Storage Properties of YMgNi4–Based Alloys. ASC Omega 2020, 5, 31192–31198. [Google Scholar] [CrossRef]
- Sato, T.; Orimo, S. The Crystal Structures in Hydrogen Absorption Reactions of REMgNi4-Based Alloys (RE: Rare-earth metals). Energies 2021, 14, 8163. [Google Scholar] [CrossRef]
- Sato, T.; Ikeda, K.; Honda, T.; Daemen, L.L.; Cheng, Y.; Otomo, T.; Sagayama, H.; Ramirez–Cuesta, A.J.; Takagi, S.; Kono, T.; et al. Effect of Co Substitution on Hydrogen Absorption and Desorption Reactions of YMgNi4-based Alloys. J. Phys. Chem. C 2022, 126, 16943–16951. [Google Scholar] [CrossRef]
- Zhang, L.; Allendorf, M.D.; Balderas–Xicohténcatl, R.; Broom, D.P.; Fanourgakis, G.S.; Froudakis, G.E.; Gennett, T.; Hurst, K.E.; Ling, S.; Milanese, C.; et al. Fundamentals of Hydrogen Storage in Nanoporous Materials. Prog. Energy 2022, 4, 042013. [Google Scholar] [CrossRef]
- Mehrabi, M.; Parvin, P.; Reyhani, A.; Mortazavi, S.Z. Hydrogen Storage in Multi-Walled Carbon Nanotubes Decorated with Palladium Nanoparticles using Laser Ablation/Chemical Reduction Methods. Mater. Res. Express 2017, 4, 095030. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, S.Z.; Reyhani, A.; Mirershadi, S. Hydrogen Storage Properties of Multi-Walled Carbon Nanotubes and Carbon Nano-Onions Grown on Single and Bi–Catalysts including Fe, Mo, Co and Ni Supported by MgO. Int. J. Hydrogen Energy 2017, 41, 24885–24896. [Google Scholar] [CrossRef]
- Van Mal, H.H.; Buschow, K.H.J.; Miedema, A.R. Hydrogen Absorption in LaNi5 and Related Compounds: Experimental Observations and Their Explanation. J. Less-Common Met. 1974, 35, 65–76. [Google Scholar] [CrossRef]
- Boser, O. Hydrogen Sorption in LaNi5. J. Less-Common Met. 1976, 46, 91–99. [Google Scholar] [CrossRef]
- Fischer, P.; Furrer, A.; Busch, G.; Schlapbach, L. Neutron Scattering Investigations of the LaNi5 Hydrogen Storage System. Halv. Phys. Acta 1977, 50, 421–430. [Google Scholar]
- Percheron-Guégan, A.; Lartigue, C.; Achard, J.C. Correlations Between the Structural Properties, the Stability and the Hydrogen Content of Substituted LaNi5 Compounds. J. Less-Common Met. 1985, 109, 287–309. [Google Scholar] [CrossRef]
- Sakai, T.; Oguro, K.; Miyamura, H.; Kuriyama, N.; Kato, A.; Ishikawa, H.; Iwakura, C. Some Factors Affecting the Cycling Lives of LaNi5-based Alloy Electrodes of Hydrogen Batteries. J. Less-Common Met. 1990, 161, 193–202. [Google Scholar] [CrossRef]
- Kisi, E.H.; Buckley, C.E.; Gray, E.M.A. The Hydrogen Activation of LaNi5. J. Alloys Compd. 1992, 185, 369–384. [Google Scholar] [CrossRef]
- Nakamura, Y.; Oguro, K.; Uehara, I.; Akiba, E. X-ray Diffraction Peak Broadening and Degradation in LaNi5-Based Alloys. Int. J. Hydrog. Energy 2000, 25, 531–537. [Google Scholar] [CrossRef]
- Černý, R.; Joubert, J.-M.; Latroche, M.; Percheron-Guégan, A.; Yvon, K. Anisotropic Diffraction Peak Broadening and Dislocation Substructure in Hydrogen-Cycled LaNi5 and Substitutional Derivatives. J. Appl. Cryst. 2000, 33, 999–1005. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Scchulz, R. Hydrogen Storage Properties of the Mechanically Alloyed LaNi5-based Materials. J. Alloys Compd. 2001, 320, 133–139. [Google Scholar] [CrossRef]
- Joubert, J.-M.; Latroche, M.; Černý, R.; Percheron-Guégan, A.; Yvon, K. Hydrogen Cycling Induced Degradation in LaNi5–type Materials. J. Alloys Compd. 2002, 330–332, 208–214. [Google Scholar] [CrossRef]
- Décampsa, B.; Joubert, J.-M.; Cérny, R.; Percheron–Guégan, A. TEM Study of the Dislocations Generated by Hydrogen Absorption/Desorption in LaNi5 and Derivatives. J. Alloys Compd. 2005, 404–406, 570–575. [Google Scholar] [CrossRef]
- Liu, W.; Aguey-Zinsou, K.-F. Low Temperature Synthesis of LaNi5 Nanoparticles for Hydrogen Storage. Int. J. Hydrogen Energy 2015, 41, 1679–1687. [Google Scholar] [CrossRef]
- Faisal, M.; Balani, K.; Subramaniam, A. Cross–Sectional TEM Investigation of Mg–LaNi5–Soot Hybrids for Hydrogen Storage. Int. J. Hydrogen Energy 2021, 46, 5507–5519. [Google Scholar] [CrossRef]
- Joubert, J.-M.; Paul-Boncour, V.; Cuevas, F.; Zhang, J.; Latroche, M. LaNi5 Related AB5 Compounds: Structure, Properties and Applications. J. Alloys Compd. 2021, 862, 158163. [Google Scholar] [CrossRef]
- Ikeda, K.; Ohshita, H.; Otomo, T.; Sakaki, K.; Kim, H.; Nakamura, Y.; Machida, A.; Von Dreele, R.B. Pressure Cells for in situ Neutron Total Scattering: Time and Real–Space Resolution during Deuterium Absorption. J. Appl. Cryst. 2022, 55, 1631–1639. [Google Scholar] [CrossRef]
- Sugimoto, H.; Fukai, Y. Solubility of Hydrogen in Metals under High Hydrogen Pressures: Thermodynamical Calculations. Acta Metall. Mater. 1992, 40, 2327–2336. [Google Scholar] [CrossRef]
- Moser, D.; Bull, D.J.; Sato, T.; Noréus, D.; Kyoi, D.; Sakai, T.; Kitamura, N.; Yusa, H.; Taniguchi, T.; Kalisvaart, W.P.; et al. Structure and Stability of High Pressure Synthesized Mg–TM Hydrides (TM = Ti, Zr, Hf, V, Nb and Ta) as Possible New Hydrogen Rich Hydrides for Hydrogen Storage. J. Mater. Chem. 2009, 19, 8150–8161. [Google Scholar] [CrossRef]
- Saitoh, H.; Takagi, S.; Matsuo, M.; Iijima, Y.; Endo, N.; Aoki, K.; Orimo, S. Li4FeH6: Iron-Containing Complex Hydride with High Gravimetric Hydrogen Density. APL Mater. 2014, 2, 076103. [Google Scholar] [CrossRef] [Green Version]
- Takagi, S.; Iijima, Y.; Sato, T.; Saitoh, H.; Ikeda, K.; Otomo, T.; Miwa, K.; Ikeshoji, T.; Aoki, K.; Orimo, S. True Boundary for the Formation of Homoleptic Transition-Metal Hydride Complexes. Angew. Chem. Int. Ed. 2015, 54, 5650–5653. [Google Scholar] [CrossRef]
- Takagi, S.; Iijima, Y.; Sato, T.; Saitoh, H.; Ikeda, K.; Otomo, T.; Miwa, K.; Ikeshoji, T.; Orimo, S. Formation of Novel Transition Metal Hydride Complexes with Ninefold Hydrogen Coordination. Sci. Rep. 2017, 7, 44253. [Google Scholar] [CrossRef]
- Spektor, K.; Crichton, W.A.; Filippov, S.; Klarbring, J.; Simak, S.I.; Häussermann, U. Na-Ni-H Phase Formation at High Pressures and High Temperatures: Hydrido complexes [NiH5]3− Versus the perovskite NaNiH3. ACS Omega 2020, 5, 8730–8743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spektor, K.; Crichton, W.A.; Filippov, S.; Simak, S.I.; Häussermann, U. Na3FeH7 and Na3CoH6: Hydrogen-Rich Complex Transition Metal Hydrides from High Pressure Synthesis. Inorg. Chem. 2020, 59, 16467–16473. [Google Scholar] [CrossRef]
- Saitoh, H.; Sato, T.; Tanikami, M.; Ikeda, K.; Machida, A.; Watanuki, T.; Taguchi, T.; Yamamoto, S.; Yamaki, T.; Takagi, S.; et al. Hydrogen Storage by Earth-Abundant Metals, Synthesis and Characterization of Al3FeH3.9. Mater. Des. 2021, 208, 109953. [Google Scholar] [CrossRef]
- Utsumi, R.; Morimoto, M.; Saitoh, H.; Watanuki, T.; Sato, T.; Takagi, S.; Orimo, S. In situ Synchrotron Radiation X-ray Diffraction Measurements of Fe–Mo Alloy Hydrides Formed under High Pressure and High Temperature. J. Alloys Compd. 2022, 893, 162300. [Google Scholar] [CrossRef]
- Endo, N.; Saita, I.; Nakamura, Y.; Saitoh, H.; Machida, A. Hydrogenation of a TiFe-based alloy at High Pressure and Temperature. Int. J. Hydrogen Energy 2015, 40, 3283–3287. [Google Scholar] [CrossRef]
- Werner, P.-E.; Eriksson, L.; Westdahl, M. TREOR, A Semi–Exhaustive Trial–and–Error Powder Indexing Program for All Symmetries. J. Appl. Crystallogr. 1985, 18, 367–370. [Google Scholar] [CrossRef]
- Seto, Y.; Haname, D.; Nagai, T.; Sata, N. Development of a Software Suite on X-ray Diffraction Experiments. Rev. High Pressure Sci. Technol. 2010, 20, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Nylén, J.; Sato, T.; Soignard, E.; Yarger, J.L.; Stoyanov, E.; Häussermann, U. Thermal Decomposition of Ammonia Borane at High Pressures. J. Chem. Phys. 2009, 131, 104506. [Google Scholar] [CrossRef]
- Nylén, J.; Eriksson, L.; Benson, D.; Häussermann, U. Characterization of a High pressure, High Temperature Modification of Ammonia Borane (BH3NH3). J. Chem. Phys. 2013, 139, 054507. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, T.; Saitoh, H.; Utsumi, R.; Ito, J.; Nakahira, Y.; Obana, K.; Takagi, S.; Orimo, S.-i. Hydrogen Absorption Reactions of Hydrogen Storage Alloy LaNi5 under High Pressure. Molecules 2023, 28, 1256. https://doi.org/10.3390/molecules28031256
Sato T, Saitoh H, Utsumi R, Ito J, Nakahira Y, Obana K, Takagi S, Orimo S-i. Hydrogen Absorption Reactions of Hydrogen Storage Alloy LaNi5 under High Pressure. Molecules. 2023; 28(3):1256. https://doi.org/10.3390/molecules28031256
Chicago/Turabian StyleSato, Toyoto, Hiroyuki Saitoh, Reina Utsumi, Junya Ito, Yuki Nakahira, Kazuki Obana, Shigeyuki Takagi, and Shin-ichi Orimo. 2023. "Hydrogen Absorption Reactions of Hydrogen Storage Alloy LaNi5 under High Pressure" Molecules 28, no. 3: 1256. https://doi.org/10.3390/molecules28031256
APA StyleSato, T., Saitoh, H., Utsumi, R., Ito, J., Nakahira, Y., Obana, K., Takagi, S., & Orimo, S.-i. (2023). Hydrogen Absorption Reactions of Hydrogen Storage Alloy LaNi5 under High Pressure. Molecules, 28(3), 1256. https://doi.org/10.3390/molecules28031256