Edible Plant Extracts against Aedes aegypti and Validation of a Piper nigrum L. Ethanolic Extract as a Natural Insecticide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Edible Plant Extracts against Ae. aegypti Larvae and Pupae
2.2. Extraction Optimization
2.3. Optimized P. nigrum Extract: Analytical Method Development and Validation
2.4. Larvicidal Activity against Aedes aegypti
2.5. Applicability of Validated Method: Residual Larvicidal Activity against Aedes aegypti
2.6. Small-Scale Simulated Field Trial of P. nigrum Fruit Ethanolic Extract Solid Formulation against Aedes aegypti Larvae
3. Materials and Methods
3.1. Instrumentation and HPLC Analysis
3.2. Edible Plant Extractions
3.3. Optimized Extraction
3.4. Sample Preparation
3.5. Method Validation
3.6. Validated Method Applicability for Other Piper nigrum L. Samples
3.7. Biological Assays
3.8. Piperine Quantification: Laboratory Larvicidal Assays
3.9. Small-Scale Simulated Field Trial of P. nigrum Fruit Ethanolic Extracts in Formulation: Standardized and UAM
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Silva, R.L.; Demarque, D.P.; Dusi, R.G.; Sousa, J.P.B.; Albernaz, L.C.; Espindola, L.S. Residual Larvicidal Activity of Quinones against Aedes aegypti. Molecules 2020, 25, 3978. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.J.; Leong, Y.Q.; bin Barhanuddin, M.F.H.; Wong, S.T.; Wong, S.F.; Mak, J.W.; Ahmad, R.B. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: A review. Parasit. Vectors 2021, 14, 315. [Google Scholar] [CrossRef] [PubMed]
- Calma, M.L.; Medina, P.M.B. Acute and chronic exposure of the holometabolous life cycle of Aedes aegypti L. to emerging contaminants naproxen and propylparaben. Environ. Pollut. 2020, 266, 115275. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Piplani, M.; Bhagwat, D.P.; Singhvi, G.; Sankaranarayanan, M.; Balana-Fouce, R.; Vats, T.; Chander, S. Plant-based larvicidal agents: An overview from 2000 to 2018. Exp. Parasitol. 2019, 199, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Silvério, M.R.S.; Espindola, L.S.; Lopes, N.P.; Vieira, P.C. Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses. Molecules 2020, 25, 3484. [Google Scholar] [CrossRef]
- Brown, P.N.; Lister, P. Current initiatives for the validation of analytical methods for botanicals. Curr. Opin. Biotechnol. 2014, 25, 124–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridwell, H.; Dhingra, V.; Peckman, D.; Roark, J.; Lehman, T. Perspectives on Method Validation: Importance of Adequate Method Validation. Qual. Assur. J. 2010, 13, 72–77. [Google Scholar] [CrossRef]
- Takooree, H.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Venugopala, K.N.; Jeewon, R.; Zengin, G.; Mahomoodally, M.F. A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications. Crit. Rev. Food Sci. Nutr. 2019, 59, S210–S243. [Google Scholar] [CrossRef]
- Park, I.K.; Lee, S.G.; Shin, S.C.; Park, J.D.; Ahn, Y.J. Larvicidal Activity of Isobutylamides Identified in Piper nigrum Fruits against Three Mosquito Species. J. Agric. Food Chem. 2002, 50, 1866–1870. [Google Scholar] [CrossRef]
- Rajkumar, V.; Gunasekaran, C.; Dharmaraj, J.; Chinnaraj, P.; Paul, C.A.; Kanithachristy, I. Structural characterization of chitosan nanoparticle loaded with Piper nigrum essential oil for biological efficacy against the stored grain pest control. Pestic. Biochem. Physiol. 2020, 166, 104566. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.M.; Shin, J.; Lee, J.W.; Hyun, J.; Park, I.K. Larvicidal activities of Piper kadsura (Choisy) Ohwi extract and its constituents against Aedes albopictus, toxicity to non-target organisms and development of cellulose nanocrystal-stabilized Pickering emulsion. Ind. Crops Prod. 2021, 162, 113270. [Google Scholar] [CrossRef]
- Gomes, S.V.F.; Portugal, L.A.; dos Anjos, J.P.; de Jesus, O.N.; Oliveira, E.; David, J.P.; David, J.M. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem. J. 2017, 132, 28–35. [Google Scholar] [CrossRef]
- Steinwascher, K. Competition among Aedes aegypti larvae. PLoS ONE. 2018, 13, e0202455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinotha, V.; Yazhiniprabha, M.; Raj, D.S.; Mahboob, S.; Al-Ghanim, K.A.; Al-Misned, F.; Govindarajan, M.; Vaseeharan, B. Biogenic synthesis of aromatic cardamom-wrapped zinc oxide nanoparticles and their potential antibacterial and mosquito larvicidal activity: An effective eco-friendly approach. J. Environ. Chem. Eng. 2020, 8, 104466. [Google Scholar] [CrossRef]
- Höferl, M.; Wanner, J.; Tabanca, N.; Ali, A.; Gochev, V.; Schmidt, E.; Kaul, V.K.; Singh, V.; Jirovetz, L. Biological Activity of Matricaria chamomilla Essential Oils of Various Chemotypes. Planta Medica Int. Open. 2020, 07, e114–e121. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Demarque, D.P.; Fitts, S.M.F.; Boaretto, A.G.; da Silva, J.C.L.; Vieira, M.C.; Franco, V.N.P.; Teixeira, C.B.; Toffoli-Kadri, M.C.; Carollo, C.A. Optimization and Technological Development Strategies of an Antimicrobial Extract from Achyrocline alata Assisted by Statistical Design. PLoS ONE. 2015, 10, e0118574. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R.; Ahmad, N.; Shehzad, A. Solvent and temperature effects of accelerated solvent extraction (ASE) with Ultra-high pressure liquid chromatography (UHPLC-PDA) technique for determination of Piperine and its ICP-MS analysis. Ind. Crops Prod. 2019, 136, 37–49. [Google Scholar] [CrossRef]
- De Souza Grinevicius, V.M.A.; Kviecinski, M.R.; Santos Mota, N.S.R.; Ourique, F.; Porfirio Will Castro, L.S.E.; Andreguetti, R.R.; Gomes Correia, J.F.; Filho, D.W.; Pich, C.T.; Pedrosa, R.C. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells. J. Ethnopharmacol. 2016, 189, 139–147. [Google Scholar] [CrossRef]
- Luca, S.V.; Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Czech, K.; Trifan, A.; Zengin, G.; Korona-Glowniak, I.; Minceva, M.; Gertsch, J.; Skalicka-Woźniak, K. Insights into the Phytochemical and Multifunctional Biological Profile of Spices from the Genus Piper. Antioxidants 2021, 10, 1642. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, A.; Mahadik, K.R.; Gabhe, S.Y. Piperine: A comprehensive review of methods of isolation, purification, and biological properties. Med. Drug Discov. 2020, 7, 100027. [Google Scholar] [CrossRef]
- Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Piperine—The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations. Compr. Rev. Food Sci. Food Saf. 2017, 16, 124–140. [Google Scholar] [CrossRef]
- Hernández-Morales, A.; Arvizu-Gómez, J.L.; Carranza-Álvarez, C.; Gómez-Luna, B.E.; Alvarado-Sánchez, B.; Ramírez-Chávez, E.; Molina-Torres, J. Larvicidal activity of affinin and its derived amides from Heliopsis longipes A. Gray Blake against Anopheles albimanus and Aedes aegypti. J. Asia-Pac. Entomol. 2015, 18, 227–231. [Google Scholar] [CrossRef]
- Custódio, K.M.; de Moterle, O.J.G.D.; Zepon, K.M.; Prophiro, J.S.; Kanis, L.A. A biodegradable device for the controlled release of Piper nigrum (Piperaceae) standardized extract to control Aedes aegypti (Diptera, Culicidae) larvae. Rev. Soc. Bras. Med. Trop. 2016, 49, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, R.S.; Giles, J.A.D.; Siqueira, A.L.; Rodrigues, J.P.; Araujo, C.P.; Mello, T.; Rosa, T.L.M.; Lopes, J.C. Production of clonal seedlings of black pepper cv. Bragantina under doses of controlled-release fertilizer. Comun. Sci. 2022, 13, e3639. [Google Scholar] [CrossRef]
- ANVISA. Resolução RDC No 166, de 24 de Julho de 2017-Imprensa Nacional. 2017. Available online: https://www.in.gov.br/materia (accessed on 7 May 2021).
- Sousa, J.P.B.; Brancalion, A.P.S.; Souza, A.B.; Turatti, I.C.; Ambrósio, S.R.; Furtado, N.A.; Lopes, N.P.; Bastos, J.K. Validation of a gas chromatographic method to quantify sesquiterpenes in copaiba oils. J. Pharm. Biomed. Anal. 2011, 54, 653–659. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Laboratory and Field Testing of Mosquito Larvicides. Published Online. 2005. Available online: https://apps.who.int/iris/handle/10665/69101 (accessed on 10 October 2021).
Family | Nº | Common Name | Species | Plant | Larvae | Pupae | Yield |
---|---|---|---|---|---|---|---|
Part | Mortality (%) | Mortality (%) | (%) | ||||
Alliaceae | 1 | onion | Allium cepa L. | Bulb | - | - | 1 |
2 | purple onion | Allium cepa L. | Bulb | - | - | 1.3 | |
Alismataceae | 3 | Florida burrhead | Echinodorus grandiflorus Micheli. | AP | 100 | 70 | 2.6 |
Amaranthaceae | 4 | amaranth | Amaranthus caudatus L. | Se | 36 | - | 2.1 |
5 | quinoa | Chenopodium quinoa Willd. | Se | 6 | - | 1.7 | |
Annonaceae | 6 | sugar apple | Annona squamosa L. | F (pulp) | 26 | - | 0.2 |
7 | sugar apple | Annona squamosa L. | F (peel) | - | - | 0.2 | |
Arecaceae | 8 | coconut | Cocos nucifera L. | F | - | - | 62.6 |
Asteraceae | 9 | chamomile | Matricaria chamomilla L. | Fl | 100 | 26 | 4.4 |
10 | artichoke | Cynara scolymus L. | L | - | 5 | 4.7 | |
11 | carqueja | Baccharis trimera (Less.) DC. | AP | - | - | 7.1 | |
12 | marigold | Calendula officinalis L. | Fl | - | 23 | 9 | |
13 | carqueja | Baccharis gaudichaudiana DC. | AP | - | 6 | 7.8 | |
14 | sunflower | Helianthus annus L. | Se | 6 | 3 | 41 | |
15 | yacon | Smallanthus sonchifolius (Poepp.) H. Rob. | S | - | 100 | 0.3 | |
Brassicaceae | 16 | mustard | Brassica alba (L.) Rabenh. | Se | - | 43 | 0.6 |
Cactaceae | 17 | pitaya | Hylocereus monacanthus (Lem.) Britton & Rose. | F (pulp) | - | - | 2 |
18 | pitaya | Hylocereus monacanthus (Lem.) Britton & Rose. | F (peel) | 100 | - | 0.05 | |
Cucurbitaceae | 19 | maroon cucumber | Cucumis anguria L. | F | - | 6 | 0.4 |
20 | pumpkin | Cucurbita sp. | Se | - | - | 32.7 | |
Celastraceae | 21 | Espinheira santa | Maytenus ilicifolia Mart. ex Reissek. | AP | - | - | 2.1 |
Equisetaceae | 22 | bottlebrush | Equisetum arvense L. | S | 10 | 30 | 2.1 |
Ericaceae | 23 | blueberry (dried) | Vaccinium myrtillus L. | F | 100 | 33 | 0.7 |
24 | blueberry (fresh) | Vaccinium myrtillus L. | F | - | - | 2.1 | |
25 | cranberry | Vaccinium macrocarpon Aiton. | F | - | 10 | 1.0 | |
Fabaceae | 26 | mulungu | Erythrina verna Vell. | SW | 33 | 95 | 0.3 |
27 | Olho-de-boi | Dioclea violacea Mart. ex Benth. | Se | - | 100 | 0.3 | |
28 | tamarind | Tamarindus indica L. | Se | - | 66 | 0.7 | |
29 | common beans | Phaseolus vulgaris L. | F | - | - | 0.5 | |
30 | pea | Pisum sativum L. | F | - | - | 0.9 | |
Humiriaceae | 31 | yellow uxi | Endopleura uchi (Huber) Cuatrec. | S | - | 6 | 0.9 |
Lamiaceae | 32 | chia | Salvia hispanica L. | Se | 50 | 5 | 1.8 |
Lauraceae | 33 | avocado | Persea americana Mill. | F (peel) | 100 | 12 | 0.5 |
34 | avocado | Persea americana Mill. | F (pulp) | 100 | 100 | 0.2 | |
35 | avocado | Persea americana Mill. | Se | 6 | - | 2.7 | |
36 | hass avocado | Persea americana Mill. | F (pulp) | - | 36 | 0.5 | |
37 | hass avocado | Persea americana Mill. | Se | 100 | 6 | 1.9 | |
38 | hass avocado | Persea americana Mill. | F (peel) | 12 | 6 | 0.6 | |
39 | sassafras | Sassafras albidum (Nutt.) Nees. | S | 100 | 10 | 0.2 | |
Linaceae | 40 | golden linseed | Linum usitatissimum L. | Se | - | - | 25.4 |
Lythraceae | 41 | pomegranate | Punica granatum L. | F (peel) | - | - | 0.7 |
42 | pomegranate | Punica granatum L. | Se | - | - | 3.2 | |
Malvaceae | 43 | cocoa | Theobroma cacao L. | Sep | 6 | 100 | 7.6 |
44 | cocoa | Theobroma cacao L. | Se | - | - | 22.7 | |
Melastomataceae | 45 | canela de velho | Miconia albicans (Sw) Steud. | AP | - | 50 | 2.1 |
Moraceae | 46 | white mulberry | Morus alba L. | AP | - | 5 | 3.2 |
47 | carapiá | Dorstenia brasiliensis Lam. | RW | 67 | 3 | 0.6 | |
Moringaceae | 48 | moringa | Moringa oleifera Lam. | L | 26 | - | 7.9 |
Pedaliaceae | 49 | white sesame | Sesamum indicum L. | Se | - | - | 3.6 |
Piperaceae | 50 | monkey pepper | Piper aduncum L. | Fl | 47 | - | 3 |
51 | black pepper | Piper nigrum L. | F | 100 | - | 6 | |
Poaceae | 52 | lemon grass | Cymbopogon citratus (DC) Stapf | L | 20 | - | 2.7 |
Ranunculaceae | 53 | black sesame | Nigella sativa L. | Se | - | - | 45.1 |
Rutaceae | 54 | Sicilian lemon | Citrus limon (L.) Osbeck | F (peel) | 56 | 6 | 0.3 |
55 | Sicilian lemon | Citrus limon (L.) Osbeck | F (pulp) | - | - | 1.8 | |
Solanaceae | 56 | goji berry | Lycium barbarum L. | F | 100 | 36 | 1.7 |
57 | rosemary | Rosmarinus officinalis L. | L | - | - | 12.6 | |
58 | chili pepper | Capsicum sp. | F | 100 | 100 | 0.4 | |
59 | chocolate pepper | Capsicum sp. | F | 23 | 12 | 1.9 | |
60 | yellow scorpion pepper | Capsicum sp. | F | 100 | 94 | 0.3 | |
61 | red scorpion pepper | Capsicum sp. | F | 7 | 46 | 0.07 | |
62 | smelling pepper | Capsicum sp. | F | 10 | 6 | 0.9 | |
63 | cumari pepper | Capsicum sp. | F | 100 | 23 | 0.3 | |
64 | pepper goat | Capsicum sp. | F | - | 3 | 0.8 | |
65 | lady finger pepper | Capsicum sp. | F | - | 6 | 1.6 | |
66 | jurubeba | Solanum paniculatum L. | F | - | - | 0.3 | |
Verbenaceae | 67 | bushy matgrass | Lippia alba (Mill) N.E.Br. | L | 2.5 | 25 | 3.3 |
Vitaceae | 68 | white raisin | Vitis vinifera L. | F | 100 | 6 | 0.5 |
Zingiberaceae | 69 | cardamom | Elettaria cardamomum (L.) Maton | Sep | 100 | 56 | 3.6 |
70 | ginger | Zingiber officinale Roscoe | R | - | - | 0.5 |
Level | Factor | |||
---|---|---|---|---|
T (min) | FM | λnm | Flow (mL.min−1) | |
−1 | 3 | PVDF | 256 | 0.9 |
+1 | 5 | PTFE | 276 | 1.1 |
Conventional method | 4 | nylon | 266 | 1.0 |
Sample | Concentration (µg/mL) | LC50 µg/mL (CI 95%) | LC90 µg/mL (CI 95%) | R2 24 h |
---|---|---|---|---|
piperine | 50 25 15 10 5 | 19.03 (17.6–20.7) * 11.3 (10.2–12.4) ** 7.5 (6.2–8.8) *** | 38.1 (31.8–45.4) * 27.6 (22.1–34. 4) ** 23.8 (17.2–33.3) *** | 0.87 |
standardized P. nigrum ethanolic fruit extract | 2.5 1.5 1.1 0.9 0.5 | 1.1 (1.1–1.2) * 0.9 (0.6–0.9) ** 0.9 (0.8–1.0) *** | 1.8 (1.6–1.9) * 1.3 (1.2–1.5) ** 1.2 (1.0–1.4) *** | 0.92 |
temephos | 0.00625 0.00313 0.00156 0.00078 0.00039 | 0.0011 (0.0010–0.0012) * 0.0010 (0.0010–0.0011) ** 0.0009 (0.0009–0.0010) *** | 0.00165 (0.00154–0.00175) * 0.00156 (0.00141–0.00170) ** 0.00129 (0.0011–0.00146) *** | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, L.S.; Sousa, J.P.B.; Aguiar, C.M.; Gomes, C.M.; Demarque, D.P.; Albernaz, L.C.; Espindola, L.S. Edible Plant Extracts against Aedes aegypti and Validation of a Piper nigrum L. Ethanolic Extract as a Natural Insecticide. Molecules 2023, 28, 1264. https://doi.org/10.3390/molecules28031264
Morais LS, Sousa JPB, Aguiar CM, Gomes CM, Demarque DP, Albernaz LC, Espindola LS. Edible Plant Extracts against Aedes aegypti and Validation of a Piper nigrum L. Ethanolic Extract as a Natural Insecticide. Molecules. 2023; 28(3):1264. https://doi.org/10.3390/molecules28031264
Chicago/Turabian StyleMorais, Lais Silva, João Paulo Barreto Sousa, Carolina Melo Aguiar, Ciro Martins Gomes, Daniel Pecoraro Demarque, Lorena Carneiro Albernaz, and Laila Salmen Espindola. 2023. "Edible Plant Extracts against Aedes aegypti and Validation of a Piper nigrum L. Ethanolic Extract as a Natural Insecticide" Molecules 28, no. 3: 1264. https://doi.org/10.3390/molecules28031264
APA StyleMorais, L. S., Sousa, J. P. B., Aguiar, C. M., Gomes, C. M., Demarque, D. P., Albernaz, L. C., & Espindola, L. S. (2023). Edible Plant Extracts against Aedes aegypti and Validation of a Piper nigrum L. Ethanolic Extract as a Natural Insecticide. Molecules, 28(3), 1264. https://doi.org/10.3390/molecules28031264