Modified Technogenic Asphaltenes as Enhancers of the Thermal Conductivity of Paraffin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Technogenic Asphaltenes and Their Modified Derivatives
2.2. Physicochemical Properties of Paraffin Composition Modified with Asphaltenes
2.2.1. Rheological Properties
2.2.2. Structure of Composites
2.2.3. Thermal Conductivity
3. Materials and Methods
3.1. Materials
3.1.1. Modification of ET-A Asphaltenes with Ammonium Persulfate in Sulfuric Acid
3.1.2. Modification of ET-A Asphaltenes with Ammonium Persulfate in Acetic Acid
3.2. Preparation of Composites
3.3. Methods
3.3.1. MALDI
3.3.2. XPS
3.3.3. Elemental Analysis
3.3.4. IR Spectroscopy
3.3.5. Optical Microscopy
3.3.6. Rheological Properties
3.3.7. X-ray Diffraction
3.3.8. Thermophysical Properties
4. Conclusions
- (1)
- Due to the presence of a polycyclic aromatic core, technogenic and petroleum asphaltenes can be considered as carbon nanofillers, similar in structural properties to small fragments of graphene. The revealed features of the structure of technogenic asphaltenes—high condensation and an almost complete absence of heteroatoms in polyaromatic systems—make them a more promising basis for obtaining PCM thermal conductivity enhancers by chemical modification.
- (2)
- The oxidative modification of technogenic asphaltenes makes it possible to change their composition in a controlled way. In the case of oxidation with ammonium persulfate in sulfuric acid, significant changes are observed in the structure of modified technogenic asphaltenes associated with the formation of more condensed structures and a noticeable increase in the oxygen content in the average molecule due to the formation of carboxyl, ether, and sulfo groups, as well as the appearance of a significant amount of heteroatoms, especially on the surface. The process of the oxidation of technogenic asphaltenes with ammonium persulfate in acetic acid does not lead to significant changes in their structure and is associated mainly with the formation of carboxyl and ether groups.
- (3)
- It was found that the introduction of 5 and 30 wt. % of such fillers leads to the formation of an internal network structure, which contributes to an increase in the sedimentation stability of their suspensions in paraffin, while intermediate concentrations of asphaltenes are not so effective.
- (4)
- As a result, the addition of modified technogenic asphaltenes oxidized with ammonium persulfate in acetic acid in an amount of 5–30 wt% allows the increase of the thermal conductivity of paraffin by 58–72%, respectively.
- (5)
- The addition of technogenic asphaltenes oxidized with ammonium persulfate in sulfuric acid does not provide a similar increase in the thermal conductivity of paraffin. This is probably due to the presence of sulfo groups, RSO3H, formed in presence of sulfuric acid, which enhance interactions between molecules, but also lead to poor (non-uniform) distribution in the wax. As a result, a significant increase in the thermal conductivity was not achieved.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zheng, D.; Mikulčić, H.; Vujanović, M.; Sundén, B. Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage. Renew. Sustain. Energy Rev. 2021, 151, 111541. [Google Scholar] [CrossRef]
- Karaipekli, A.; Biçer, A.; Sarı, A.; Tyagi, V.V. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers. Manag. 2017, 134, 373–381. [Google Scholar] [CrossRef]
- El Idi, M.M.; Karkri, M.; Kraiem, M. Preparation and effective thermal conductivity of a Paraffin/Metal Foam composite. J. Energy Storage 2021, 33, 102077. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kamel, S.H.; Al-Ajeely, A.N.M. Thermal conductivity enhancement by using nano-material in phase change material for latent heat thermal energy storage systems. Saussurea 2015, 5, 48–55. [Google Scholar]
- Wu, S.; Chen, Q.; Chen, D.; Peng, D.; Ma, Y. Multiscale study of thermal conductivity of boron nitride nanosheets/paraffin thermal energy storage materials. J. Energy Storage 2021, 41, 102931. [Google Scholar] [CrossRef]
- Ma, X.; Wu, S.; Yi, Z.; Peng, D.; Zhang, J. The effect mechanism of functionalization on thermal conductivity of boron nitride nanosheets/paraffin composites. Int. J. Heat Mass Transf. 2019, 137, 790–798. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Amin, M.; Putra, N.; Kosasih, E.A.; Prawiro, E.; Luanto, R.A.; Mahlia, T.M.I. Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl. Therm. Eng. 2017, 112, 273–280. [Google Scholar] [CrossRef]
- Yu, Z.T.; Fang, X.; Fan, L.W.; Wang, X.; Xiao, Y.Q.; Zeng, Y.; Cen, K.F. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon 2013, 53, 277–285. [Google Scholar] [CrossRef]
- Kiršanskas, G.; Li, Q.; Flensberg, K.; Solomon, G.C.; Leijnse, M. Designing π-stacked molecular structures to control heat transport through molecular junctions. Appl. Phys. Lett. 2014, 105, 233102. [Google Scholar] [CrossRef]
- Emrick, T.; Pentzer, E. Nanoscale assembly into extended and continuous structures and hybrid materials. Npg Asia Mater. 2013, 5, e43. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Jia, Y.; Alva, G.; Fang, G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew. Sustain. Energy Rev. 2018, 82, 2730–2742. [Google Scholar] [CrossRef]
- Liu, X.; Rao, Z. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material. Thermochim. Acta 2017, 647, 15–21. [Google Scholar] [CrossRef]
- Bhattacharya, M. Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yan, X.; Meng, P.; Sun, P.; Cheng, G.; Zheng, R. Carbon black/octadecane composites for room temperature electrical and thermal regulation. Carbon 2015, 94, 417–423. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, S.; Wei, X.; Liu, Z.; Guo, Q.; Shi, J.; Liu, L. Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon 2010, 48, 300–304. [Google Scholar] [CrossRef]
- Glova, A.D.; Nazarychev, V.M.; Larin, S.V.; Lyulin, A.V.; Lyulin, S.V.; Gurtovenko, A.A. Asphaltenes as novel thermal conductivity enhancers for liquid paraffin: Insight from in silico modeling. J. Mol. Liq. 2022, 346, 117112. [Google Scholar] [CrossRef]
- Makarova, V.V.; Gorbacheva, S.N.; Kostyuk, A.V.; Antonov, S.V.; Borisova, Y.Y.; Borisov, D.N.; Yakubov, M.R. Composites based on neat and modified asphaltenes and paraffin: Structure, rheology and heat conductivity. J. Energy Storage 2022, 47, 103595. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Xie, Q.; Liang, D. Controllable synthesis of isotropic pitch precursor for general purpose carbon fiber using waste ethylene tar via bromination–dehydrobromination. J. Clean. Prod. 2020, 271, 122498. [Google Scholar] [CrossRef]
- Ge, C.Z.; Sun, Z.L.; Yang, H.X.; Long, D.H.; Qiao, W.M.; Ling, L.C. Preparation and characterization of high softening point and homogeneous isotropic pitches produced from distilled ethylene tar by a novel bromination method. New Carbon Mater. 2018, 33, 71–81. [Google Scholar] [CrossRef]
- Yang, J.; Nakabayashi, K.; Miyawaki, J.; Yoon, S.H. Preparation of pitch based carbon fibers using Hyper-coal as a raw material. Carbon 2016, 106, 28–36. [Google Scholar] [CrossRef]
- Yang, J.; Nakabayashi, K.; Miyawaki, J.; Yoon, S.H. Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil. J. Ind. Eng. Chem. 2016, 34, 397–404. [Google Scholar] [CrossRef]
- Kim, B.-J.; Kil, H.; Watanabe, N.; Seo, M.-H.; Kim, B.-H.; Yang, K.S.; Kato, O.; Miyawaki, J.; Mochida, I.; Yoon, S.-H. Preparation of novel isotropic pitch with high softening point and solvent solubility for pitch-based electrospun carbon nanofiber. Curr. Org. Chem. 2013, 17, 1463–1468. [Google Scholar] [CrossRef]
- Borisova, Y.Y.; Mironov, N.A.; Yakubova, S.G.; Borisov, D.N.; Kosachev, I.P.; Yakubov, M.R. Application of Ethylene Tar as an Additive in Visbreaking of Petroleum Vacuum Residue. Energy Fuels 2021, 35, 15684–15694. [Google Scholar] [CrossRef]
- Mukhamedzyanova, A.A.; Gimaev, R.N.; Khaibullin, A.A.; Telyashev, E.G. Research of high-quality descriptions of heavy pyrolysis tar. Bull. Bashkir Univ. 2012, 17, 909–915. [Google Scholar]
- Burgess, W.A.; Thies, M.C. Molecular structures for the oligomeric constituents of petroleum pitch. Carbon 2011, 49, 636–651. [Google Scholar] [CrossRef]
- Borisov, D.N.; Foss, L.E.; Shabalin, K.V.; Musin, L.I.; Musin, R.Z. Oxidative Cleavage of Asphaltenes Under Mild Conditions. Chem. Technol. Fuels Oils 2019, 55, 552–556. [Google Scholar] [CrossRef]
- Shabalin, K.V.; Musin, L.I.; Foss, L.E.; Nagornova, O.A.; Morozov, V.I.; Borisov, D.N.; Yakubov, M.R. Preparation of Redox Ion-Exchange Materials Based on Petroleum Asphaltenes. Pet. Chem. 2022, 62, 222–228. [Google Scholar] [CrossRef]
- Induchoodan, G.; Jansson, H.; Swenson, J. Influence of graphene oxide on asphaltene nanoaggregates. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127614. [Google Scholar] [CrossRef]
- Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. XPS Study of Sulfur and Phosphorus Compounds with Different Oxidation States. Sains Malays. 2018, 47, 1913–1922. [Google Scholar] [CrossRef]
- Li, W.; Tang, Y.; Zhao, Q.; Wei, Q. Sulfur and nitrogen in the high-sulfur coals of the Late Paleozoic from China. Fuel 2015, 155, 115–121. [Google Scholar] [CrossRef]
- Guzmán, H.J.; Isquierdo, F.; Carbognani, L.; Vitale, G.; Scott, C.E.; Pereira-Almao, P. X-ray photoelectron spectroscopy analysis of hydrotreated athabasca asphaltenes. Energy Fuels 2017, 31, 10706–10717. [Google Scholar] [CrossRef]
- Barnes, H.A. The yield stress—A review or ‘παντα ρει’—Everything flows? J. Non-Newton. Fluid Mech. 1999, 81, 133–178. [Google Scholar] [CrossRef]
- Willenbacher, N.; Georgieva, K. Rheology of disperse systems. In Product Design and Engineering: Formulation of Gels and Pastes; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 44. [Google Scholar]
- Dzuy, N.Q.; Boger, D.V. Yield stress measurement for concentrated suspensions. J. Rheol. 1983, 27, 321–349. [Google Scholar] [CrossRef]
- Gorbacheva, S.N.; Makarova, V.V.; Ilyin, S.O. Hydrophobic nanosilica-stabilized graphite particles for improving thermal conductivity of paraffin wax-based phase-change materials. J. Energy Storage 2021, 36, 102417. [Google Scholar] [CrossRef]
- Ancey, C.; Jorrot, H. Yield stress for particle suspensions within a clay dispersion. J. Rheol. 2001, 45, 297–319. [Google Scholar] [CrossRef]
- Raine, H.C.; Richards, R.B.; Ryder, H. The heat capacity, heat of solution, and crystallinity of polythene. Trans. Faraday Soc. 1945, 41, 56–64. [Google Scholar] [CrossRef]
- Babaev, B.D. Principles of heat accumulation and heat-accumulating materials in use. High Temp. 2014, 52, 736. [Google Scholar] [CrossRef]
- Kibria, M.A.; Anisur, M.R.; Mahfuz, M.H.; Saidur, R.; Metselaar, I.H.S.C. A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers. Manag. 2015, 95, 69–89. [Google Scholar] [CrossRef]
Asphaltene Samples | Concentration of Elements, wt. % | ||||||||
---|---|---|---|---|---|---|---|---|---|
at the Surface (XPS Data) | in the Whole Sample (CHNS Analysis Data) | ||||||||
C | N | O | S | C | H | N | S | O 1 | |
Petroleum-A | 93.0 | 1.0 | 2.1 | 3.6 | 80.9 | 8.1 | 2.1 | 6.9 | 2.0 |
ET-A | 99.3 | - | 0.7 | - | 92.2 | 6.5 | - | - | 1.3 |
ET-Ox1 | 71.6 | 1.1 | 23.3 | 4.0 | 51.9 | 4.9 | 1.6 | 6.4 | 35.2 |
ET-Ox2 | 96.5 | - | 3.5 | - | 83.8 | 6.1 | - | 0.7 | 9.4 |
Asphaltene Samples | Spectral Coefficients | |||||
---|---|---|---|---|---|---|
CH2/ C=C | C=C/ CH3+CH2 | C=O/ C=C | C-O/ C=C | RSO3H/ C=C | S-O/C=C | |
ET-A | 1.33 | 0.49 | - | - | - | - |
ET -Ox1 | 0.82 | 1.22 | 0.89 | 1.20 | 1.21 | 1.31 |
ET -Ox2 | 1.02 | 0.54 | 0.78 | 0.89 | 0.68 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorbacheva, S.N.; Borisova, Y.Y.; Makarova, V.V.; Antonov, S.V.; Borisov, D.N.; Yakubov, M.R. Modified Technogenic Asphaltenes as Enhancers of the Thermal Conductivity of Paraffin. Molecules 2023, 28, 949. https://doi.org/10.3390/molecules28030949
Gorbacheva SN, Borisova YY, Makarova VV, Antonov SV, Borisov DN, Yakubov MR. Modified Technogenic Asphaltenes as Enhancers of the Thermal Conductivity of Paraffin. Molecules. 2023; 28(3):949. https://doi.org/10.3390/molecules28030949
Chicago/Turabian StyleGorbacheva, Svetlana N., Yulia Yu. Borisova, Veronika V. Makarova, Sergey V. Antonov, Dmitry N. Borisov, and Makhmut R. Yakubov. 2023. "Modified Technogenic Asphaltenes as Enhancers of the Thermal Conductivity of Paraffin" Molecules 28, no. 3: 949. https://doi.org/10.3390/molecules28030949
APA StyleGorbacheva, S. N., Borisova, Y. Y., Makarova, V. V., Antonov, S. V., Borisov, D. N., & Yakubov, M. R. (2023). Modified Technogenic Asphaltenes as Enhancers of the Thermal Conductivity of Paraffin. Molecules, 28(3), 949. https://doi.org/10.3390/molecules28030949