Anemoside B4 Exerts Hypoglycemic Effect by Regulating the Expression of GLUT4 in HFD/STZ Rats
Abstract
:1. Introduction
2. Results
2.1. B4 Improved Hyperglycemia and Glucose Tolerance in HFD/STZ-Induced Diabetes Rats
2.2. B4 Does Not Reverse Body Weight Loss, the Increase in Water Intake and Food Intake in Hyperglycemia Rats
2.3. B4 Increased GLUT4 Expression in Skeletal Muscle Relating to PI3K/AKT Pathways
2.4. B4 Increased Glucose Uptake and Enhanced GLUT4 Expression in L6 Cells
2.5. PI3K/Akt Pathway Was Involved in B4-Induced Increase in GLUT4 Expression
2.6. B4 Directly Regulated GLUT4 by Promoting GLUT4 Gene Transcription
3. Materials and Methods
3.1. Animals and Cell Lines
3.2. Chemical and Regents
3.3. Animal Model and Treatment
3.4. Body Weight, Fasting Blood Glucose, Water, and Food Uptake
3.5. Oral Glucose Tolerance Test
3.6. Gene Expression
3.7. Western Blot Analysis in L6 Cells and Muscle Tissues
3.8. Tissue Immunofluorescence Analysis
3.9. Cell Culture, Differentiation, and Identification
3.10. Cell Viability
3.11. Glucose Uptake Assay
3.12. PI3K Inhibitor
3.13. Construction of GLUT4 Promoter Plasmid
3.14. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Guo, X.; Xie, Y.; Lian, S.; Li, Z.; Gao, Y.; Xu, Z.; Hu, P.; Chen, M.; Sun, Z.; Tian, X.; et al. A sensitive HPLC-MS/MS method for the simultaneous determination of anemosideB4, anemoside A3 and 23-hydroxybetulinic acid: Application to the pharmacokinetics and liver distribution of Pulsatilla chinensis saponins. Biomed. Chromatogr. 2018, 32, e4124. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Ouyang, H.; He, M.; Tan, T.; Li, J.; Zhang, X.; Jia, J.; Feng, Y.; Yang, S. Application of a liquid chromatography-tandem mass spectrometry method to the pharmacokinetics, tissue distribution and excretion in the study of anemoside B4, a novel antiviral agent candidate, in rats. Biomed. Chromatogr. 2017, 31. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Meng, X.; Yu, X.; Kuang, H. Simultaneous determination of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin in rat plasma by UPLC-ESI-MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats. J. Pharm. Biomed. Anal. 2017, 134, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhang, Y.; Yuan, J.; Yang, F.; Chen, Y.; Zhou, L.; Zhang, Q. Biotransformation and metabolic profile of anemoside B4 with rat small and large intestine microflora by ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Biomed. Chromatogr. 2017, 31. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Shen, W.; Zhang, Y.; Su, Z.; Yang, S.; Liu, Y.; Xu, Q. Anti-inflammatory and immune-modulatory properties of anemoside B4 isolated from Pulsatilla chinensis in vivo. Phytomedicine 2019, 64, 152934. [Google Scholar] [CrossRef]
- Li, Y.; Zou, M.; Han, Q.; Deng, L.; Weinshilboum, R. Therapeutic potential of triterpenoid saponin anemoside B4 from Pulsatilla chinensis. Pharmacol. Res. 2020, 160, 105079. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, M.; Jiang, Y.; Zha, C.; Yu, D.; Lei, F.; Luo, Y.; Feng, Y.; Yang, S.; Li, J.; et al. The abrupt pathological deterioration of cisplatin-induced acute kidney injury: Emerging of a critical time point. Pharmacol. Res. Perspect. 2021, 9, e00895. [Google Scholar] [CrossRef]
- Gong, Q.; He, L.; Wang, M.; Ouyang, H.; Gao, H.; Feng, Y.; Yang, S.; Du, L.; Li, J.; Luo, Y. Anemoside B4 Protects Rat Kidney from Adenine-Induced Injury by Attenuating Inflammation and Fibrosis and Enhancing Podocin and Nephrin Expression. Evid. Based. Complement. Alternat. Med. 2019, 2019, 8031039. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, Z.; Chen, L.; Wang, L.; Muge, Q. Anemoside B4 prevents chronic obstructive pulmonary disease through alleviating cigarette smoke-induced inflammatory response and airway epithelial hyperplasia. Phytomedicine 2022, 107, 154431. [Google Scholar] [CrossRef]
- Yuan, R.; He, J.; Huang, L.; Du, L.; Gao, H.; Xu, Q.; Yang, S. Anemoside B4 Protects against Acute Lung Injury by Attenuating Inflammation through Blocking NLRP3Inflammasome Activation and TLR4 Dimerization. J. Immunol. Res. 2020, 2020, 7502301. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Deng, L.; Zou, M.; Tang, H.; Huang, C.; Chen, F.; Tomlinson, B.; Li, Y. Anemoside B4 protects against chronic relapsing colitis in mice by modulating inflammatory response, colonic transcriptome and the gut microbiota. Phytomedicine 2022, 106, 154416. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhou, M.; Duan, W.; Chen, L.; Wang, L.; Liu, P. Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-κB/MAPK signaling pathway. Int. Immunopharmacol. 2020, 87, 106794. [Google Scholar] [CrossRef]
- Xue, S.; Zhou, Y.; Zhang, J.; Xiang, Z.; Liu, Y.; Miao, T.; Liu, G.; Liu, B.; Liu, X.; Shen, L.; et al. Anemoside B4 exerts anti-cancer effect by inducing apoptosis and autophagy through inhibiton of PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Am. J. Transl. Res. 2019, 11, 2580–2589. [Google Scholar] [PubMed]
- Pei, L.; He, L. Hepatoprotective effect of anemoside B4 against sepsis-induced acute liver injury through modulating the mTOR/p70S6K-mediated autophagy. Chem. Biol. Interact. 2021, 345, 109534. [Google Scholar] [CrossRef] [PubMed]
- Shan, D.; Qu, P.; Zhong, C.; He, L.; Zhang, Q.; Zhong, G.; Hu, W.; Feng, Y.; Yang, S.; Yang, X.; et al. Anemoside B4 Inhibits Vascular Smooth Muscle Cell Proliferation, Migration, and Neointimal Hyperplasia. Front. Cardiovasc. Med. 2022, 9, 907490. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Wang, X.; Zhang, M.; Wang, X.; Li, Y.; Cui, Z.; Chen, X.; Han, Y.; Zhao, W. Electrospun multifunctional nanofibrous mats loaded with bioactive anemoside B4 for accelerated wound healing in diabetic mice. Drug. Deliv. 2022, 29, 174–185. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef]
- Mirza, A.; Panchal, S.; Allam, A.; Othman, S.; Satia, M.; Mandhane, S. Syringic Acid Ameliorates Cardiac, Hepatic, Renal and Neuronal Damage Induced by Chronic Hyperglycaemia in Wistar Rats: A Behavioural, Biochemical and Histological Analysis. Molecules 2022, 27, 6722. [Google Scholar] [CrossRef]
- Baron, A.; Brechtel, G.; Wallace, P.; Edelman, S. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. 1988, 255, E769–E774. [Google Scholar] [CrossRef] [Green Version]
- McMillin, S.; Stanley, E.; Weyrauch, L.; Brault, J.; Kahn, B.; Witczak, C. Insulin Resistance Is Not Sustained Following Denervation in Glycolytic Skeletal Muscle. Int. J. Mol. Sci. 2021, 22, 4913. [Google Scholar] [CrossRef]
- Carvalho, E.; Kotani, K.; Peroni, O.D.; Kahn, B. Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E551–E561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Zisman, A.; Fillmore, J.; Peroni, O.; Kotani, K.; Perret, P.; Zong, H.; Dong, J.; Kahn, C.; Kahn, B.; et al. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J. Clin. Investig. 2001, 108, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Beckerman, M.; Harel, C.; Michael, I.; Klip, A.; Bilan, P.; Gallagher, E.; LeRoith, D.; Lewis, E.; Karnieli, E.; Levenberg, S. GLUT4-overexpressing engineered muscle constructs as a therapeutic platform to normalize glycemia in diabetic mice. Sci. Adv. 2021, 7, eabg3947. [Google Scholar] [CrossRef]
- Kennard, M.; Nandi, M.; Chapple, S.; King, A. The glucose tolerance test in mice: Sex, drugs and protocol. Diabetes. Obes. Metab. 2022, 24, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulos, S.; Blair, A.; Deluca, N.; Fam, B.; Proietto, J. Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1323–E1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Q.; Yin, J.; Wang, M.; He, L.; Lei, F.; Luo, Y.; Yang, S.; Feng, Y.; Li, J.; Du, L. Comprehensive study of dexamethasone on albumin biogenesis during normal and pathological renal conditions. Pharm. Biol. 2020, 58, 1252–1262. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; He, L.; Wang, M.; Zuo, S.; Gao, H.; Feng, Y.; Du, L.; Luo, Y.; Li, J. Comparison of the TLR4/NFκB and NLRP3 signalling pathways in major organs of the mouse after intravenous injection of lipopolysaccharide. Pharm. Biol. 2019, 57, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Pena, S.D. A new technique for the visualization of the cytoskeleton in cultured fibroblasts with Coomassie blue R250. Cell Biol. Int. Rep. 1980, 4, 149–153. [Google Scholar] [CrossRef]
- Mirzaie, V.; Eslaminejad, T.; Babaei, H.; Nematollahi-Mahani, S. Enhancing the Butyrylcholinesterase Activity in HEK-293 Cell Line by Dual-Promoter Vector Decorated on Lipofectamine. Drug Des. Devel. Ther. 2020, 14, 3589–3599. [Google Scholar] [CrossRef]
- Ren, T.; Liu, F.; Wang, D.; Li, B.; Jiang, P.; Li, J.; Li, H.; Chen, C.; Wu, W.; Jiao, L. Rhamnogalacturonan-I enriched pectin from steamed ginseng ameliorates lipid metabolism in type 2 diabetic rats via gut microbiota and AMPK pathway. J. Ethnopharmacol. 2023, 301, 115862. [Google Scholar] [CrossRef]
- Saeed, M.; Tasleem, M.; Shoaib, A.; Alabdallah, N.; Alam, M.; El Asmar, Z.; Jamal, Q.; Bardakci, F.; Ansari, I.; Ansari, M.; et al. Investigation of antidiabetic properties of shikonin by targeting aldose reductase enzyme: In silico and in vitro studies. Biomed. Pharmacother. 2022, 150, 112985. [Google Scholar] [CrossRef] [PubMed]
- Smetana, G.; Abrahamson, M.; Rind, D. Should We Screen for Type 2 Diabetes?: Grand Rounds Discussion from Beth Israel Deaconess Medical Center. Ann. Intern. Med. 2016, 165, 509–516. [Google Scholar] [CrossRef]
- Kramer, C.; Ye, C.; Hanley, A.; Connelly, P.; Sermer, M.; Zinman, B.; Retnakaran, R. Delayed timing of post-challenge peak blood glucose predicts declining beta cell function and worsening glucose tolerance over time: Insight from the first year postpartum. Diabetologia 2015, 58, 1354–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, P.; McMillin, S.; Weyrauch, L.; Witczak, C. Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients 2019, 11, 2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, D.; Piper, R.; Slot, J. Targeting of mammalian glucose transporters. J. Cell Sci. 1993, 104, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, A.; Murgia, M.; Nagaraj, N.; Treebak, J.T.; Cox, J.; Mann, M. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol. Cell Proteom. 2015, 14, 841–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Cheung, L.; Feng, L.; Tanner, W.; Frommer, W. Transport of sugars. Annu. Rev. Biochem. 2015, 84, 865–894. [Google Scholar] [CrossRef]
- Asano, T.; Takata, K.; Katagiri, H.; Tsukuda, K.; Lin, J.; Ishihara, H.; Inukai, K.; Hirano, H.; Yazaki, Y.; Oka, Y. Domains responsible for the differential targeting of glucose transporter isoforms. J. Biol. Chem. 1992, 267, 19636–19641. [Google Scholar] [CrossRef]
- Jaldin-Fincati, J.; Pavarotti, M.; Frendo-Cumbo, S.; Bilan, P.J.; Klip, A. Update on GLUT4 Vesicle Traffiffiffic: A Cornerstone of Insulin Action. Trends Endocrinol. Metab. 2017, 28, 597–611. [Google Scholar] [CrossRef]
- Suzuki, K.; Kono, T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. USA 1980, 77, 2542–2545. [Google Scholar] [CrossRef]
- Liu, M.; Gibbs, E.; McCoid, S.; Milici, A.; Stukenbrok, H.; McPherson, R.; Treadway, J.; Pessin, J. Transgeulc mice expressing the human GLUT4/mnscle-fat facilitative glucose transporter prorein exhibit efficient glycemic control. Proc. Natl. Acad. Sci. USA 1993, 90, 11346–11350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charron, M.; Gorovits, N.; Laidlaw, J.; Ranalletta, M.; Katz, E. Use of GLUT-4 null mice to study skeletal muscle glucose uptake. Clin. Exp. Pharmacol. Physiol. 2005, 32, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Mitchell, P.; Gross, S.; Marette, A.; Sweeney, G. ALY688 elicits adiponectin-mimetic signaling and improves insulin action in skeletal muscle cells. Am. J. Physiol. Cell Physiol. 2022, 322, C151–C163. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Tseng, Y.; White, M. Insulin signaling meets mitochondria in metabolism. Trends Endocrinol. Metab. 2010, 21, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Stumvoll, M.; Goldstein, B.; van Haeften, T. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Q.; Yin, J.; Wang, M.; Zha, C.; Yu, D.; Yang, S.; Feng, Y.; Li, J.; Du, L. Anemoside B4 Exerts Hypoglycemic Effect by Regulating the Expression of GLUT4 in HFD/STZ Rats. Molecules 2023, 28, 968. https://doi.org/10.3390/molecules28030968
Gong Q, Yin J, Wang M, Zha C, Yu D, Yang S, Feng Y, Li J, Du L. Anemoside B4 Exerts Hypoglycemic Effect by Regulating the Expression of GLUT4 in HFD/STZ Rats. Molecules. 2023; 28(3):968. https://doi.org/10.3390/molecules28030968
Chicago/Turabian StyleGong, Qin, Jilei Yin, Mulan Wang, Chengliang Zha, Dong Yu, Shilin Yang, Yulin Feng, Jun Li, and Lijun Du. 2023. "Anemoside B4 Exerts Hypoglycemic Effect by Regulating the Expression of GLUT4 in HFD/STZ Rats" Molecules 28, no. 3: 968. https://doi.org/10.3390/molecules28030968
APA StyleGong, Q., Yin, J., Wang, M., Zha, C., Yu, D., Yang, S., Feng, Y., Li, J., & Du, L. (2023). Anemoside B4 Exerts Hypoglycemic Effect by Regulating the Expression of GLUT4 in HFD/STZ Rats. Molecules, 28(3), 968. https://doi.org/10.3390/molecules28030968