A Possible Natural and Inexpensive Substitute for Lapis Lazuli in the Frederick II Era: The Finding of Haüyne in Blue Lead-Tin Glazed Pottery from Melfi Castle (Italy)
Abstract
:1. Introduction
2. Results
2.1. SEM-EDS
2.2. Raman Spectroscopy
3. Discussions
4. Materials and Methods
4.1. Sample
4.2. Techniques
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caggiani, M.C.; Acquafredda, P.; Colomban, P.; Mangone, A. The source of blue colour of archaeological glass and glazes: The Raman spectroscopy/SEM EDS answers. J. Raman Spectrosc. 2014, 45, 1251–1259. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Mangone, A.; Acquafredda, P. Blue coloured haüyne from Mt. Vulture (Italy) volcanic rocks: SEM-EDS and Raman investigation of natural and heated crystals. J. Raman Spectrosc. 2022, 53, 956–968. [Google Scholar] [CrossRef]
- Della Ventura, G.D.; Capitelli, F.; Sbroscia, M.; Sodo, A. A Raman study of chalcogen species in sodalite-group minerals from the volcanic rocks of Latium (Italy). J. Raman Spectrosc. 2020, 51, 1513–1521. [Google Scholar] [CrossRef]
- Ballirano, P. Haüyne: Mutual cations/anionic groups arrangement and thermal expansion mechanism. Phys. Chem. Miner. 2012, 39, 733–747. [Google Scholar] [CrossRef]
- Di Muro, A.; Bonaccorsi, E.; Principe, C. Complex colour and chemical zoning of sodalite-group phases in a haüynophyre lava from Mt. Vulture, Italy. Mineral. Mag. 2004, 68, 591–614. [Google Scholar] [CrossRef]
- Parat, F.; Holtz, F.; Streck, M.J. Sulfur-bearing magmatic accessory minerals. Rev. Mineral. Geochem. 2011, 73, 285–314. [Google Scholar] [CrossRef]
- Lebedev, V.A.; Chernyshev, I.V. Haüyne Alkaline Basaltoids Found in the Lesser Caucasus (Kapan District, Armenia) and Their Middle Pleistocene Age. Dokl. Earth Sci. 2020, 492, 426–430. [Google Scholar] [CrossRef]
- Peccerillo, A. Cenozoic Volcanism in the Tyrrhenian Sea Region, 2nd ed.; Advances in Volcanology; Springer: New York, NY, USA, 2017. [Google Scholar]
- Pastoureau, M. Blu Storia di un Colore; Ponte delle Grazie: Milano, Italy, 2002. [Google Scholar]
- Colomban, P. Rocks as blue, green and black pigments/dyes of glazed pottery and enamelled glass artefacts—A review. Eur. J. Mineral. 2013, 25, 863–879. [Google Scholar] [CrossRef]
- Mangone, A.; De Benedetto, G.E.; Fico, D.; Giannossa, L.C.; Laviano, R.; Sabbatini, L.; van der Werf, I.D.; Traini, A. A multianalytical study of archaeological faience from the Vesuvian area as a valid tool to investigate provenance and technological features. New J. Chem. 2011, 35, 2860–2868. [Google Scholar] [CrossRef]
- Bruno, P.; Caselli, M.; Curri, L.; Favia, P.; Laganara, C.; Mangone, A.; Traini, A. XPS, ICP and DPASV analysis of medieval pottery. Statistical multivariate treatment of data. Fresenius J. Anal. Chem. 1994, 350, 168–177. [Google Scholar] [CrossRef]
- Catalano, I.M.; Genga, A.; Laganara, C.; Laviano, R.; Mangone, A.; Marano, D.; Traini, A. Lapis lazuli usage for blue decoration of polychrome painted glazed pottery: A recurrent technology during the Middle Ages in Apulia (Southern Italy). J. Archaeol. Sci. 2007, 34, 503–511. [Google Scholar] [CrossRef]
- Genga, A.; Siciliano, M.; Tepore, A.; Mangone, A.; Traini, A.; Laganara, C. An archaeometric approach about the study of medieval glass from Siponto (Foggia, Italy). Microchem. J. 2008, 90, 56–62. [Google Scholar] [CrossRef]
- Calò Mariani, M.S. Castelli del Regno di Sicilia, Architettura, Federico II, Enciclopedia Federiciana; Istituto della Enciclopedia italiana Treccani: Roma, Italy, 2004. [Google Scholar]
- Colomban, P. Lapis lazuli as unexpected blue pigment in Iranian Lajvardina ceramics. J. Raman Spectrosc. 2003, 34, 420–423. [Google Scholar] [CrossRef]
- Colomban, P. Routes du Lapis Lazuli, lajvardina et Echanges Entre Arts du Verre et de la Ceramique, TAOCI 4 2005, Chine-Mediterranee, Routes de la Ceramique Avant le XVIe Siecle; Findakly: Suilly-la-Tour, France, 2005; pp. 145–152. [Google Scholar]
- Caggiani, M.C.; Colomban, P.; Valotteau, C.; Mangone, A.; Cambon, P. Mobile Raman spectroscopy analysis of ancient enamelled glass masterpieces. Anal. Methods 2013, 5, 4345–4354. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Ditaranto, N.; Guascito, M.R.; Acquafredda, P.; Laviano, R.; Giannossa, L.C.; Mutino, S.; Mangone, A. Combined SEM-EDS, Raman and XPS analysis of enamelled and gilded glassware from Frederick II castle at Melfi (Italy) to identify technology and raw materials 2015. X-Ray Spectrom. 2015, 44, 191–200. [Google Scholar] [CrossRef]
- Mangone, A.; Giannossa, L.C.; Laganara, C.; Laviano, R.; Traini, A. Manufacturing expedients in medieval ceramics in Apulia. J. Cult. Herit. 2009, 10, 134–143. [Google Scholar] [CrossRef]
- Giannotta, C.; Laganara, C.; Laviano, R.; Mangone, A.; Traini, A. Medieval Islamic type pottery from Siponto (Italy): An integrated physical-chemical and mineralogical investigation. X-Ray Spectrom. 2006, 35, 338–346. [Google Scholar]
- Lessing, P.; Grout, M.C. Haüynitite from Edwards, New York. Am. Mineral. 1971, 56, 1096–1100. [Google Scholar]
- Hogarth, D.; Griffin, W.L. New data on lazurite. Lithos 1976, 9, 39–54. [Google Scholar] [CrossRef]
- Martens, W.; Frost, R.L.; Kloprogge, J.T.; Williams, P.A. Raman spectroscopic study of the basic copper sulphates-implications for copper corrosion and ‘bronze disease’. J. Raman Spectrosc. 2003, 34, 145–151. [Google Scholar] [CrossRef]
- Mernagh, T.P.; Trudu, A.G. A laser Raman microprobe study of some geologically important sulphide minerals. Chem. Geol. 1993, 103, 113–127. [Google Scholar] [CrossRef]
- Freeman, J.J.; Wang, A.; Kuebler, K.E.; Jolliff, B.L.; Haski, L.A. Characterization of Natural Feldspars by Raman Spectroscopy for Future Planetary Exploration. Can. Mineral. 2008, 46, 1477–1500. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Barone, G.; de Ferri, L.; Laviano, R.; Mangone, A.; Mazzoleni, P. Raman and SEM-EDS insights into technological aspects of Medieval and Renaissance ceramics from southern Italy. J. Raman Spectrosc. 2021, 52, 186–198. [Google Scholar] [CrossRef]
- Colomban, P.; Tournie, A.; Bellot-Gurlet, L. Raman identification of glassy silicates used in ceramics, glass and jewellery: A tentative differentiation guide. J. Raman Spectrosc. 2006, 37, 841–852. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J.H.; Firth, S. Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. Analyst 2001, 126, 222–227. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Mangone, A.; Mastrorocco, F.; Taccogna, C.; Laviano, R.; Giannossa, L.C. The Tetris game of scientific investigation. Increase the score embedding analytical techniques. Raw materials and production technology of Roman glasses from Pompeii. Microchem. J. 2017, 131, 21–30. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Geochemistry; Clarendon Press: Oxford, UK, 1954. [Google Scholar]
- Montel, J.M.; Foret, S.; Veschambre, M.; Nicollet, C.; Provost, A. Electron microprobe dating of monazite. Chem. Geol. 1996, 131, 37–53. [Google Scholar] [CrossRef]
- Giannossa, L.C.; Caggiani, M.C.; Laviano, R.; Acquafredda, P.; Rotili, M.; Mangone, A. Synergic analytical strategy to follow the technological evolution of Campanian medieval glazed pottery. Archaeol. Anthropol. Sci. 2017, 9, 1137–1151. [Google Scholar] [CrossRef]
- Ciriello, R.; Marchetta, I. Influenza islamica nelle ceramiche provenienti dal castello di Melfi (PZ)? Alcune considerazioni. In Proceedings of the Atti XLVII Convegno Internazionale della Ceramica, Albisola, Italy, 23–24 May 2014; Centro Ligure per la Storia della Ceramica: Albenga, Italy, 2015; pp. 43–54. [Google Scholar]
- Traini, A.; Giannossa, L.C.; Laviano, R.; Mangone, A. Le indagini archeometriche dei reperti ceramici. In Archeologia di una Città Abbandonata nel Medioevo, Siponto, Foggia; Laganara, C., Ed.; Grenzi: Foggia, Italy, 2011; pp. 133–140. [Google Scholar]
- Clark, J.H.R.; Curri, M.L.; Laganara, C. Raman microscopy: The identification of lapis lazuli on medieval pottery fragments from the south of Italy. Spectrochim. Acta A 1997, 53, 597–603. [Google Scholar] [CrossRef]
- Giannossa, L.C.; Acquaviva, M.; Laganara, C.; Laviano, R.; Mangone, A. Applications of a synergic analytical strategy to figure out technologies in medieval glazed pottery with “negative decoration” from Italy. Appl. Phys. A 2014, 116, 1541–1552. [Google Scholar]
- Gelichi, S. Ceramiche ‘‘Tipo santa Croce’’ un contributo alla conoscenza delle produzioni venete tardo-medievali. Archeol. Mediev. 1993, 229–301. [Google Scholar]
- Cassano, R.; Laganara, C. La linea di costa tra Siponto e Brindisi, porti ed approdi: L’indicatore ceramico. In Proceedings of the IX Congresso Internazionale sulla Ceramica Medievale nel Mediterraneo; All’Insegna del Giglio: Firenze, Italy, 2012; pp. 110–115. [Google Scholar]
- Valenzano, V. Elementi decorativi delle ceramiche pugliesi. Echi e riflessi di matrice orientale. In Proceedings of the Atti XLVII Convegno Internazionale della Ceramica, Albisola, Italy, 23–24 May 2014; Centro Ligure per la Storia della Ceramica: Albenga, Italy, 2015; pp. 55–64. [Google Scholar]
- Tosi, M. Gururājamañjarikā: Studi in Onore di Giuseppe Tucci; Istituto Universitario Orientale: Napoli, Italy, 1974; pp. 3–22. [Google Scholar]
- Bulgarelli, G.M.; Tosi, M. La lavorazione ed il commercio delle pietre semipreziose nelle città dell’Iran protostorico (3200-1800 a.C.). Geo-Archeologia 1977, 1977, 37–50. [Google Scholar]
- Herrmann, G. Lapis Lazuli: The Early Phases of its Trade. Iraq 1968, 30, 21–57. [Google Scholar] [CrossRef]
- Nibbi, A. Ancient Egypt and some Eastern Neighbours; Noyes Publication: Park Ridge, IL, USA, 1981; pp. 33–55. [Google Scholar]
- Von Rosen, L. Lapis Lazuli in Geological Contexts and in Ancient Written Sources, Studies in Mediterranean Archaeology and Literature; Jonsered: Jonsered, Sweden, 1988; p. 65. [Google Scholar]
- Delmas, A.B.; Casanova, M. South Asian Archeology 1987. In Proceedings of the 9th International Conference of South Asian Archaeologists in Western Europe; Taddei, M., Ed.; Istituto per il Medio ed Estremo Oriente: Roma, Italy, 1990; pp. 493–505. Available online: https://d-nb.info/1231547650/34 (accessed on 17 December 2022).
- Hamd-Allah Mustawfi of Qazvin, The Geographical Part of the Nuzhat-al-Qulub, Translated by Le Strange G. 1919, p. 197. Available online: http://www.new.dli.ernet.in/handle/2015/174144 (accessed on 17 December 2022).
- Herrmann, G.; Moorey, P.R.S. Reallexikon der Assyriologie und Vorderasiatischen Archäologisch; De Gruyter: Berlin, Germany, 1983; Volume 6, pp. 489–492. Available online: http://library.oapen.org/handle/20.500.12657/23873 (accessed on 17 December 2022).
- Bowersox, G.W.; Chamberlin, B.E. Gemstones of Afghanistan; Geoscience Press: Tucson, AZ, USA, 1995. [Google Scholar]
- Pouchou, J.L.; Pichoir, F. A simplified version of the “PAP” model for matrix corrections in EPMA. In Microbeam Analysis; Newbury, D.E., Ed.; San Francisco Press: San Francisco, CA, USA, 1988; pp. 315–318. [Google Scholar]
- Pouchou, J.L.; Pichoir, F. Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron Probe Quantitation; Heinrich, K.F.J., Newbury, D.E., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 31–75. [Google Scholar]
- Goldstein, J.I. Electron optics. In Practical Scanning Electron Microscopy. Electron and Ion Microprobe Analysis; Goldstein, J.I., Yakowitz, H., Eds.; Plenum Press: New York, NY, USA, 1975; pp. 21–48. [Google Scholar]
- Gavrilenko, V.P.; Novikov, Y.A.; Rakov, A.V.; Todua, P.A. Measurement of the parameters of the electron beam of a scanning electron microscope. In Instrumentation, Metrology, and Standards for Nanomanufacturing II; Ligure per la Storia della Ceramica: Albenga, Italy, 2015; Volume 7042, pp. 55–64. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangone, A.; Caggiani, M.C.; Forleo, T.; Giannossa, L.C.; Acquafredda, P. A Possible Natural and Inexpensive Substitute for Lapis Lazuli in the Frederick II Era: The Finding of Haüyne in Blue Lead-Tin Glazed Pottery from Melfi Castle (Italy). Molecules 2023, 28, 1546. https://doi.org/10.3390/molecules28041546
Mangone A, Caggiani MC, Forleo T, Giannossa LC, Acquafredda P. A Possible Natural and Inexpensive Substitute for Lapis Lazuli in the Frederick II Era: The Finding of Haüyne in Blue Lead-Tin Glazed Pottery from Melfi Castle (Italy). Molecules. 2023; 28(4):1546. https://doi.org/10.3390/molecules28041546
Chicago/Turabian StyleMangone, Annarosa, Maria Cristina Caggiani, Tiziana Forleo, Lorena Carla Giannossa, and Pasquale Acquafredda. 2023. "A Possible Natural and Inexpensive Substitute for Lapis Lazuli in the Frederick II Era: The Finding of Haüyne in Blue Lead-Tin Glazed Pottery from Melfi Castle (Italy)" Molecules 28, no. 4: 1546. https://doi.org/10.3390/molecules28041546
APA StyleMangone, A., Caggiani, M. C., Forleo, T., Giannossa, L. C., & Acquafredda, P. (2023). A Possible Natural and Inexpensive Substitute for Lapis Lazuli in the Frederick II Era: The Finding of Haüyne in Blue Lead-Tin Glazed Pottery from Melfi Castle (Italy). Molecules, 28(4), 1546. https://doi.org/10.3390/molecules28041546