Challenges in Using Ionic Liquids for Cellulosic Ethanol Production
Abstract
:1. Introduction
2. Ionic Liquids for Better Methods for the Pretreatment of Lignocelluloses
3. Saccharification of Lignocellulosic Biomass Pretreated with Ionic Liquids
4. One-Pot Integration of the Saccharification and Fermentation Stages
5. Recovery, Reuse and Economic Feasibility of the Ionic Liquid
6. Final Remarks/Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNSD. Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development. In Work of the Statistical Commission Pertaining to the 2030 Agenda for Sustainable Development; UNSD: New York, NY, USA, 2020. [Google Scholar]
- Colussi, F.; Michelin, M.; Gomes, D.G.; Rocha, C.M.R.; Romaní, A.; Domingues, L.; Teixeira, J.A. Integrated Technologies for Extractives Recovery, Fractionation, and Bioethanol Production from Lignocellulose. In Biomass, Biofuels, Biochemicals: Circular Bioeconomy: Technologies for Biofuels and Biochemicals; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Himmel, M.E.; Ding, S.-Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 2007, 315, 804. [Google Scholar] [CrossRef] [PubMed]
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [Google Scholar]
- Kumar, A.K.; Sharma, S. Recent Updates on Different Methods of Pretreatment of Lignocellulosic Feedstocks: A Review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Usmani, Z.; Sharma, M.; Gupta, P.; Karpichev, Y.; Gathergood, N.; Bhat, R.; Gupta, V.K. Ionic Liquid Based Pretreatment of Lignocellulosic Biomass for Enhanced Bioconversion. Bioresour. Technol. 2020, 304, 123003. [Google Scholar]
- Liu, Y.; Nie, Y.; Lu, X.; Zhang, X.; He, H.; Pan, F.; Zhou, L.; Liu, X.; Ji, X.; Zhang, S. Cascade Utilization of Lignocellulosic Biomass to High-Value Products. Green Chem. 2019, 21, 3499–3535. [Google Scholar]
- Abushammala, H.; Mao, J. A Review on the Partial and Complete Dissolution and Fractionation of Wood and Lignocelluloses Using Imidazolium Ionic Liquids. Polymers 2020, 12, 195. [Google Scholar] [CrossRef]
- Toor, M.; Kumar, S.S.; Malyan, S.K.; Bishnoi, N.R.; Mathimani, T.; Rajendran, K.; Pugazhendhi, A. An Overview on Bioethanol Production from Lignocellulosic Feedstocks. Chemosphere 2020, 242, 125080. [Google Scholar] [CrossRef]
- Soliman, R.M.; Younis, S.A.; El-Gendy, N.S.; Mostafa, S.S.M.; El-Temtamy, S.A.; Hashim, A.I. Batch Bioethanol Production via the Biological and Chemical Saccharification of Some Egyptian Marine Macroalgae. J. Appl. Microbiol. 2018, 125, 422–440. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Kim, S.W.; Abd-Aziz, S. Advanced Bioprocessing Strategies for Biobutanol Production from Biomass. Renew. Sustain. Energy Rev. 2018, 91, 1192–1204. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic Liquids Synthesis and Applications: An Overview. J. Mol. Liq. 2019, 297, 112038. [Google Scholar] [CrossRef]
- Adeleye, A.T.; Louis, H.; Temitope, H.A.; Philip, M.; Amos, P.I.; Magu, T.O.; Ozioma, A.U.; Amusan, O.O. Ionic Liquids (ILs): Advances in Biorefinery for the Efficient Conversion of Lignocellulosic Biomass. Asian J. Green Chem. 2019, 3, 391–417. [Google Scholar] [CrossRef]
- Freemantle, M. An Introduction to ILs; Royal Society of Chemistry: London, UK, 2010. [Google Scholar]
- Freemantle, M. Designer Solvents. Chem. Eng. News 1998, 76, 32–37. [Google Scholar] [CrossRef]
- Hough, W.L.; Smiglak, M.; Rodríguez, H.; Swatloski, R.P.; Spear, S.K.; Daly, D.T.; Pernak, J.; Grisel, J.E.; Carliss, R.D.; Soutullo, M.D.; et al. The Third Evolution of Ionic Liquids: Active Pharmaceutical Ingredients. New J. Chem. 2007, 31, 1429–1436. [Google Scholar] [CrossRef]
- Ocreto, J.B.; Chen, W.H.; Rollon, A.P.; Chyuan Ong, H.; Pétrissans, A.; Pétrissans, M.; de Luna, M.D.G. Ionic Liquid Dissolution Utilized for Biomass Conversion into Biofuels, Value-Added Chemicals and Advanced Materials: A Comprehensive Review. Chem. Eng. J. 2022, 445, 136733. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar] [CrossRef] [PubMed]
- Fort, D.A.; Remsing, R.C.; Swatloski, R.P.; Moyna, P.; Moyna, G.; Rogers, R.D. Can Ionic Liquids Dissolve Wood? Processing and Analysis of Lignocellulosic Materials with 1-n-Butyl-3-Methylimidazolium Chloride. Green Chem. 2007, 9, 63–69. [Google Scholar] [CrossRef]
- Kilpeläinen, I.; Xie, H.; King, A.; Granstrom, M.; Heikkinen, S.; Argyropoulos, D.S. Dissolution of Wood in Ionic Liquids. J. Agric. Food Chem. 2007, 55, 9142–9148. [Google Scholar] [CrossRef]
- Sun, N.; Rahman, M.; Qin, Y.; Maxim, M.L.; Rodríguez, H.; Rogers, R.D. Complete Dissolution and Partial Delignification of Wood in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate. Green Chem. 2009, 11, 646–655. [Google Scholar] [CrossRef]
- Hou, X.D.; Smith, T.J.; Li, N.; Zong, M.H. Novel Renewable Ionic Liquids as Highly Effective Solvents for Pretreatment of Rice Straw Biomass by Selective Removal of Lignin. Biotechnol. Bioeng. 2012, 109, 2484–2493. [Google Scholar] [CrossRef]
- Hou, Q.; Ju, M.; Li, W.; Liu, L.; Chen, Y.; Yang, Q.; Zhao, H. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems. Molecules 2017, 22, 490. [Google Scholar] [CrossRef]
- Pena, C.A.; Soto, A.; King, A.W.T.; Rodríguez, H. Improved Reactivity of Cellulose via Its Crystallinity Reduction by Nondissolving Pretreatment with an Ionic Liquid. ACS Sustain. Chem. Eng. 2019, 7, 9164–9171. [Google Scholar] [CrossRef]
- Rico-García, D.; Ruiz-Rubio, L.; Pérez-Alvarez, L.; Hernández-Olmos, S.L.; Guerrero-Ramírez, G.L.; Vilas-Vilela, J.L. Lignin-Based Hydrogels: Synthesis and Applications. Polymers 2020, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Lynd, L.R.; Laser, M.S.; Bransby, D.; Dale, B.E.; Davison, B.; Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J.D.; Sheehan, J.; et al. How Biotech Can Transform Biofuels. Nat. Biotechnol. 2008, 26, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.M.; Knott, B.C.; Mayes, H.B.; Hansson, H.; Himmel, M.E.; Sandgren, M.; Ståhlberg, J.; Beckham, G.T. Fungal Cellulases. Chem. Rev. 2015, 115, 1308–1448. [Google Scholar]
- Raj, T.; Gaur, R.; Dixit, P.; Gupta, R.P.; Kagdiyal, V.; Kumar, R.; Tuli, D.K. Ionic Liquid Pretreatment of Biomass for Sugars Production: Driving Factors with a Plausible Mechanism for Higher Enzymatic Digestibility. Carbohydr. Polym. 2016, 149, 369–381. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, L.; Gu, Z.; Hong, Y.; Li, Z.; Li, C. Effects of Ionic Liquid/Water Mixture Pretreatment on the Composition, the Structure and the Enzymatic Hydrolysis of Corn Stalk. Ind. Crops Prod. 2018, 122, 142–147. [Google Scholar] [CrossRef]
- Hashmi, M.; Sun, Q.; Tao, J.; Wells, T.; Shah, A.A.; Labbé, N.; Ragauskas, A.J. Comparison of Autohydrolysis and Ionic Liquid 1-Butyl-3-Methylimidazolium Acetate Pretreatment to Enhance Enzymatic Hydrolysis of Sugarcane Bagasse. Bioresour. Technol. 2017, 224, 714–720. [Google Scholar] [CrossRef]
- Li, H.Y.; Chen, X.; Wang, C.Z.; Sun, S.N.; Sun, R.C. Evaluation of the Two-Step Treatment with Ionic Liquids and Alkali for Enhancing Enzymatic Hydrolysis of Eucalyptus: Chemical and Anatomical Changes. Biotechnol. Biofuels 2016, 9, 166. [Google Scholar] [CrossRef]
- Gschwend, F.J.V.; Chambon, C.L.; Biedka, M.; Brandt-Talbot, A.; Fennell, P.S.; Hallett, J.P. Quantitative Glucose Release from Softwood after Pretreatment with Low-Cost Ionic Liquids. Green Chem. 2019, 21. [Google Scholar] [CrossRef]
- Bağder Elmacı, S.; Özçelik, F. Ionic Liquid Pretreatment of Yellow Pine Followed by Enzymatic Hydrolysis and Fermentation. Biotechnol. Prog. 2018, 34, 1242–1250. [Google Scholar] [CrossRef]
- Rigual, V.; Domínguez, J.C.; Santos, T.M.; Rivas, S.; Alonso, M.V.; Oliet, M.; Rodriguez, F. Autohydrolysis and Microwave Ionic Liquid Pretreatment of Pinus Radiata: Imaging Visualization and Analysis to Understand Enzymatic Digestibility. Ind. Crops Prod. 2019, 134, 328–337. [Google Scholar] [CrossRef]
- Hamidah, U.; Arakawa, T.; H’ng, Y.Y.; Nakagawa-izumi, A.; Kishino, M. Recycled Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate Pretreatment for Enhancing Enzymatic Saccharification of Softwood without Cellulose Regeneration. J. Wood Sci. 2018, 64, 149–156. [Google Scholar] [CrossRef]
- Qiu, Z.; Aita, G.M.; Walker, M.S. Effect of Ionic Liquid Pretreatment on the Chemical Composition, Structure and Enzymatic Hydrolysis of Energy Cane Bagasse. Bioresour. Technol. 2012, 117, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Mazza, G. Optimization of Processing Conditions for the Pretreatment of Wheat Straw Using Aqueous Ionic Liquid. Bioresour. Technol. 2011, 102, 8003–8010. [Google Scholar] [CrossRef] [PubMed]
- An, Y.X.; Zong, M.H.; Wu, H.; Li, N. Pretreatment of Lignocellulosic Biomass with Renewable Cholinium Ionic Liquids: Biomass Fractionation, Enzymatic Digestion and Ionic Liquid Reuse. Bioresour. Technol. 2015, 192, 165–171. [Google Scholar] [CrossRef]
- Kassaye, S.; Pant, K.K.; Jain, S. Hydrolysis of Cellulosic Bamboo Biomass into Reducing Sugars via a Combined Alkaline Solution and Ionic Liquid Pretreament Steps. Renew. Energy 2017, 104, 177–184. [Google Scholar] [CrossRef]
- Nargotra, P.; Sharma, V.; Gupta, M.; Kour, S.; Bajaj, B.K. Application of Ionic Liquid and Alkali Pretreatment for Enhancing Saccharification of Sunflower Stalk Biomass for Potential Biofuel-Ethanol Production. Bioresour. Technol. 2018, 267, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Da Costa Lopes, A.M.; Lins, R.M.G.; Rebelo, R.A.; Łukasik, R.M. Biorefinery Approach for Lignocellulosic Biomass Valorisation with an Acidic Ionic Liquid. Green Chem. 2018, 20, 4043–4057. [Google Scholar] [CrossRef]
- Carvalho, A.V.; Da Costa Lopes, A.M.; Bogel-ŁUkasik, R. Relevance of the Acidic 1-Butyl-3-Methylimidazolium Hydrogen Sulphate Ionic Liquid in the Selective Catalysis of the Biomass Hemicellulose Fraction. RSC Adv. 2015, 5, 47153–47164. [Google Scholar] [CrossRef]
- Rigual, V.; Santos, T.M.; Domínguez, J.C.; Alonso, M.V.; Oliet, M.; Rodriguez, F. Combining Autohydrolysis and Ionic Liquid Microwave Treatment to Enhance Enzymatic Hydrolysis of Eucalyptus globulus Wood. Bioresour. Technol. 2018, 251, 197–203. [Google Scholar] [CrossRef]
- Shi, J.; Gladden, J.M.; Sathitsuksanoh, N.; Kambam, P.; Sandoval, L.; Mitra, D.; Zhang, S.; George, A.; Singer, S.W.; Simmons, B.A.; et al. One-Pot Ionic Liquid Pretreatment and Saccharification of Switchgrass. Green Chem. 2013, 15, 2579–2589. [Google Scholar] [CrossRef]
- Xu, F.; Sun, J.; Konda, N.V.S.N.M.; Shi, J.; Dutta, T.; Scown, C.D.; Simmons, B.A.; Singh, S. Transforming Biomass Conversion with Ionic Liquids: Process Intensification and the Development of a High-Gravity, One-Pot Process for the Production of Cellulosic Ethanol. Energy Environ. Sci. 2015, 9, 1042–1049. [Google Scholar] [CrossRef]
- Sundstrom, E.; Yaegashi, J.; Yan, J.; Masson, F.; Papa, G.; Rodriguez, A.; Mirsiaghi, M.; Liang, L.; He, Q.; Tanjore, D.; et al. Demonstrating a Separation-Free Process Coupling Ionic Liquid Pretreatment, Saccharification, and Fermentation with: Rhodosporidium toruloides to Produce Advanced Biofuels. Green Chem. 2018, 20, 2870–2879. [Google Scholar] [CrossRef]
- Sun, J.; Konda, N.V.S.N.M.; Parthasarathi, R.; Dutta, T.; Valiev, M.; Xu, F.; Simmons, B.A.; Singh, S. One-Pot Integrated Biofuel Production Using Low-Cost Biocompatible Protic Ionic Liquids. Green Chem. 2017, 19, 3152–3163. [Google Scholar] [CrossRef]
- Elgharbawy, A.A.M.; Moniruzzaman, M.; Goto, M. Recent Advances of Enzymatic Reactions in Ionic Liquids: Part II. Biochem. Eng. J. 2019, 154, 107426. [Google Scholar] [CrossRef]
- Elgharbawy, A.A.; Alam, M.Z.; Moniruzzaman, M.; Goto, M. Ionic Liquid Pretreatment as Emerging Approaches for Enhanced Enzymatic Hydrolysis of Lignocellulosic Biomass. Biochem. Eng. J. 2016, 109, 252–267. [Google Scholar] [CrossRef]
- Sriariyanun, M.; Kitiborwornkul, N.; Tantayotai, P.; Rattanaporn, K.; Show, P.L. One-Pot Ionic Liquid-Mediated Bioprocess for Pretreatment and Enzymatic Hydrolysis of Rice Straw with Ionic Liquid-Tolerance Bacterial Cellulase. Bioengineering 2022, 9, 17. [Google Scholar] [CrossRef]
- Xu, J.; Xiong, P.; He, B. Advances in Improving the Performance of Cellulase in Ionic Liquids for Lignocellulose Biorefinery. Bioresour. Technol. 2016, 200, 961–970. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, G.; Dong, J.; Tian, T.; Lee, T.S.; Mukhopadhyay, A.; Simmons, B.A.; Yuan, Q.; Singer, S.W. Tolerance Characterization and Isoprenol Production of Adapted Escherichia coli in the Presence of Ionic Liquids. ACS Sustain. Chem. Eng. 2018, 7, 1457–1463. [Google Scholar] [CrossRef]
- Rigual, V.; Papa, G.; Rodriguez, A.; Wehrs, M.; Kim, K.H.; Oliet, M.; Alonso, M.V.; Gladden, J.M.; Mukhopadhyay, A.; Simmons, B.A.; et al. Evaluating Protic Ionic Liquid for Woody Biomass One-Pot Pretreatment + Saccharification, Followed by Rhodosporidium toruloides Cultivation. ACS Sustain. Chem. Eng. 2019, 8, 782–791. [Google Scholar] [CrossRef]
- Peralta-Yahya, P.P.; Ouellet, M.; Chan, R.; Mukhopadhyay, A.; Keasling, J.D.; Lee, T.S. Identification and Microbial Production of a Terpene-Based Advanced Biofuel. Nat. Commun. 2011, 2, 483. [Google Scholar] [CrossRef]
- Das, L.; Geiselman, G.M.; Rodriguez, A.; Magurudeniya, H.D.; Kirby, J.; Simmons, B.A.; Gladden, J.M. Seawater-Based One-Pot Ionic Liquid Pretreatment of Sorghum for Jet Fuel Production. Bioresour. Technol. Rep. 2020, 13, 100622. [Google Scholar] [CrossRef]
- Naz, S.; Uroos, M.; Asim, A.M.; Muhammad, N.; Shah, F.U. One-Pot Deconstruction and Conversion of Lignocellulose Into Reducing Sugars by Pyridinium-Based Ionic Liquid–Metal Salt System. Front. Chem. 2020, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, C.A.; Oka, A.M.; Yan, J.; Das, L.; Achinivu, E.C.; Magurudeniya, H.; Dong, J.; Akdemir, S.; Baral, N.R.; Yan, C.; et al. High-Efficiency Conversion of Ionic Liquid-Pretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustain. Chem. Eng. 2021, 9, 4042–4053. [Google Scholar] [CrossRef]
- Carrozza, C.F.; Papa, G.; Citterio, A.; Sebastiano, R.; Simmons, B.A.; Singh, S. One-Pot Bio-Derived Ionic Liquid Conversion Followed by Hydrogenolysis Reaction for Biomass Valorization: A Promising Approach Affecting the Morphology and Quality of Lignin of Switchgrass and Poplar. Bioresour. Technol. 2019, 294, 122214. [Google Scholar] [CrossRef] [PubMed]
- Konda, N.M.; Shi, J.; Singh, S.; Blanch, H.W.; Simmons, B.A.; Klein-Marcuschamer, D. Understanding Cost Drivers and Economic Potential of Two Variants of Ionic Liquid Pretreatment for Cellulosic Biofuel Production. Biotechnol. Biofuels 2014, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Inman, G.; Nlebedim, I.C.; Prodius, D. Application of Ionic Liquids for the Recycling and Recovery of Technologically Critical and Valuable Metals. Energies 2022, 15, 628. [Google Scholar]
- Brandt-Talbot, A.; Gschwend, F.J.V.; Fennell, P.S.; Lammens, T.M.; Tan, B.; Weale, J.; Hallett, J.P. An Economically Viable Ionic Liquid for the Fractionation of Lignocellulosic Biomass. Green Chem. 2017, 19, 3078–3102. [Google Scholar] [CrossRef]
- Xu, J.; Liu, B.; Hou, H.; Hu, J. Pretreatment of Eucalyptus with Recycled Ionic Liquids for Low-Cost Biorefinery. Bioresour. Technol. 2017, 234, 406–414. [Google Scholar] [CrossRef]
- Gao, J.; Xin, S.; Wang, L.; Lei, Y.; Ji, H.; Liu, S. Effect of Ionic Liquid/Inorganic Salt/Water Pretreatment on the Composition, Structure and Enzymatic Hydrolysis of Rice Straw. Bioresour. Technol. Rep. 2019, 5, 355–358. [Google Scholar] [CrossRef]
- Ninomiya, K.; Inoue, K.; Aomori, Y.; Ohnishi, A.; Ogino, C.; Shimizu, N.; Takahashi, K. Characterization of Fractionated Biomass Component and Recovered Ionic Liquid during Repeated Process of Cholinium Ionic Liquid-Assisted Pretreatment and Fractionation. Chem. Eng. J. 2015, 259, 323–329. [Google Scholar] [CrossRef]
- Grewal, J.; Ahmad, R.; Khare, S.K. Development of Cellulase-Nanoconjugates with Enhanced Ionic Liquid and Thermal Stability for in Situ Lignocellulose Saccharification. Bioresour. Technol. 2017, 242, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.L.; Wang, Y.T.; Hong, Y.Y.; Zhu, M.J. Pretreatment of Rice Straw with Recycled Ionic Liquids by Phase-Separation Process for Low-Cost Biorefinery. Biotechnol. Appl. Biochem. 2020, 68, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Trinh, L.T.P.; Lee, Y.J.; Lee, J.W.; Lee, W.H. Optimization of Ionic Liquid Pretreatment of Mixed Softwood by Response Surface Methodology and Reutilization of Ionic Liquid from Hydrolysate. Biotechnol. Bioprocess Eng. 2018, 23, 228–237. [Google Scholar] [CrossRef]
- Smuga-Kogut, M.; Piskier, T.; Walendzik, B.; Szymanowska-Powałowska, D. Assessment of Wasteland Derived Biomass for Bioethanol Production. Electron. J. Biotechnol. 2019, 41, 1–8. [Google Scholar] [CrossRef]
- Auxenfans, T.; Buchoux, S.; Larcher, D.; Husson, G.; Husson, E.; Sarazin, C. Enzymatic Saccharification and Structural Properties of Industrial Wood Sawdust: Recycled Ionic Liquids Pretreatments. Energy Convers. Manag. 2014, 88, 1094–1103. [Google Scholar] [CrossRef]
- Zhou, J.; Sui, H.; Jia, Z.; Yang, Z.; He, L.; Li, X. Recovery and Purification of Ionic Liquids from Solutions: A Review. RSC Adv. 2018, 8, 32832–32864. [Google Scholar] [CrossRef]
- Sun, J.; Shi, J.; Murthy Konda, N.V.S.N.; Campos, D.; Liu, D.; Nemser, S.; Shamshina, J.; Dutta, T.; Berton, P.; Gurau, G.; et al. Efficient Dehydration and Recovery of Ionic Liquid after Lignocellulosic Processing Using Pervaporation. Biotechnol. Biofuels 2017, 10, 154. [Google Scholar] [CrossRef]
- Yuan, X.; Singh, S.; Simmons, B.A.; Cheng, G. Biomass Pretreatment Using Dilute Aqueous Ionic Liquid (IL) Solutions with Dynamically Varying IL Concentration and Its Impact on IL Recycling. ACS Sustain. Chem. Eng. 2017, 5, 4408–4413. [Google Scholar] [CrossRef]
- Liang, L.; Yan, J.; He, Q.; Luong, T.; Pray, T.R.; Simmons, B.A.; Sun, N. Scale-up of Biomass Conversion Using 1-Ethyl-3-Methylimidazolium Acetate as the Solvent. Green Energy Environ. 2018, 4, 432–438. [Google Scholar] [CrossRef]
- Li, C.; Liang, L.; Sun, N.; Thompson, V.S.; Xu, F.; Narani, A.; He, Q.; Tanjore, D.; Pray, T.R.; Simmons, B.A.; et al. Scale-up and Process Integration of Sugar Production by Acidolysis of Municipal Solid Waste/Corn Stover Blends in Ionic Liquids. Biotechnol. Biofuels 2017, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Ovejero-Pérez, A.; Ayuso, M.; Rigual, V.; Carlos Domínguez, J.; García, J.; Virginia Alonso, M.; Oliet, M.; Rodriguez, F. Technoeconomic Assessment of a Biomass Pretreatment + Ionic Liquid Recovery Process with Aprotic and Choline Derived Ionic Liquids. ACS Sustain. Chem. Eng. 2021, 9, 8467–8476. [Google Scholar] [CrossRef]
- Silva, J.F.L.; Nakasu, P.Y.S.; da Costa, A.C.; Filho, R.M.; Rabelo, S.C. Techno-Economic Analysis of the Production of 2G Ethanol and Technical Lignin via a Protic Ionic Liquid Pretreatment of Sugarcane Bagasse. Ind. Crops Prod. 2022, 189, 115788. [Google Scholar] [CrossRef]
- Zang, G.; Shah, A.; Wan, C. Techno-Economic Analysis of an Integrated Biorefinery Strategy Based on One-Pot Biomass Fractionation and Furfural Production. J. Clean. Prod. 2020, 260, 120837. [Google Scholar] [CrossRef]
LCB | IL | Condition | Maximum Removal (%) a | Glucose Yield (%) b | Reference |
---|---|---|---|---|---|
Wheat straw | [Bmim][Cl] | 100 °C, 5 h 130 °C, 2 h | 28.3 Xylan; 9.9 Lignin 34.7 Xylan; 14.9 Lignin | 37.3 37.8 | [28] |
Corn Stalk | [Bmim][BF4] | 150 °C, 5 h | 72.2 (30% IL) Xylan | 81.7 (50% IL) | [29] |
Sugarcane bagasse | [Bmim][OAc] | 110 °C, 30 min (20:1) | 22.5 Lignin 33.5 Xylan | 96.5 | [30] |
Eucalyptus | [Bmim][OAc] + alkali treatment | 120 °C, 30 min and 0.5, 2.0, and 4.0% NaOH at 90 °C for 2 h | 17.0 Lignin 43.9 Glucan | 90.5 | [31] |
Scots Pine | [Bmim][HSO4]/Water | 170 °C, 4 h | 64.0 Hemicellulose 55.0 Lignin | 70.0 | [32] |
Yellow Pine | [Emim][OAc] | 140 °C, 45 min | 48.0 Glucan 30.0 Lignin | 56.0 | [33] |
Radiata Pine | [Emim][OAc] | 150 °C, 50 min | 72.6 Hemicellulose | 78.8 | [34] |
Softwood | [Emim][OAc] | 100 °C, 60 min | 25.6 Lignin 55.8 Glucan | 34.0 | [35] |
Energy cane bagasse | [Emim][OAc] | 120 °C, 30 min | 32.0 Lignin | 87.0 | [28] |
Energy cane bagasse | [Emim][OAc] | 120 °C, 30 min | 32.1 Lignin 43.9 Glucan 21.1 Xylan | 68.0 | [36] |
Wheat straw | [Emim][OAc] | 100 °C, 5 h 130 °C, 2 h | 11.3 Xylan; 42.9 Lignin 58.9 Xylan; 50.6 Lignin | 48.8 74.4 | [37] |
IL | LCB | Recovery Method | Recycling Times | Saccharification Yield (%) a | Ref |
---|---|---|---|---|---|
[Emim][OAc] | Cryptomeria japonica | Vacuum oven | 3 | 46.2 | [32] |
[Ch][Arg] | Sugarcane bagasse | Evaporation | 8 | 63.0–75.0 | [37] |
[Et3NH][HSO4] | Miscanthus × giganteus | Drying the IL solution | 4 | 74.0 | [61] |
[Ch][phe] | Rice straw | Evaporation | 5 | 70.2 | [22] |
[Amim][Cl] [Bmim][OAc] | Eucalyptus | Rotary evaporator/ Vacuum oven | 4 | 54.3 72.8 | [62] |
[Emim][Cl] | Rice straw | Phase-separation process | 5 | 86.0 | [63] |
[Ch][OAc] | Bagasse | Rotary evaporator | 5 | NS | [64] |
[Emim][OAc] | Sugarcane bagasse | 2 | 89.0 | [65] | |
[Bmim][Cl] | Rice straw | Phase-separation process | 8 | 98.9 | [66] |
[Bmim][OAc] | Pinus rigida | Vacuum drying | 4 | 92.5 | [67] |
[Bmim][OAc] | Eucalyptus | Vacuum drying | 4 | 72.8 | [62] |
[Emim][OAc] | Oak | Vacuum drying | 8 | 53.7 | [68] |
[Emim][OAc] | Triticale | Lyophilization | 2 | 81.0 | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colussi, F.; Rodríguez, H.; Michelin, M.; Teixeira, J.A. Challenges in Using Ionic Liquids for Cellulosic Ethanol Production. Molecules 2023, 28, 1620. https://doi.org/10.3390/molecules28041620
Colussi F, Rodríguez H, Michelin M, Teixeira JA. Challenges in Using Ionic Liquids for Cellulosic Ethanol Production. Molecules. 2023; 28(4):1620. https://doi.org/10.3390/molecules28041620
Chicago/Turabian StyleColussi, Francieli, Héctor Rodríguez, Michele Michelin, and José A. Teixeira. 2023. "Challenges in Using Ionic Liquids for Cellulosic Ethanol Production" Molecules 28, no. 4: 1620. https://doi.org/10.3390/molecules28041620
APA StyleColussi, F., Rodríguez, H., Michelin, M., & Teixeira, J. A. (2023). Challenges in Using Ionic Liquids for Cellulosic Ethanol Production. Molecules, 28(4), 1620. https://doi.org/10.3390/molecules28041620