Analysis of the Differences in Volatile Organic Compounds in Different Muscles of Pork by GC-IMS
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-IMS 2D Spectrum of Volatile Organic Compounds from Different Pork Muscles
2.2. Fingerprints of Volatile Organic Compounds in Different Muscles of Pork
2.3. Qualitative Analysis of Volatile Organic Compounds in Different Pork Muscles by GC-IMS
2.4. Principal Component Analysis of Volatile Organic Compounds in Pork
2.5. Partial Least Squares Discriminant Analysis of Volatile Organic Compounds in Pork
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Sample Preparation
3.3. GC-IMS Analysis
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bin, X.; Tianfen, G.; Xiaoling, Y.; Weihong, L.; Tianqing, D.; Yaqin, G. Comparison of Meat Quality and Nutritional Components between Qinghai Bamei Pork and Gansu Black Pork. Sci. Technol. Food Ind. 2019, 40, 274–278+285. [Google Scholar] [CrossRef]
- Guyi, M.; Jin, G.; Qiqi, X.; Yanhong, M.; Yingying, L.; Wenping, G.; Shouwei, W. Analysis of Volatile Flavor Compounds in Pork Meat from Different Carcass Locations and Breeds by Gas Chromatography-Ion Mobility Spectrometry. Food Sci. 2021, 42, 206–212. [Google Scholar]
- Jing, L.; Yuanyuan, Y.; Qingyu, Z.; Chaohua, T.; Yuchang, Q.; Junmin, Z. Research progress on the relationship between meat flavor precursors and flavor quality. Chin. J. Anim. Sci. 2019, 55, 1–7. [Google Scholar] [CrossRef]
- Na, W.; Xichang, W.; Ningping, T.; Yiqun, N.; Rui, W. Effect of lipid oxidative degradation on the formation of aroma compounds in animal derived foods. J. Chin. Inst. Food Sci. Technol. 2016, 16, 209–215. [Google Scholar] [CrossRef]
- Van Ba, H.; Ryu, K.S.; Lan, N.T.K.; Hwang, I. Influence of particular breed on meat quality parameters, sensory characteristics, and volatile components. Food Sci. Biotechnol. 2013, 22, 651–658. [Google Scholar] [CrossRef]
- Luyang, X.; Zhaolong, L.; Guoyuan, X.; Congjun, M.; Youbing, W.; Hongbin, T. Effect of Processing Methods on the Quality of Wei Pig and Chengling Black Pork. Food Ferment. Ind. 2019, 45, 126–133. [Google Scholar] [CrossRef]
- Ángel-Rendón, S.V.; Filomena-Ambrosio, A.; Hernández-Carrión, M.; Llorca, E.; Hernando, I.; Quiles, A.; Sotelo-Díaz, I. Pork meat prepared by different cooking methods. A microstructural, sensorial and physicochemical approach. Meat Sci. 2020, 163, 108089. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zheng, M.; Huang, Y.; Liu, X.; Zhong, L.; Ji, J.; Zhou, L.; Zeng, Q.; Ma, J.; Huang, L. The effect of purine content on sensory quality of pork. Meat Sci. 2021, 172, 108346. [Google Scholar] [CrossRef]
- Tu, T.; Wu, W.; Tang, X.; Ge, Q.; Zhan, J. Screening out important substances for distinguishing Chinese indigenous pork and hybrid pork and identifying different pork muscles by analyzing the fatty acid and nucleotide contents. Food Chem. 2021, 350, 129219. [Google Scholar] [CrossRef]
- Xi, B.; Luo, J.; Gao, Y.Q.; Yang, X.L.; Guo, T.F.; Li, W.H.; Du, T.Q. Transcriptome-metabolome analysis of fatty acid of Bamei pork and Gansu Black pork in China. Bioprocess Biosyst. Eng. 2021, 44, 995–1002. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Huang, A. A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham. Meat Sci. 2019, 158, 107904. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, S.; Chen, H.; Zhang, N.; Sun, J. Characterization of the key aroma compounds in pork broth by sensory-directed flavor analysis. J. Food Sci. 2021, 86, 4932–4945. [Google Scholar] [CrossRef]
- Shi, J.; Nian, Y.; Da, D.; Xu, X.; Zhou, G.; Zhao, D.; Li, C. Characterization of flavor volatile compounds in sauce spareribs by gas chromatography–mass spectrometry and electronic nose. LWT 2020, 124, 109182. [Google Scholar] [CrossRef]
- Zhengyu, P.; Xiangmei, Z.; Han, L.; Xin, L.; Yu, Z.; Haotong, F. Application of Flavor Analysis Technology in Fermented Meat Products. Food Sci. Technol. Int. 2021, 46, 91–96. [Google Scholar] [CrossRef]
- Chenxi, Z.; Fuping, Z.; Baogu, S. Research Progress on the Application of Ion Mobility Spectrometry (IMS) in Food Flavor Analysis. Sci. Technol. Food Ind. 2019, 40, 309–318. [Google Scholar] [CrossRef]
- Hanguang, G.; Min, Z.; Ying, C.; Chun, G.; Hong, X.; Yongfang, W. Ion mobility spectrometry and its application in food test. J. Food Saf. Qual. 2015, 6, 391–398. [Google Scholar] [CrossRef]
- Wensheng, Y.; Yingxuan, C.; Dengyong, L.; Mingcheng, Z.; Shuangyu, M.; Jing, Y.; Zihui, G.; Hao, Z. Analysis of volatile flavor compounds in smoked chicken thighs by HS-GC-IMS and HS-SPME-GC-MS. Food Ferment. Ind. 2021, 47, 253–261. [Google Scholar] [CrossRef]
- Li, C.; Al-Dalali, S.; Wang, Z.; Xu, B.; Zhou, H. Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC-MS-O, GC-IMS, and E-nose. Food Chem. 2022, 386, 132728. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Y.; Wang, H.; Xi, B.; He, X.; Yang, X.; Li, W. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography-ion mobility spectrometry (GC-IMS). Meat Sci. 2021, 175, 108449. [Google Scholar] [CrossRef]
- Yang, L.; Tao, F.; Kai, W.; Dejun, L.; Xianle, M.; Mingliang, S.; Liang, W. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS. Sci. Technol. Food Ind. 2022, 43, 1–14. [Google Scholar] [CrossRef]
- Pan, W.; Benjakul, S.; Sanmartin, C.; Guidi, A.; Ying, X.; Ma, L.; Weng, X.; Yu, J.; Deng, S. Characterization of the Flavor Profile of Bigeye Tuna Slices Treated by Cold Plasma Using E-Nose and GC-IMS. Fishes 2022, 7, 13. [Google Scholar] [CrossRef]
- Lantsuzskaya, E.V.; Krisilov, A.V.; Levina, A.M. Structure of the cluster ions of ketones in the gas phase according to ion mobility spectrometry and ab initio calculations. Russ. J. Phys. Chem. A 2015, 89, 1838–1842. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, X.; Dai, Z. Comparison of nonvolatile and volatile compounds in raw, cooked, and canned yellowfin tuna (Thunnus albacores). J. Food Process. Preserv. 2019, 43, e14111. [Google Scholar] [CrossRef]
- Yao, W.; Cai, Y.; Liu, D.; Chen, Y.; Li, J.; Zhang, M.; Chen, N.; Zhang, H. Analysis of flavor formation during production of Dezhou braised chicken using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Food Chem. 2022, 370, 130989. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Bai, L.; Feng, X.; Chen, Y.P.; Zhang, D.; Yao, W.; Zhang, H.; Chen, G.; Liu, Y. Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS). Meat Sci. 2020, 168, 108178. [Google Scholar] [CrossRef]
- Song, S.; Tang, Q.; Fan, L.; Xu, X.; Song, Z.; Hayat, K.; Feng, T.; Wang, Y. Identification of pork flavour precursors from enzyme-treated lard using Maillard model system assessed by GC-MS and partial least squares regression. Meat Sci. 2017, 124, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Dong, K.; Wang, Q.; Huang, X.; Wang, G.; An, F.; Luo, Z.; Luo, P. Changes in volatile flavor of yak meat during oxidation based on multi-omics. Food Chem. 2022, 371, 131103. [Google Scholar] [CrossRef]
- Mingwu, Z.; Kaihua, Z.; Shouwei, W.; Zhijia, S.; Yongqing, S.; Zheqi, Z. Changes in Volatile Flavor Components during the Processing of Islamic Spiced Beef Analyzed by Solid Phase Micro-Extraction Coupled with Gas Chromatography-Olfactometry-Mass Spectrometry (SPME-GC-O-MS). Food Sci. 2016, 37, 117–121. [Google Scholar] [CrossRef]
- Xi, L.; Zhang, J.; Wu, R.; Wang, T.; Ding, W. Characterization of the Volatile Compounds of Zhenba Bacon at Different Process Stages Using GC-MS and GC-IMS. Foods 2021, 10, 2869. [Google Scholar] [CrossRef]
- Yiyan, C.; Xianyong, M. Recent Advances in the Research on Pork Flavor Compounds. Meat Res. 2017, 31, 55–60. [Google Scholar] [CrossRef]
- Barbieri, G.; Bolzoni, L.; Parolari, G.; Virgili, R.; Buttini, R.; Careri, M.; Mangia, A. Flavor compounds of dry-cured ham. J. Agric. Food Chem. 1992, 40, 2389–2394. [Google Scholar] [CrossRef]
- Wu, W.; Zhan, J.; Tang, X.; Li, T.; Duan, S. Characterization and identification of pork flavor compounds and their precursors in Chinese indigenous pig breeds by volatile profiling and multivariate analysis. Food Chem. 2022, 385, 132543. [Google Scholar] [CrossRef]
- Wang, Y.; Song, H.; Zhang, Y.; Tang, J.; Yu, D. Determination of aroma compounds in pork broth produced by different processing methods. Flavour Fragr. J. 2016, 31, 319–328. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Zhou, L.; Zhang, R. Study on the influences of ultrasound on the flavor profile of unsmoked bacon and its underlying metabolic mechanism by using HS-GC-IMS. Ultrason. Sonochem. 2021, 80, 105807. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, W.; Xing, L. Effects of ultrasound on the taste components from aqueous extract of unsmoked bacon. Food Chem. 2021, 365, 130411. [Google Scholar] [CrossRef] [PubMed]
Category | Compound | CAS# | Formula | MW | RI | Rt [sec] | Dt [a.u.] | Compound Peak Volume | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Pork Loin | Pork Ham | Pork Shoulder | Pork Belly | ||||||||
Aldehydes | Benzaldehyde (M) | C100527 | C7H6O | 106.1 | 974.6 | 542.409 | 1.15333 | 2120.21 ± 296.54 a | 1863.12 ± 208.26 b | 797.13 ± 305.38 c | 378.67 ± 74.79 d |
Benzaldehyde (D) | C100527 | C7H6O | 106.1 | 973.4 | 540.193 | 1.4786 | 578.11 ± 162.20 a | 449.27 ± 117.31 b | 183.14 ± 50.77 c | 138.35 ± 7.76 c | |
Pentanal (M) | C110623 | C5H10O | 86.1 | 711.2 | 196.868 | 1.18661 | 1936.28 ± 87.90 a | 1706.06 ± 83.63 b | 1762.36 ± 93.79 b | 1779.76 ± 75.81 b | |
Pentanal (D) | C110623 | C5H10O | 86.1 | 703.7 | 190.353 | 1.41154 | 9512.89 ± 810.42 b | 10,457.37 ± 540.91 a | 8303.84 ± 617.33 c | 7102.84 ± 286.04 d | |
Heptanal | C111717 | C7H14O | 114.2 | 899.2 | 404.089 | 1.32831 | 3335.29 ± 216.03 a | 3215.26 ± 82.00 a | 2433.27 ± 186.40 b | 2158.79 ± 83.56 c | |
Butanal (M) | C123728 | C4H8O | 72.1 | 606.2 | 137.56 | 1.11902 | 474.47 ± 159.96 b | 591.45 ± 106.56 a | 524.42 ± 89.19 ab | 442.03 ± 110.91 b | |
Butanal (D) | C123728 | C4H8O | 72.1 | 615.8 | 142.193 | 1.2939 | 192.78 ± 52.02 b | 343.19 ± 110.69 a | 131.99 ± 18.43 c | 123.53 ± 21.11 c | |
Octanal | C124130 | C8H16O | 128.2 | 1012.8 | 614.425 | 1.40382 | 3383.74 ± 525.26 a | 3529.11 ± 317.77 a | 1535.75 ± 267.42 b | 1289.57 ± 113.11 b | |
Nonanal (M) | C124196 | C9H18O | 142.2 | 1107.1 | 799.01 | 1.47879 | 3940.39 ± 847.84 b | 4871.14 ± 901.05 a | 1198.93 ± 221.97 c | 982.29 ± 87.26 c | |
Nonanal (D) | C124196 | C9H18O | 142.2 | 1105.3 | 795.367 | 1.95105 | 742.92 ± 331.94 b | 1183.82 ± 439.98 a | 183.45 ± 14.91 c | 180.67 ± 15.32 c | |
(E)-2- Heptenal(M) | C18829555 | C7H12O | 112.2 | 960.7 | 516.927 | 1.26362 | 1320.8 ± 371.88 b | 1922.3 ± 186.83 a | 1515.6 ± 196.52 b | 1897.11 ± 225.66 a | |
(E)-2- Heptenal (D) | C18829555 | C7H12O | 112.2 | 956.7 | 509.605 | 1.67358 | 116.75 ± 65.43 c | 227.22 ± 45.86 b | 165.81 ± 37.73 c | 301.54 ± 83.18 a | |
(E, E)-2,4-Heptadienal | C4313035 | C7H10O | 110.2 | 961.7 | 518.81 | 1.62407 | 100.73 ± 33.88 a | 99.90 ± 25.61 a | 60.83 ± 12.96 b | 37.30 ± 4.19 c | |
3-Methyl- butanal (M) | C590863 | C5H10O | 86.1 | 667.2 | 166.95 | 1.1779 | 2887.51 ± 286.52 a | 2823.69 ± 210.76 a | 2222.76 ± 146.65 b | 1819.61 ± 96.37 c | |
3-Methyl- butanal (D) | C590863 | C5H10O | 86.1 | 666.1 | 166.44 | 1.40598 | 2181.52 ± 630.74 a | 1990.03 ± 596.70 a | 808.87 ± 171.68 b | 436.63 ± 70.17 c | |
Hexanal | C66251 | C6H12O | 100.2 | 828.6 | 314.172 | 1.25408 | 7895.20 ± 724.88 b | 9235.53 ± 491.80 a | 6985.59 ± 350.31 c | 6038.28 ± 287.44 d | |
(E)-2- Hexenal | C6728263 | C6H10O | 98.1 | 847.8 | 337.473 | 1.18775 | 381.43 ± 62.38 c | 447.91 ± 32.08 b | 437.32 ± 55.23 b | 574.74 ± 44.25 a | |
2-Methylpropanal | C78842 | C4H8O | 72.1 | 555.9 | 113.276 | 1.09944 | 987.87 ± 90.39 c | 1512.66 ± 420.43 b | 1521.93 ± 345.19 b | 2160.05 ± 602.78 a | |
Alcohols | 1- Hexanol (M) | C111273 | C6H14O | 102.2 | 874.7 | 370.068 | 1.32792 | 354.74 ± 120.53 b | 427.43 ± 49.74 a | 260.48 ± 24.04 c | 221.97 ± 19.44 c |
1-Hexanol (D) | C111273 | C6H14O | 102.2 | 888.4 | 386.702 | 1.63021 | 257.45 ± 89.91 b | 622.01 ± 189.54 a | 100.69 ± 27.04 c | 67.12 ± 13.39 c | |
1-Octen-3-ol | C3391864 | C8H16O | 128.2 | 1001.2 | 591.772 | 1.16155 | 3323.17 ± 610.15 b | 5756.30 ± 910.10 a | 2329.79 ± 365.16 c | 1726.14 ± 184.19 d | |
2-Octanol (M) | C123966 | C8H18O | 130.2 | 990.3 | 571.216 | 1.45616 | 583.41 ± 60.03 b | 926.83 ± 73.73 a | 905.51 ± 88.45 a | 530.99 ± 82.30 b | |
2-Octanol (D) | C123966 | C8H18O | 130.2 | 1011.1 | 611.102 | 1.83377 | 1896.67 ± 696.96 b | 2405.66 ± 503.10 a | 479.15 ± 116.43 c | 344.29 ± 43.00 c | |
2,3- Butanediol | C513859 | C4H10O2 | 90.1 | 805.4 | 286.059 | 1.35755 | 877.61 ± 63.95 c | 1135.21 ± 49.10 a | 1104.73 ± 68.45 a | 950.92 ± 106.48 b | |
1,2- Propanediol | C57556 | C3H8O2 | 76.1 | 742.2 | 223.859 | 1.12866 | 452.53 ± 35.50 c | 495.06 ± 21.68 b | 442.61 ± 35.21 c | 611.89 ± 55.71 a | |
Isopropyl alcohol | C67630 | C3H8O | 60.1 | 508.1 | 90.245 | 1.08847 | 7.54 ± 1.04 b | 13.59 ± 3.06 ab | 24.21 ± 16.41 a | 26.18 ± 24.86 a | |
1- Pentanol (M) | C71410 | C5H12O | 88.1 | 781.1 | 257.677 | 1.25906 | 2399.79 ± 212.89 b | 2492.52 ± 145.90 ab | 2379.84 ± 205.06 b | 2573.71 ± 96.58 a | |
1- Pentanol (D) | C71410 | C5H12O | 88.1 | 779.6 | 256.306 | 1.50174 | 1295.36 ± 343.15 b | 1857.61 ± 387.71 a | 1491.68 ± 271.33 b | 1772.76 ± 173.97 a | |
Ketones | 3-Octanone | C106683 | C8H16O | 128.2 | 991.3 | 573.062 | 1.72909 | 1117.15 ± 346.98 b | 2344.04 ± 572.68 a | 649.53 ± 175.88 c | 412.05 ± 29.15 c |
2-Heptanone | C110430 | C7H14O | 114.2 | 890.3 | 388.894 | 1.25915 | 834.42 ± 140.12 b | 1187.69 ± 161.84 a | 574.76 ± 94.44 c | 425.44 ± 38.64 d | |
2,3- Butanedione | C431038 | C4H6O2 | 86.1 | 605.4 | 137.132 | 1.16982 | 559.32 ± 109.36 b | 714.50 ± 59.97 a | 725.68 ± 68.38 a | 600.35 ± 94.40 b | |
Acetoin | C513860 | C4H8O2 | 88.1 | 737.6 | 219.882 | 1.33962 | 94.23 ± 19.88 b | 334.86 ± 108.05 a | 317.67 ± 162.67 a | 128.34 ± 18.96 b | |
2- Butanone (M) | C78933 | C4H8O | 72.1 | 611.2 | 139.959 | 1.06941 | 1500.92 ± 157.12 a | 1250.83 ± 173.75 b | 1232.74 ± 108.98 b | 1114.81 ± 116.07 c | |
2- Butanone (D) | C78933 | C4H8O | 72.1 | 607.7 | 138.252 | 1.25195 | 3979.22 ± 1258.45 a | 4055.29 ± 666.62 a | 2304.2 ± 834.38 b | 1264.30 ± 506.70 b | |
Esters | Ethyl butyrate | C105544 | C6H12O2 | 116.2 | 800 | 279.461 | 1.56537 | 15,609.94 ± 1092.87 b | 17,857.87 ± 984.90 a | 13,608.52 ± 679.67 c | 11,597.96 ± 560.99 d |
Butanoic acid 3-methylethyl ester | C108645 | C7H14O2 | 130.2 | 929.3 | 459.215 | 1.25444 | 1646.54 ± 266.32 b | 2279.87 ± 310.72 a | 1239.95 ± 167.13 c | 912.01 ± 78.93 d | |
Ethyl hexanoate | C123660 | C8H16O2 | 144.2 | 989.5 | 569.738 | 1.80012 | 491.63 ± 142.28 b | 1286.99 ± 334.40 a | 384.96 ± 160.01 b | 118.58 ± 22.91 c | |
Ethyl acetate | C141786 | C4H8O2 | 88.1 | 625.7 | 146.922 | 1.34904 | 64.62 ± 11.87 b | 81.79 ± 16.53 a | 69.04 ± 3.98 b | 67.24 ± 7.25 b | |
Ethyl pentanoate | C539822 | C7H14O2 | 130.2 | 900.5 | 406.4 | 1.70779 | 4345.36 ± 1108.18 b | 5858.13 ± 746.71 a | 1919.29 ± 467.12 c | 1354.86 ± 185.53 c | |
Ethers | 1,2- Dimethoxyethane | C110714 | C4H10O2 | 90.1 | 629.5 | 148.785 | 1.1013 | 77.78 ± 20.41 b | 116.93 ± 21.20 a | 67.30 ± 19.76 bc | 56.18 ± 19.96 c |
Tert-butyl methyl ether | C1634044 | C5H12O | 88.1 | 545.2 | 108.136 | 1.13786 | 2010.77 ± 463.89 b | 2764.82 ± 532.35 a | 2037.07 ± 612.05 b | 1761.61 ± 510.25 b | |
Acids | Allylacetic acid | C591800 | C5H8O2 | 100.1 | 900.7 | 406.838 | 1.42289 | 128.02 ± 7.83 c | 162.15 ± 19.97 b | 186.51 ± 19.25 a | 181.14 ± 19.23 a |
Propanoic acid | C79094 | C3H6O2 | 74.1 | 668.4 | 167.518 | 1.27935 | 417.70 ± 68.18 b | 542.43 ± 66.51 a | 380.22 ± 69.31 b | 317.52 ± 62.70 c | |
2-Methylpropanoic acid | C79312 | C4H8O2 | 88.1 | 748.5 | 229.282 | 1.17107 | 729.53 ± 55.21 b | 853.77 ± 33.10 a | 700.38 ± 99.11 b | 530.17 ± 32.81 c | |
Heterocycles | 2-Ethylfuran | C3208160 | C6H8O | 96.1 | 707.6 | 193.807 | 1.29263 | 909.65 ± 64.54 b | 1122.93 ± 61.20 a | 1087.95 ± 61.96 a | 1114.27 ± 111.51 a |
2-Pentylfuran | C3777693 | C9H14O | 138.2 | 996.1 | 581.926 | 1.26175 | 1083.64 ± 251.73 a | 876.95 ± 122.49 b | 474.46 ± 49.55 c | 525.73 ± 69.32 c | |
Hydrocarbons | 2,2,4,6,6- Pentamethyl heptane | C13475826 | C12H26 | 170.3 | 991.3 | 573.062 | 1.37018 | 3442.20 ± 482.06 b | 4530.26 ± 220.91 a | 2870.55 ± 534.99 c | 1293.13 ± 249.67 d |
Beta- ocimene | C13877913 | C10H16 | 136.2 | 1041.9 | 671.3 | 1.25802 | 493.07 ± 109.19 b | 735.96 ± 71.70 a | 359.82 ± 67.10 c | 300.38 ± 32.46 c | |
Alpha- phellandrene | C99832 | C10H16 | 136.2 | 1007.5 | 604.085 | 1.67301 | 2140.81 ± 606.39 a | 1641.64 ± 423.30 b | 2053.57 ± 262.20 a | 1679.67 ± 174.57 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Tang, X.; Li, W.; Huang, X. Analysis of the Differences in Volatile Organic Compounds in Different Muscles of Pork by GC-IMS. Molecules 2023, 28, 1726. https://doi.org/10.3390/molecules28041726
Duan S, Tang X, Li W, Huang X. Analysis of the Differences in Volatile Organic Compounds in Different Muscles of Pork by GC-IMS. Molecules. 2023; 28(4):1726. https://doi.org/10.3390/molecules28041726
Chicago/Turabian StyleDuan, Shengnan, Xiaoyan Tang, Wusun Li, and Xinyuan Huang. 2023. "Analysis of the Differences in Volatile Organic Compounds in Different Muscles of Pork by GC-IMS" Molecules 28, no. 4: 1726. https://doi.org/10.3390/molecules28041726
APA StyleDuan, S., Tang, X., Li, W., & Huang, X. (2023). Analysis of the Differences in Volatile Organic Compounds in Different Muscles of Pork by GC-IMS. Molecules, 28(4), 1726. https://doi.org/10.3390/molecules28041726