Biofortification of Kidney Bean (Phaseolus vulgaris L.) Crops Applying Zinc Sulfate and Ferric Sulfate: Pilot Crop in Colombia
Abstract
:1. Introduction
2. Results
2.1. Determination of Iron and Zinc in Bean Leaves and Pods
2.2. Chlorophyll, Carotenoids and °Brix
2.3. Antioxidant Activity
3. Materials and Methods
3.1. Experimental Location
3.2. Formulation of Iron-Sulfate and Zinc-Sulfate Additives in Bean Leaves and Pods
3.3. Additive-Application Method and Furrow Distribution
3.4. Quantification of Iron and Zinc in Kidney Beans (Phaseolus vulgaris L.)
3.5. Determination of Chlorophyll a and b, Carotenoids and °Brix
3.6. DPPH (2,2-diphenyl-1-picrylhydrazyl) Determination
3.7. Statistical Analysis
4. Discussion
4.1. Composition of Iron and Zinc in Bean Leaves and Pods
4.2. Composition of Chlorophyll, Carotenoids and °Brix
4.3. Antioxidant Capacity of Kidney Beans (Phaseolus vulgaris L.)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norton, G.W.; Alwang, J. Changes in agricultural extension and implications for farmer adoption of new practices. Appl. Econ. Perspect. Policy 2020, 42, 8–20. [Google Scholar] [CrossRef]
- Arregocés, H.A.; Rojano, R.; Restrepo, G. Impact of lockdown on particulate matter concentrations in Colombia during the COVID-19 pandemic. Sci. Total Environ. 2021, 764, 142874. [Google Scholar] [CrossRef] [PubMed]
- Timilsina, G.R.; Cao, J.; Ho, M. World bank experience in low-carbon investments and the role of carbon pricing in China. In Globalization of Low-Carbon Technologies; Anbumozhi, V., Kalirajan, K., Eds.; Springer: Singapore, 2017; pp. 513–535. [Google Scholar] [CrossRef]
- Valderrama, M.E.; Monroy, Á.I.C.; Behrentz, E. Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector. Energy Policy 2019, 124, 111–122. [Google Scholar] [CrossRef]
- Perfetti, J.J.; Hernández, A.; Leibovich, J.; Balcázar, Á. Políticas para el Desarrollo de la Agricultura en Colombia. 2013. Available online: https://www.repository.fedesarrollo.org.co/handle/11445/61 (accessed on 13 December 2022).
- Martínez-Reina, A.M.; Grandett-Martínez, L.M.; Tordecilla-Zumaqué, L.; Rodríguez-Pinto, M.D.V.; Cordero-Cordero, C.C.; Tofiño-Rivera, A.P. Technological and socio-economic analysis of the local production system of the pink Zaragoza bean (Phaseolus vulgaris L.) in the Caribbean of Colombia. Rev. Colomb. Cienc. Hortícolas 2021, 15, e11520. [Google Scholar] [CrossRef]
- Fremout, T.; Thomas, E.; Taedoumg, H.; Briers, S.; Gutiérrez-Miranda, C.E.; Alcázar-Caicedo, C.; Lindau, A.; Kpoumie, H.M.; Vinceti, B.; Kettle, C.; et al. Diversity for Restoration (D4R): Guiding the selection of tree species and seed sources for climate-resilient restoration of tropical forest landscapes. J. Appl. Ecol. 2022, 59, 664–679. [Google Scholar] [CrossRef]
- Fort, R.; Infraestructura Rural Mínima para Prosperar. 2030–Alimentación, Agricultura y Desarrollo Rural en América Latina y el Caribe. 2019. Available online: http://www.fao.org/3/ca5485es/ca5485es.pdf (accessed on 13 December 2022).
- Ramirez-Villegas, J.; Salazar, M.; Jarvis, A.; Navarro-Racines, C.E. A way forward on adaptation to climate change in Colombian agriculture: Perspectives towards 2050. Clim. Change 2012, 115, 611–628. [Google Scholar] [CrossRef]
- Cámara de Comercio de Bogotá, Vicepresidencia de Fortalecimiento Empresarial. Programa de Apoyo Agrícola y Agroindustrial. 2015. Available online: https://bibliotecadigital.ccb.org.co/handle/11520/14319 (accessed on 15 December 2022).
- Rosero, A.; Rodríguez, E.; Aguilera-Arango, G.; Rosero, M.G.; Pastrana, I.; Martínez, R.; Sieber, S. Assessment of the current state of in situ conservation and use of sweet potato (Ipomoea batatas L.) in Colombia. Cult. Agric. Food Environ. 2022, 44, 76–89. [Google Scholar] [CrossRef]
- Arcos, J.; Rojas, D.C. Recomendaciones para la Producción de GRANO de Fríjol Biofortificado en Colombia. 2019. Available online: https://cgspace.cgiar.org/handle/10568/100818 (accessed on 15 December 2022).
- Suzuki, L.E.A.S.; Reinert, D.J.; Alves, M.C.; Reichert, J.M. Critical limits for soybean and black bean root growth, based on macroporosity and penetrability, for soils with distinct texture and management systems. Sustainability 2022, 14, 2958. [Google Scholar] [CrossRef]
- Ospina Parra, C.E.; Martínez Medrano, J.C.; Contreras Valencia, K.; Tautiva Merchan, L.A. Análisis socioeconómico del cultivo de fríjol en Cundinamarca (Colombia), para la identificación de un Sistema Agroalimentario Localizado (SIAL). RIVAR 2020, 7, 13–32. [Google Scholar] [CrossRef]
- Heilig, J.A.; Beaver, J.S.; Wright, E.M.; Song, Q.; Kelly, J.D. QTL analysis of symbiotic nitrogen fixation in a black bean population. Crop Sci. 2017, 57, 118–129. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, C.; Zhai, L.; Yu, W.; Chang, H.; Kou, X.; Zhou, F. Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech J. Food Sci. 2016, 34, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What is sustainable agriculture? A systematic review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef] [Green Version]
- Rajeswari, S.; Suthendran, K. C5.0: Advanced Decision Tree (ADT) classification model for agricultural data analysis on cloud. Comput. Electron. Agric. 2019, 156, 530–539. [Google Scholar] [CrossRef]
- Wamiq, M.; Alam, K.; Ahmad, M.; Luthra, S. Beneficios de los alimentos transgénicos biofortificados, una revisión del 2012 al 2022. Rev. Cienc. Tecnol. Higo 2022, 12, 81–102. [Google Scholar] [CrossRef]
- Karavidas, I.; Ntatsi, G.; Vougeleka, V.; Karkanis, A.; Ntanasi, T.; Saitanis, C.; Savvas, D. Agronomic practices to increase the yield and quality of common bean (Phaseolus vulgaris L.): A systematic review. Agronomy 2022, 12, 271. [Google Scholar] [CrossRef]
- Pizarro, F.; Olivares, M.; Valenzuela, C.; Brito, A.; Weinborn, V.; Flores, S.; Arredondo, M. The effect of proteins from animal source foods on heme iron bioavailability in humans. Food Chem. 2016, 196, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Quiroz, C.; Cruz-Lázaro, E.D.L.; Osorio-Osorio, R.; Sánchez-Chávez, E.; Huijara-Vasconcelos, J.J.; Sida-Arreola, J.P. Contenido de zinc y rendimiento de frijol caupí biofortificado. Rev. Mex. Cienc. Pecu 2018, 9, 4175–4185. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Jaspeado, R.; Palacios-Rojas, N.; Nutti, M.; Pérez, S. Estados potenciales en méxico para la producción y consumo de frijol biofortificado con hierro y zinc. Rev. Fitotec. Mex. 2020, 43, 11–23. [Google Scholar] [CrossRef]
- Xinyi, E. Nutrients Recycling Strategy for Microalgae-Based CO2 Mitigation System. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2013. Available online: https://uknowledge.uky.edu/bae_etds/20 (accessed on 26 December 2022).
- Castro Tapia, J.M. Efecto de Reguladores de Crecimiento en la Producción de Lípidos, Proteína Total Soluble, Clorofila y Carotenoides Totales en Cultivos de Scenedesmus Acutus UTEX-72 y Chlorella Vulgaris OW-01. 2021. Available online: https://repositorioinstitucional.uaslp.mx/xmlui/handle/i/7192 (accessed on 27 December 2022).
- Hernandez Linares, D.A.; Chocontá Piraquive, A.; Sepúlveda Méndez, D.J. Los Nuevos Campesinos de los Andes: Revisitando la Ruralidad en la Vereda el Saucío-Cundinamarca. 2020. Available online: https://repositorio.ibero.edu.co/handle/001/993 (accessed on 27 December 2022).
- Baettig-Palma, R.; Cornejo-Troncoso, J.; Salas-Maureira, M.; Tapia-Sanhueza, J. Estudio comparativo entre fluorescencia de rayos X y reflectancia difusa de infrarrojos cercanos para la determinación de la retención en madera impregnada con arseniato de cobre cromatado. Maderas. Cienc. Tecnol. 2015, 17, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Silva, M. Evaluación de Grados Brix como Herramienta para Determinar el Punto Óptimo de Cosecha con dos Aplicaciones de k en Tomate (Solanum lycorpersicum M.), en San Antonio de Pichincha, Quito, Ecuador. Master’s Thesis, Universidad Técnica de Ambato, Ambato, Ecuador, 2021. Available online: https://repositorio.uta.edu.ec/handle/123456789/32742 (accessed on 30 December 2022).
- Balaguera-López, H.E.; Martínez, C.A.; Aníbal Herrera, A. Refrigeration affects the postharvest behavior of 1-methylcyclopropene-treated cape gooseberry (Physalis peruviana L.) fruits with the calyx. Agron. Colomb. 2015, 33, 356–364. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Rivadeneira, J.L.; Barrera, M.V.; De La Hoz, A.I. Análisis general del spss y su utilidad en la estadística. E-IDEA J. Bus. Sci. 2020, 2, 17–25. [Google Scholar]
- Guillén-Molina, M.; de la Cruz Lázaro, E.; Chávez, E.S.; Velázquez-Martínez, J.R.; Osorio-Osorio, R.; Márquez-Quiroz, C. Rendimiento, contenido mineral y actividad antioxidante de frijol caupí biofortificado con combinaciones de sulfatos de hierro y zinc. Agrociencia 2021, 55, 357–367. [Google Scholar] [CrossRef]
- Preciado-Rangel, P.; Sida-Arréola, J.; Sánchez, E.; Ojeda-Barrios, D.; Ávila-Quezada, G.; Flores-Córdova, M.; Márquez-Quiroz, C. Can biofortification of zinc improve the antioxidant capacity and nutritional quality of beans? Emir. J. Food Agric. 2017, 29, 237–241. [Google Scholar] [CrossRef]
- Quintana-Blanco, W.A.; Pinzón-Sandoval, E.H.; Torres, D.F. Evaluación del crecimiento de fríjol (Phaseolus vulgaris L.) CV ica cerinza, bajo estrés salino. Rev. UDCA Actual. Divulg. Científica 2016, 19, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Zewail, R.M.Y. Effect of seaweed extract and amino acids on growth and productivity and some biocostituents of common bean (Phaseolus vulgaris L) plants. Int. J. Plant Prod. 2014, 5, 1441–1453. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Martin, C.A.; Guerrero-Martin, L.E.; Szklo, A. Mitigation options to control greenhouse gas emissions in a colombian oil field. In Proceedings of the SPE International Conference and Exhibition on Health, Safety, Environment, and Sustainability, OnePetro, Bogotá, Colombia, 27–30 July 2020. [Google Scholar]
- Useche-Narvaez, C.; Montes-Páez, E.G.; Guerrero-Martin, C.A. Evaluation of the carbon footprint produced by conventional artificial lift systems in a Colombian field. J. Pet. Sci. Eng. 2022, 208, 108865. [Google Scholar] [CrossRef]
- Cano, N.A.; Céspedes-Zuluaga, S.; Guerrero-Martin, C.; Gallego, D. Exergy and emergy: Complementary tools for assessing the environmental sustainability use of biosolids generated in wastewater-treatment plant for energy-production. Química Nova 2022, 45, 4–15. [Google Scholar] [CrossRef]
- García-Cruz, E.; Sandoval-Villa, M.; Carrillo-Salazar, J.A.; Pérez Rodríguez, P.; Etchevers-Barra, J.D.; Macedo-Cruz, A. Análisis digital de imágenes para la de detección de deficiencias de hierro y manganeso en hojas de frijol. Rev. Fitotec. Mex. 2017, 40, 17–25. [Google Scholar]
- Corzo-Piñeros, R.J.; Manrique-Ruiz, I.G.; Sandoval-Herrera, J.A.; Rubio-Fernández, D. Evaluación de carotenoides y lípidos en la microalga Scenedesmus dimorphus a escala laboratorio. Mutis 2019, 9, 20–28. [Google Scholar] [CrossRef] [Green Version]
Treatments of Iron Sulfate (µmol dm−3) | Zn ** | Fe * | Zn ** | Fe * |
---|---|---|---|---|
Leaf | Pod | |||
mg kg−1 | mg kg−1 | |||
0.000 | 7 ± *** 3 a | 71 ± *** 13 b | 6 ± *** 4 ab | 42 ± *** 15 b |
0.025 | 9 ± *** 3 a | 69 ± *** 13 b | 9 ± *** 4 ab | 43 ± *** 15 b |
0.050 | 0 b | 171 ± *** 20 a | 19 ± *** 6 a | 1145 ± *** 44 a |
0.100 | 11 ± *** 3 a | 102 ± *** 15 ab | 6 ± *** 4 ab | 63 ± *** 16 b |
0.200 | 0 b | 77 ± *** 16 ab | 6 ± *** 4 ab | 94 ± *** 18 b |
Treatments of Zinc Sulfate (µmol dm−3) | Zn ** | Fe * | Zn ** | Fe * |
---|---|---|---|---|
Leaf | Pod | |||
mg kg−1 | mg kg−1 | |||
0.000 | 9 ± *** 4 ab | 16 ± *** 16 ab | 8 ± *** 3 a | 39 ± *** 12 ab |
0.025 | 14 ± *** 5 a | 105 ± *** 20 a | 0 b | 25 ± *** 13 ab |
0.050 | 9 ± *** 5 a | 92 ± *** 19 a | 0 b | 32 ± *** 15 a |
0.100 | 8 ± *** 4 ab | 91 ± *** 17 ab | 7 ± *** 4 a | 55 ± *** 15 a |
0.200 | 22 ± *** 4 ab | 88 ± *** 17 ab | 11 ± *** 4 a | 38 ± *** 14 a |
Treatments of Iron Sulfate (µmol dm−3) | TSS * °Brix | Chlorophyll a (mg dm−1 DW **) | Chlorophyll b (mg dm−1 DW **) | Total Carotenoids (mg dm−1 DW **) | |
---|---|---|---|---|---|
Bean | Pod | Leaf | |||
0.000 | 0.53 c | 5.7 b | 0.730 a | 0.073 a | 0.013 a |
0.025 | 1.80 c | 5.8 b | 0.660 a | 0.066 a | 0.012 b |
0.050 | 5.10 b | 6.7 a | 0.190 b | 0.019 b | 0.013 a |
0.100 | 6.50 b | 6.7 a | 0.470 ab | 0.047 ab | 0.013 a |
0.200 | 9.20 a | 5.5 b | 0.220 b | 0.022 b | 0.013 a |
Treatments of Zinc Sulfate (µmol dm−3) | TSS * °Brix | Chlorophyll a (mg dm−1 DW **) | Chlorophyll b (mg dm−1 DW **) | Total Carotenoids (mg dm−1 DW **) | |
---|---|---|---|---|---|
Bean | Pod | Leaf | |||
0.000 | 0.50 c | 5.60 b | 0.560 ab | 0.056 ab | 0.013 a |
0.025 | 6.90 b | 6.20 b | 0.670 ab | 0.067 a | 0.013 a |
0.050 | 7.00 b | 10.4 a | 0.130 b | 0.013 a | 0.013 a |
0.100 | 7.10 b | 6.20 b | 0.490 ab | 0.049 b | 0.013 a |
0.200 | 10.6 a | 7.60 ab | 0.858 a | 0.858 a | 0.013 a |
Treatments of Iron Sulfate (µmol dm−3) | Iron Sulfate (g dm−3) | Treatments of Zinc Sulfate (µmol dm−3) | Zinc Sulfate (g dm−3) |
---|---|---|---|
0.000 | 0 | 0.000 | 0 |
0.025 | 0.0037977 | 0.025 | 0.00404 |
0.050 | 0.0075955 | 0.050 | 0.00807 |
0.100 | 0.0151910 | 0.100 | 0.01615 |
0.200 | 0.0303820 | 0.200 | 0.03229 |
Zinc Sulfate Concentration (g dm−3) | N° Plant | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0 | T1 | T2 | T3 | T4 |
0.00404 | T5 | T6 | T7 | T8 |
0.00807 | T9 | T10 | T11 | T12 |
0.01615 | T13 | T14 | T15 | T16 |
0.03229 | T17 | T18 | T19 | T20 |
Iron Sulfate Concentration (g dm−3) | N° Plant | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0 | T1 | T2 | T3 | T4 |
0.0037977 | T5 | T6 | T7 | T8 |
0.0075955 | T9 | T10 | T11 | T12 |
0.0151910 | T13 | T14 | T15 | T16 |
0.0303820 | T17 | T18 | T19 | T20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Martin, C.A.; Ortega-Ramírez, A.T.; Silva-Marrufo, Ó.; Casallas-Martín, B.D.; Cortés-Salazar, N.; Salinas-Silva, R.; Camacho-Galindo, S.; Da Silva Fernandes, F.A.; Guerrero-Martin, L.E.; Paulo de Freitas, P.; et al. Biofortification of Kidney Bean (Phaseolus vulgaris L.) Crops Applying Zinc Sulfate and Ferric Sulfate: Pilot Crop in Colombia. Molecules 2023, 28, 2004. https://doi.org/10.3390/molecules28052004
Guerrero-Martin CA, Ortega-Ramírez AT, Silva-Marrufo Ó, Casallas-Martín BD, Cortés-Salazar N, Salinas-Silva R, Camacho-Galindo S, Da Silva Fernandes FA, Guerrero-Martin LE, Paulo de Freitas P, et al. Biofortification of Kidney Bean (Phaseolus vulgaris L.) Crops Applying Zinc Sulfate and Ferric Sulfate: Pilot Crop in Colombia. Molecules. 2023; 28(5):2004. https://doi.org/10.3390/molecules28052004
Chicago/Turabian StyleGuerrero-Martin, Camilo Andrés, Angie Tatiana Ortega-Ramírez, Óscar Silva-Marrufo, Braian David Casallas-Martín, Natalia Cortés-Salazar, Raúl Salinas-Silva, Stefanny Camacho-Galindo, Fernando Antonio Da Silva Fernandes, Laura Estefanía Guerrero-Martin, Pedro Paulo de Freitas, and et al. 2023. "Biofortification of Kidney Bean (Phaseolus vulgaris L.) Crops Applying Zinc Sulfate and Ferric Sulfate: Pilot Crop in Colombia" Molecules 28, no. 5: 2004. https://doi.org/10.3390/molecules28052004
APA StyleGuerrero-Martin, C. A., Ortega-Ramírez, A. T., Silva-Marrufo, Ó., Casallas-Martín, B. D., Cortés-Salazar, N., Salinas-Silva, R., Camacho-Galindo, S., Da Silva Fernandes, F. A., Guerrero-Martin, L. E., Paulo de Freitas, P., & D. V. Duarte, E. (2023). Biofortification of Kidney Bean (Phaseolus vulgaris L.) Crops Applying Zinc Sulfate and Ferric Sulfate: Pilot Crop in Colombia. Molecules, 28(5), 2004. https://doi.org/10.3390/molecules28052004