Rhein–Amino Acid Ester Conjugates as Potential Antifungal Agents: Synthesis and Biological Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Antifungal Activity
2.3. In Vivo Antifungal Activity against Powdery Mildew in Wheat
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Test Fungus
3.3. Preparation of 4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carbonyl Chloride (2)
3.4. General Procedure for Preparation of Rhein–Amino Acid Ester Conjugates (3a–3t)
3.4.1. Rhein-Gly-OMe (3a): Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)acetate
3.4.2. Rhein-Gly-OMe (3b): Ethyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)acetate
3.4.3. Rhein-L-Ala-OEt (3c): (R)-Ethyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)propanoate
3.4.4. Rhein-L-Leu-OMe (3d): (R)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-4-methylpentanoate
3.4.5. Rhein-L-Leu-OEt (3e): (R)-Ethyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-4-methylpentanoate
3.4.6. Rhein-L-Ile-OMe (3f): (2R,3R)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-3-methylpentanoate
3.4.7. Rhein-L-Phe-OEt (3g): (R)-Ethyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-3-phenylpropanoate
3.4.8. Rhein-L-Tyr-OEt (3h): (R)-Ethyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-3-(4-hydroxyphenyl)propanoate
3.4.9. Rhein-D-Val-OMe (3i): (S)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-3-methylbutanoate
3.4.10. Rhein-L-Met-OMe (3j): (R)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-4-(methylthio)butanoate
3.4.11. Rhein-L-Val-OMe (3k): (R)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-4-methylbutanoate
3.4.12. Rhein-D-Leu-OMe (3l): (S)-Methyl 2-(4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-4-methylpentanoate
3.4.13. Rhein-D-Met-OMe (3m): (S)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-4-(methylthio)butanoate
3.4.14. Rhein-L-Trp-OMe (3n): (R)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-3-(1H-indol-3-yl)propanoate
3.4.15. Rhein-L-Glu(OMe)-OMe (3o): (R)-Dimethyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)pentanedioate
3.4.16. Rhein-D-Tyr-OEt (3p): (S)-Ethyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-3-(4-hydroxyphenyl)propanoate
3.4.17. Rhein-D-Ala-OEt (3q) (S)-Ethyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)propanoate
3.4.18. Rhein-D-Phe-OMe (3r) (S)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-3-phenylpropanoate
3.4.19. Rhein-D-Trp-OMe (3s) (S)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-3-(1H-indol-3-yl)propanoate
3.4.20. Rhein-L-Tyr-OMe (3t) (R)-Methyl 2-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)-3-(4-hydroxyphenyl)propanoate
3.5. In Vitro Antifungal Bioassay
3.6. In Vivo Protective and Curative Antifungal Bioassay
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, L.; Shi, Y.; Duan, X.; He, W.; Si, H.; Wang, P.; Cheng, S.; Luo, H.; Rao, X.; Wang, Z.; et al. Novel Citral-thiazolyl Hydrazine Derivatives as Promising Antifungal Agents against Phytopathogenic Fungi. J. Agric. Food Chem. 2021, 69, 14512–14519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, H.; Su, H.; Yang, X.; Sun, T.; Lu, X.; Shi, F.; Duan, H.; Liu, X.; Ling, Y. Design, Synthesis, and Biological Activity of Novel Fungicides Containing a 1,2,3,4-Tetrahydroquinoline Scaffold and Acting as Laccase Inhibitors. J. Agric. Food Chem. 2022, 70, 1776–1787. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.D.; Ma, K.Y.; Wang, Y.L.; Sun, Y.; Shang, X.F.; Zhao, Z.M.; Wang, R.X.; Chen, Y.J.; Zhu, J.K.; Liu, Y.Q. Design, Synthesis, and Antifungal Evaluation of 8-Hydroxyquinoline Metal Complexes against Phytopathogenic Fungi. J. Agric. Food Chem. 2020, 68, 11096–11104. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Lorsbach, B.A.; Sparks, T.C.; Cicchillo, R.M.; Garizi, N.V.; Hahn, D.R.; Meyer, K.G. Natural products: A strategic lead generation approach in crop protection discovery. Pest Manag. Sci. 2019, 75, 2301–2309. [Google Scholar] [CrossRef]
- Yang, R.; Xu, T.; Fan, J.; Zhang, Q.; Ding, M.; Huang, M.; Deng, L.; Luo, Y.; Guo, Y. Natural products-based pesticides: Design, synthesis and pesticidal activities of novel fraxinellone derivatives containing N-phenylpyrazole moiety. Ind. Crop. Prod. 2018, 117, 50–57. [Google Scholar] [CrossRef]
- Viayna, E.; Sola, I.; Bartolini, M.; Simone, A.D.; Tapia-Rojas, C.; Serrano, F.G.; Sabate, R.; Juárez-Jiménez, J.; Pérez, B.; Luque, F.J.; et al. Synthesis and Multitarget Biological Profiling of a Novel Family of Rhein Derivatives As Disease-Modifying Anti-Alzheimer Agents. J. Med. Chem. 2014, 57, 2549–2567. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Qi, X.; Yan, Y.; Qi, J.; Qian, N.; Guo, L.; Li, C.; Wang, F.; Huang, P.; Zhou, H.; et al. Synthesis and biological evaluation of rhein amides as inhibitors of osteoclast differentiation and bone resorption. Eur. J. Med. Chem. 2016, 123, 769–776. [Google Scholar] [CrossRef]
- Yang, X.; Sun, G.; Yang, C.; Wang, B. Novel Rhein Analogues as Potential Anticancer Agents. Chemmedchem 2011, 6, 2294–2301. [Google Scholar] [CrossRef]
- Suneela, D.; Dipmala, P. Synthesis and pharmacokinetic profile of rhein-boswellic acid conjugate. Bioorg. Med. Chem. Lett. 2012, 22, 7582–7587. [Google Scholar] [CrossRef]
- Shang, X.F.; Zhao, Z.M.; Li, J.C.; Yang, J.Z.; Liu, Y.Q.; Dai, L.X.; Zhang, Z.J.; Yang, Z.G.; Miao, X.L.; Yang, C.J.; et al. Insecticidal and antifungal activities of Rheum palmatum L. anthraquinones and structurally related compounds. Ind. Crop. Prod. 2019, 137, 508–520. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Singh, S.S.; Verm, S.; Kumar, S. Antifungal activity of anthraquinone derivatives from Rheum emodi. J. Ethnopharmacol. 2000, 72, 43–46. [Google Scholar] [CrossRef]
- Liang, Y.K.; Yue, Z.Z.; Li, J.X.; Tan, C.; Miao, Z.H.; Tan, W.F.; Yang, C.H. Natural product-based design, synthesis and biological evaluation of anthra[2,1-d]thiazole-6,11-dione derivatives from rhein as novelantitumour agents. Eur. J. Med. Chem. 2014, 84, 505–515. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, S.; Zheng, Y.; Zhang, Y.; Hsiang, T.; Huang, R.; Qi, J.; Gan, T.; Chang, Y.; Li, J. Antifungal and insecticidal activities of rhein derivatives: Synthesis, characterization and preliminary structure–activity relationship studies. Nat. Prod. Res. 2022, 36, 4140–4146. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, L.H.; Hsiang, T.; Huang, D.; Xu, Z.; Wu, Q.; Du, X.; Li, J. The influence of steric configuration of phenazine-1-carboxylic acid-amino acid conjugates on fungicidal activity and systemicity. Pest Manag. Sci. 2019. 75, 3323–3330. [CrossRef]
- Xiao, Y.; Zhang, J.L.T.; Hsiang, T.; Zhang, X.; Zhu, Y.; Du, X.; Yin, J.; Li, J. An efficient overexpression method for studying genes in Ricinus that transport vectorized agrochemicals. Plant Methods 2022, 18, 11. [Google Scholar] [CrossRef]
- Todoroki, Y.; Narita, K.; Muramatsu, T.; Shimomura, H.; Ohnishi, T.; Mizutani, M.; Ueno, K.; Hirai, N. Synthesis and biological activity of amino acid conjugates of abscisic acid. Bioorg. Med. Chem. 2011, 19, 1743–1750. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, D.Y.; Shang, H.; Jia, Y.; Xu, X.D.; Tian, Y.; Guo, P. Amino acid ester-coupled caffeoylquinic acid derivatives as potential hypolipidemic agents: Synthesis and biological evaluation. RSC Adv. 2021, 11, 1654–1661. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Wang, X.; Wu, C.; Zhao, C. Synthesis of l-ascorbic acid-amino acid-norcantharidin conjugates and their biological activity evaluation in vitro. Nat. Prod. Res. 2022, 36, 5455–5461. [Google Scholar] [CrossRef]
- Rakesh, K.P.; Kumara, H.K.; Ullas, B.J.; Shivakumara, J.; Gowda, D.C. Amino acids conjugated quinazolinone-Schiff’s bases as potential antimicrobial agents: Synthesis, SAR and molecular docking studies. Bioorg. Chem. 2019, 90, 103093. [Google Scholar] [CrossRef]
- Panda, S.S.; Girgis, A.S.; Thomas, S.J.; Capito, J.E.; George, R.F.; Salman, A.; El-Manawaty, M.A.; Samir, A. Synthesis, pharmacological profile and 2D-QSAR studies of curcumin-amino acid conjugates as potential drug candidates. Eur. J. Med. Chem. 2020, 196, 112293. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Chen, J.; Xu, Z.; Zhu, X.; Wu, Q.; Li, J. Synthesis and bioactivities of amino acid ester conjugates of phenazine-1-carboxylic acid. Bioorg. Med. Chem. Lett. 2016, 26, 5384–5386. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yu, L.; Zhang, M.; Xu, Z.; Yao, Z.; Wu, Q.; Du, X.; Li, J. Design, synthesis and biological activity of hydroxybenzoic acid ester conjugates of phenazine-1-carboxylic acid. Chem. Cent. J. 2018, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Huang, D.; Zhu, X.; Zhang, M.; Yao, Z.; Wu, Q.; Xu, Z.; Li, J. Design, Synthesis, Phloem Mobility, and Bioactivities of a Series of Phenazine-1-Carboxylic Acid-Amino Acid Conjugates. Molecules 2018, 23, 2139. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, G.; Yao, Z.; Zhao, C.; Zhu, X.; Wu, Q.; Zhou, X.; Li, J. Screening Effective Antifungal Substances from the Bark and Leaves of Zanthoxylum avicennae by the Bioactivity-Guided Isolation Method. Molecules 2019, 24, 4207. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhang Min Xiao, Y.; Hsiang, T.; Hu, C.; Li, J. Systemic fungicidal activity of phenazine-1-carboxylic acid-valine conjugate against tobacco sore shin and its translocation and accumulation in tobacco (Nicotiana tabacum L.). Pest Manag. Sci. 2022, 78, 1117–1127. [Google Scholar] [CrossRef]
Entry | Reactant (Amino Acid Ester) | Product (3) | Yield (%) |
---|---|---|---|
3a | H-Gly-OMe·HCl | Rhein-Gly-OMe | 78 |
3b | H-Gly-OEt·HCl | Rhein-Gly-OEt | 82 |
3c | H-L-Ala-OEt·HCl | Rhein-L-Ala-OEt | 90 |
3d | H-L-Leu-OMe·HCl | Rhein-L-Leu-OMe | 92 |
3e | H-L-Leu-OEt·HCl | Rhein-L-Leu-OEt | 92 |
3f | H-L-Ile-OMe·HCl | Rhein-L-Ile-OMe | 92 |
3g | H-L-Phe-OEt·HCl | Rhein-L-Phe-OEt | 94 |
3h | H-L-Phe-Tyr·HCl | Rhein-L-Tyr-OEt | 87 |
3i | H-D-Val-OMe·HCl | Rhein-D-Val-OMe | 95 |
3j | H-L-Met-OMe·HCl | Rhein-L-Met-OMe | 90 |
3k | H-L-Val-OMe·HCl | Rhein-L-Val-OMe | 93 |
3l | H-D-Leu-OMe·HCl | Rhein-D-Leu-OMe | 90 |
3m | H-D-Met-OMe·HCl | Rhein-D-Met-OMe | 89 |
3n | H-L-Trp-OMe·HCl | Rhein-L-Trp-OMe | 83 |
3o | H-L-Glu(OMe)-OMe·HCl | Rhein-L-Glu(OMe)-OMe | 84 |
3p | H-D-Tyr-OMe·HCl | Rhein-D-Tyr-OEt | 88 |
3q | H-D-Ala-OEt·HCl | Rhein-D-Ala-OEt | 89 |
3r | H-D-Phe-OMe·HCl | Rhein-D-Phe-OMe | 92 |
3s | H-D-Typ-OMe·HCl | Rhein-D-Trp-OMe | 74 |
3t | H-L-Tyr-OMe·HCl | Rhein-L-Tyr-OMe | 76 |
Compd. | Conjugated Amino Acid Ester | R. solani | S. sclerotiorum |
---|---|---|---|
3a | Gly-OMe | 0.157 | 0.486 |
3c | L-Ala-OEt | 0.125 | 0.156 |
3d | L-Leu-OMe | 0.152 | 0.210 |
3f | L-Ile-OMe | 0.153 | 0.132 |
3h | L-Tyr-OEt | 0.167 | 0.155 |
3i | D-Val-OMe | 0.185 | 0.192 |
3m | D-Met-OMe | 0.159 | 0.114 |
3n | L-Trp-OMe | 0.176 | 0.457 |
3q | D-Ala-OEt | 0.154 | 0.179 |
3r | D-Phe-OMe | 0.147 | 0.129 |
3t | L-Tyr-OMe | 0.197 | 0.327 |
Compd. | Concentration (mM) | Curative Activity | Protective Activity | ||
---|---|---|---|---|---|
Disease Index (%) | Control Efficiency (%) | Disease Index (%) | Control Efficiency (%) | ||
3c | 0.4 | 12.9 | 84.4 ± 2.9 | 33.3 | 66.7 ± 3.7 |
0.2 | 32.1 | 61.2 ± 3.0 | 46.2 | 53.8 ± 3.4 | |
Physcion | 0.4 | 10.4 | 87.4 ± 2.4 | 45.8 | 54.2 ± 2.9 |
0.2 | 27.1 | 67.2 ± 2.5 | 61.6 | 38.4 ± 3.3 | |
Control | - | 82.7 | - | 100 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wang, M.; Yu, L.; Shi, J.; Zhang, Y.; Tian, Y.; Li, L.; Zhu, X.; Li, J. Rhein–Amino Acid Ester Conjugates as Potential Antifungal Agents: Synthesis and Biological Evaluation. Molecules 2023, 28, 2074. https://doi.org/10.3390/molecules28052074
Chen S, Wang M, Yu L, Shi J, Zhang Y, Tian Y, Li L, Zhu X, Li J. Rhein–Amino Acid Ester Conjugates as Potential Antifungal Agents: Synthesis and Biological Evaluation. Molecules. 2023; 28(5):2074. https://doi.org/10.3390/molecules28052074
Chicago/Turabian StyleChen, Shunshun, Meimei Wang, Linhua Yu, Jinchao Shi, Yong Zhang, Yao Tian, Li Li, Xiang Zhu, and Junkai Li. 2023. "Rhein–Amino Acid Ester Conjugates as Potential Antifungal Agents: Synthesis and Biological Evaluation" Molecules 28, no. 5: 2074. https://doi.org/10.3390/molecules28052074
APA StyleChen, S., Wang, M., Yu, L., Shi, J., Zhang, Y., Tian, Y., Li, L., Zhu, X., & Li, J. (2023). Rhein–Amino Acid Ester Conjugates as Potential Antifungal Agents: Synthesis and Biological Evaluation. Molecules, 28(5), 2074. https://doi.org/10.3390/molecules28052074