Influence of Different Ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Yogurt
Abstract
:1. Introduction
2. Results
2.1. Growth of Starter Cultures during Fermentation
2.2. Changes in pH and TA during Fermentation
2.3. Viscosity and WHC during Fermentation
2.4. Analysis of Volatile Flavour Compounds in Yogurt
2.4.1. Analysis of Volatile Flavour Compounds
2.4.2. PCA
2.5. Heatmap
2.6. Sensory Evaluation
3. Discussion
4. Material and Methods
4.1. Isolates, Growth Media and Inoculation Cultures
4.2. Reagents
4.3. Preparation of Yogurt Samples
4.4. Enumeration of Viable Cell Counts
4.5. Determination of pH and Titratable Acidity (TA)
4.6. Determination of Viscosity
4.7. Determination of Water Holding Capacity (WHC)
4.8. Solid-Phase Microextraction (SPME) Procedures
4.9. Determination of the Odour Activity Value (OAV)
4.10. Sensory Analysis
4.11. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pachekrepapol, U.; Kokhuenkhan, Y.; Ongsawat, J. Formulation of yogurt-like product from coconut milk and evaluation of physicochemical, rheological, and sensory properties. Int. J. Gastron. Food Sci. 2021, 25, 100393. [Google Scholar] [CrossRef]
- Cheng, H. Volatile flavor compounds in yogurt: A review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Afsana, Y.T.; Hoque, M.N.; Mannana, A.; Md, J.F.; Rumi, M.H.; Biswas, S.; Jahid, B.; Siddiki, Z.; Islam, S.; Alfred, T.; et al. Investigating the nutritional profile and bacteriome diversity in Bangladeshi sour yogurt. Biocatal. Agric. Biotechnol. 2022, 44, 102451. [Google Scholar] [CrossRef]
- Gonzalez, S.; Fernández-Navarro, T.; Arboleya, S.; Reyes-Gavilán, C.G.; Salazar, N.; Gueimonde, M. Fermented dairy foods: Impact on intestinal microbiota and health-linked biomarkers. Front. Microbiol. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Zhao, L.; Feng, R.; Ren, F.; Mao, X. Addition of buttermilk improves the flavor and volatile compound profiles of low-fat yogurt. LWT 2018, 98, 9–17. [Google Scholar] [CrossRef]
- Chang, Y.H.; Jeong, C.H.; Cheng, W.N.; Choi, Y.; Shin, D.M.; Lee, S.; Han, S.G. Quality characteristics of yogurts fermented with short-chain fatty acid-producing probiotics and their effects on mucin production and probiotic adhesion onto human colon epithelial cells. J. Dairy Sci. 2021, 104, 7415–7425. [Google Scholar] [CrossRef]
- Obioha, P.I.; Ouoba, L.I.I.; Anyogu, A.; Awamaria, B.; Atchia, S.; Ojimelukwe, P.C. Identification and characterisation of the lactic acid bacteria associated with the traditional fermentation of dairy fermented product. Braz. J. Microbiol. 2021, 52, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Amani, E.; Eskandari, M.H.; Shekarforoush, S. The effect of proteolytic activity of starter cultures on technologically important properties of yogurt. Food Sci. Nutr. 2017, 5, 525–537. [Google Scholar] [CrossRef]
- Alline, A.L.T.; Luma, R.R.; Bruno, R.; Miguel, M.; Marcelo, C. Fermentation profile and characteristics of yoghurt manufactured from frozen sheep milk. Int. Dairy J. 2018, 78, 36–45. [Google Scholar] [CrossRef]
- Dan, T.; Wang, D.; Wu, S.; Lin, R.; Ren, W.; Sun, T. Profiles of volatile flavor compounds in milk fermented with different proportional combinations of L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Molecules 2017, 22, 1633. [Google Scholar] [CrossRef] [Green Version]
- Bibi, A.; Xiong, Y.; Rajoka, M.S.R.; Mehwish, H.M.; Radicetti, E.; Umair, M.; Shoukat, M.; Khan, M.K.I.; Aadil, R.M. Recent Advances in the Production of Exopolysaccharide (EPS) from Lactobacillus spp. and its application in the food industry: A Review. Sustainability 2021, 13, 12429. [Google Scholar] [CrossRef]
- Arioli, S.; Scala, G.D.; Remagni, M.C.; Stuknyte, M.; Colombo, S.; Guglielmetti, S. Streptococcus thermophilus urease activity boosts L. delbrueckii subsp. bulgaricus homolactic fermentation. Int. J. Food Microbiol. 2017, 247, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Gezginc, Y.; Topcal, F.; Comertpay, S.; Akyol, I. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC. J. Dairy Sci. 2015, 98, 1426–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, T.; Chen, H.; Li, T.; Tian, J.; Ren, W.; Zhang, H.P. Influence of Lactobacillus plantarum P-8 on fermented milk flavor and storage stability. Front. Microbiol. 2019, 9, 3133. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.L.; Desai, S.H.; Atsumi, S. Microbial production of scent and flavor compounds. Curr. Opin. Biotechnol. 2016, 37, 8–15. [Google Scholar] [CrossRef]
- Zha, M.; Yu, J.; Yong, Z.; Wang, H.; Bilige, M. Study on Streptococcus thermophilus isolated from Qula and associated characteristic of acetaldehyde and diacetyl in their fermented milk. J. Gen. Appl. Microbiol. 2015, 61, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Dan, T.; Ren, W.; Liu, Y.; Tian, J.; Liu, W. Volatile flavor compounds profile and fermentation characteristics of milk fermented by L. delbrueckii subsp. bulgaricus. Front. Microbiol. 2019, 10, 2183. [Google Scholar] [CrossRef]
- Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. Volatile flavor compounds in cheese as affected by ruminant diet. Molecules 2020, 25, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustos, G.; Moldes, A.B.; Cruz, J.M.; Domínguez, J.M. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Biotechnol. Prog. 2005, 21, 793–798. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, S.; Kong, X.; Ji, Z.; Han, X.; Wu, J.; Mao, J. Elucidation of the aroma compositions of Zhenjiang aromatic vinegar using comprehensive two dimensional gas chromatography coupled to time-of-flight mass spectrometry and gas chromatography-olfactometry. J. Chromatogr. A 2017, 1487, 218–226. [Google Scholar] [CrossRef]
- Papaioannou, G.; Kosma, I.; Badeka, A.V.; Kontominas, M.G. Profile of Volatile Compounds in Dessert Yogurts Prepared from Cow and Goat Milk, Using Different Starter Cultures and Probiotics. Foods 2021, 10, 3153. [Google Scholar] [CrossRef]
- Liu, C.; Yang, P.; Wang, H.; Song, H. Identification of odor compounds and odor-active compounds of yogurt using DHS, SPME, SAFE, and SBSE/GC-O-MS. LWT 2022, 154, 112689. [Google Scholar] [CrossRef]
- Tian, H.; Shi, Y.; Zhang, Y.; Yu, H.; Mu, H.; Chen, C. Screening of aroma-producing lactic acid bacteria and their application in improving the aromatic profile of yogurt. J. Food Biochem. 2019, 43, e12837. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, S.; Zhong, Y.; Lan, S.; Brennan, C.S.; Wang, Q.; Ma, L.K. Study of aroma compound formations and transformations during Jinxuan and Qingxin oolong tea processing. Int. J. Food Sci. Technol. 2021, 56, 5629–5638. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Dairy Sci. Technol. 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Rincon-Delgadillo, M.I.; Lopez-Hernandez, A.; Wijaya, I.; Rankin, S.A. Diacetyl levels and volatile profiles of commercial starter distillates and selected dairy foods. J. Dairy Sci. 2012, 95, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Fei, Y.; Yang, Y.; Jin, Z.K.; Yu, B.N.; Li, L. A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2, 3-butanedione and acetoin. Food Microbiol. 2020, 91, 103540. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Barrientos, L.M.; Garcia, H.S.; Reyes-Díaz, R.; Estrada-Montoya, M.C.; Torres-Llanez, M.J.; Hernández-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B. Cooperation between Lactococcus lactis NRRL B-50571 and NRRL B-50572 for aroma formation in fermented milk. Foods 2019, 8, 645. [Google Scholar] [CrossRef] [Green Version]
- Suzuki-Iwashima, A.; Matsuura, H.; Iwasawa, A.; Shiota, M. Metabolomics analyses of the combined effects of lactic acid bacteria and Penicillium camemberti on the generation of volatile compounds in model mold-surface-ripened cheeses. J. Biosci. Bioeng. 2020, 129, 333–347. [Google Scholar] [CrossRef]
- Fuchs, G. Anaerobic metabolism of aromatic compounds. Ann. N. Y. Acad. Sci. 2008, 1125, 82–99. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Molina, C.V.; Lima, J.G.; Moraes, I.C.F.; Pinho, S.C. Physicochemical characterization and sensory evaluation of yogurts incorporated with beta-carotene-loaded solid lipid microparticles stabilized with hydrolyzed soy protein isolate. Food Sci. Biotechnol. 2019, 28, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Bernardeau, M.; Vernoux, J.P.; Henri-Dubernet, S.; Micheline, G. Safety assessment of dairy microorganisms: The Lactobacillus genus. Int. J. Food Microbiol. 2008, 126, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Pourahmad, R.; Assadi, M.M. Yoghurt production by Iranian native starter cultures. Nutr. Food Sci. 2005, 35, 410–415. [Google Scholar] [CrossRef]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Feng, K. Comparison of northeast sauerkraut fermentation between single lactic acid bacteria strains and traditional fermentation. Food Res. Int. 2020, 137, 109553. [Google Scholar] [CrossRef]
- Donkor, N.; Henriksson, A.; Vasiljevic, T.; Shah, N.P. Effect of acidification on the activity of probiotics in yoghurt during cold storage. Int. Dairy J. 2006, 16, 1181–1189. [Google Scholar] [CrossRef]
- Kneifel, W.; Jaros, D.; Erhard, F. Microflora and acidification properties of yogurt and yogurt related products fermented with commercially available starter cultures. Int. J. Food Microbiol. 1993, 18, 179–189. [Google Scholar] [CrossRef]
- Cortez-Trejo, M.C.; Gaytán-Martínez, M.; Reyes-Vega, M.L.; Mendoza, S. Protein-gum-based gels: Effect of gum addition on microstructure, rheological properties, and water retention capacity. Trends Food Sci. Technol. 2021, 116, 303–317. [Google Scholar] [CrossRef]
- Serra, M.; Trujillo, A.J.; Guamis, B.; Ferragut, V. Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high pressure homogenization-treated milk. Food Hydrocoll. 2009, 23, 82–91. [Google Scholar] [CrossRef]
- Imhof, R.; Glattli, H.; Bosset, J. Volatile organic aroma compounds produced by thermophilic and mesophilic mixed strain dairy starter cultures. Lebensm. Wiss. Technol. 1994, 27, 442–449. [Google Scholar] [CrossRef]
- Hussein, A. Determination of volatile compound in fermented camel milk by GC-MS. In Farm Machinery and Processes Management in Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Ning, L.; Zheng, F.P.; Chen, H.T.; Liu, S.Y.; Chen, G.; Song, Z.Y.; Sun, B.G. Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS. Food Chem. 2011, 129, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.S.; Liu, J.B.; Yang, Z.M.; Song, H.L.; Liu, Y.; Zou, T.T. Aroma-active compounds in jinhua ham produced with different fermentation periods. Molecules 2014, 19, 19097–19113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, M.; Reineccius, G.A. Quantification of aroma compounds in parmigiano reggiano cheese by a dynamic headspace gas chromatography-mass spectrometry technique and calculation of odor activity value. J. Dairy Sci. 2003, 86, 770–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curioni, P.M.G.; Bosset, J.O. Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int. Dairy J. 2002, 12, 959–984. [Google Scholar] [CrossRef]
- Gemert, L.J.V. Compilations of Odour Threshold Values in Air, Water and Other Media; Boelens Aroma Chemical Information Service: Hhuizen, The Netherlands, 2003. [Google Scholar]
- Nogueir, J.P.; Siqueira, A.C.P.; Sandes, R.D.D.; Gal ã o, M.S.; Neta, M.T.S.L.; Narain, N. An insight into key volatile compounds in acerola (Malpighia emarginata DC.) pulp based on their odour activity values and chemometric evaluation. Anal. Methods 2018, 10, 5851–5866. [Google Scholar] [CrossRef]
- Zhang, L.; Mi, S.; Liu, R.B.; Sang, Y.X.; Wang, X.H. Evaluation of volatile compounds in milks fermented using traditional starter cultures and probiotics based on odor activity value and chemometric techniques. Molecules 2020, 25, 1029. [Google Scholar] [CrossRef] [Green Version]
- Esmerino, E.A.; Ferraz, J.P.; Filho, E.R.T.; Pinto, L.; Freitas, M.Q.; Cruz, A.G. Consumers’ perceptions toward 3 different fermented dairy products: Insights from focus groups, word association, and projective mapping. J. Dairy Sci. 2017, 100, 8849–8860. [Google Scholar] [CrossRef] [Green Version]
- Soni, R.; Jain, N.K.; Shah, V.; Soni, J.; Gohel, P. Development of probiotic yogurt: Effect of strain combination on nutritional, rhelogical, organoleptic and probiotic properties. J. Food Sci. Technol. 2020, 57, 2038–2050. [Google Scholar] [CrossRef]
- Liu, W.; Su, X.; Duo, N.; Yu, J.; Song, Y.; Sun, T. A survey of the relationship between functional genes and acetaldehyde production characteristics in Streptococcus thermophilus by multilocus sequence typing. J. Dairy Sci. 2019, 102, 9651–9662. [Google Scholar] [CrossRef]
- Peng, C.; Yao, G.; Sun, Y.; Guo, S.; Zhang, H. Comparative effects of the single and binary probiotics of Lacticaseibacillus casei Zhang and Bifidobacterium lactis V9 on the growth and metabolomic profiles in yogurts. Food Res. Int. 2021, 152, 110603. [Google Scholar] [CrossRef]
- Meng, L.; Li, S.; Liu, G.; Fan, X.; Feng, Z. The nutrient requirements of Lactobacillus acidophilus LA-5 and their application to fermented milk. J. Dairy Sci. 2021, 104, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Huang, T.; Guo, S.; Wang, Y.; Bilige, M. Probiotic Lactobacillus casei Zhang improved the properties of stirred yogurt. Food Biosci. 2020, 37, 100718. [Google Scholar] [CrossRef]
- Yao, S.; Xie, S.; Jiang, L.; Liang, L. Effect of dandelion extract, sucrose and starter culture on the viscosity, water-holding capacity and pH of plain yogurt. Mljekarstvo 2017, 67, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Conte, F. Solid-phase microextraction and gas chromatography mass spectrometry analysis of dairy product volatiles for the determination of shelf-life. Int. Dairy J. 2008, 18, 819–825. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, H.; Liu, T.; Gong, P.; Wang, Y.; Wang, H.; Tian, X.Y.; Liu, Q.Q.; Cui, Q.Y.; Xie, X.; et al. Aroma classification and flavor characterization of Streptococcus thermophilus fermented milk by HS-GC-IMS and HS-SPME-GC-TOF/MS. Food Biosci. 2022, 49, 101832. [Google Scholar] [CrossRef]
- Schiano, A.N.; Harwood, W.S.; Drake, M.A. A 100-year review: Sensory analysis of milk. J. Dairy Sci. 2017, 100, 9966–9986. [Google Scholar] [CrossRef] [Green Version]
No. | Fermentation Time (h) | Viable Cell Counts (×107 CFU/mL) | ||||
---|---|---|---|---|---|---|
0 h | 2 h | 4 h | 6 h | 8 | ||
A1 | 6.5 | 0.55 ± 0.02 a | 0.53 ± 0.01 e | 0.68 ± 0.09 d | 3.14 ± 0.04 c | 5.73 ± 0.01 a |
A2 | 7.2 | 0.59 ± 0.05 a | 0.65 ± 0.03 d | 0.86 ± 0.03 cb | 3.23 ± 0.35 c | 5.75 ± 0.05 a |
A3 | 7.5 | 0.70 ± 0.06 a | 0.96 ± 0.02 a | 1.09 ± 0.13 a | 3.85 ± 0.13 b | 5.68 ± 0.55 a |
A4 | 8.0 | 0.65 ± 0.35 a | 0.71 ± 0.01 cd | 0.81 ± 0.04 cd | 1.69 ± 0.16 d | 5.69 ± 0.76 a |
A5 | 7.4 | 0.68 ± 0.05 a | 0.82 ± 0.03 b | 0.9 ± 0.07 cb | 4.38 ± 0.16 a | 5.59 ± 0.55 a |
JD | 7.2 | 0.64 ± 0.32 a | 0.72 ± 0.07 c | 0.96 ± 0.02 ab | 3.76 ± 0.15 b | 5.70 ± 0.08 a |
Time (h) | Viscosity (mPa·s) | Water Holding Capacity (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | JD | A1 | A2 | A3 | A4 | A5 | JD | |
0 | 175 ± 13 c | 225 ± 1 a | 210 ± 1 b | 212 ± 1 b | 140 ± 1 d | 180 ± 5 c | 21 ± 0.5 b | 28 ± 3.5 a | 15 ± 0 c | 14 ± 1.5 c | 17 ± 2.5 c | 15 ± 0.5 c |
2 | 220 ± 2 b | 320 ± 3 a | 310 ± 8 a | 315 ± 6 a | 160 ± 24 c | 330 ± 3 a | 34 ± 0 a | 30 ± 2.5 a | 22 ± 1 b | 19 ± 4.5 b | 22 ± 0.5 b | 20 ± 3 b |
4 | 340 ± 12 c | 420 ± 2 b | 440 ± 3 d | 300 ± 1 d | 335 ± 16 c | 470 ± 3 a | 47 ± 0.5 a | 45 ± 5 a | 47 ± 2.5 a | 36 ± 2.5 b | 25 ± 0.25 d | 30 ± 0.5 c |
6 | 470 ± 28 c | 510 ± 7 b | 495 ± 10 a | 370 ± 1 d | 470 ± 13 c | 525 ± 1 b | 48 ± 2.5 a | 48 ± 2.5 a | 44 ± 0.5 b | 42 ± 3 b | 45 ± 1 ab | 42 ± 0.5 b |
8 | 580 ± 3 b | 590 ± 3 a | 615 ± 1 d | 560 ± 2 d | 580 ± 3 c | 590 ± 4 b | 49 ± 0.5 c | 49 ± 0.5 b | 57 ± 0.5 a | 43 ± 1 d | 46 ± 0.5 c | 47 ± 0.2 b |
No. | Colour | Taste and Flavour | Texture | Total Score |
---|---|---|---|---|
A1 | 8.00 ± 0.75 a | 29.44 ± 1.47 c | 35.75 ± 1.46 c | 72.34 ± 2.42 d |
A2 | 8.59 ± 0.54 a | 32.56 ± 1.32 b | 35.65 ± 1.25 c | 75.41 ± 2.22 c |
A3 | 8.74 ± 0.60 a | 34.56 ± 1.25 ab | 44.32 ± 1.59 a | 89.80 ± 1.76 a |
A4 | 8.63 ± 0.71 a | 34.12 ± 1.11 ab | 40.24 ± 1.68 b | 82.80 ± 1.89 b |
A5 | 8.60 ± 0.57 a | 33.75 ± 1.65 ab | 37.38 ± 1.82 c | 77.38 ± 1.80 c |
JD | 8.92 ± 0.84 a | 35.79 ± 1.49 a | 42.31 ± 1.64 ab | 90.19 ± 1.76 a |
No. | Volatile Compound | Odour Threshold (µg/L) | OAV | References | |||||
---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | JD | ||||
1 | Acetaldehyde | 8.7 | 0.68 | - | 0.32 | 2.57 | - | - | Ning et al., 2011 [42] |
2 | Benzaldehyde | 24 | 0.10 | 0.03 | 0.005 | 0.05 | 0.05 | 0.01 | Liu et al., 2014 [43] |
3 | 3-Methyl-butanal | 5.4 | 0.18 | - | - | 0.18 | 0.19 | - | Qian et al., 2003 [44] |
4 | Decanal | 3 | - | 0.09 | 0.05 | 0.40 | 0.24 | 0.03 | Curioni et al., 2002 [45] |
5 | Nonanal | 1 | 0.21 | 0.49 | 0.25 | 2.02 | 1.22 | 0.19 | Gemert, 2003 [46] |
6 | 2,3-Butanedione | 10 | - | 0.47 | 0.24 | - | - | 0.12 | Qian et al., 2003 [44] |
7 | 2-Nonanone | 5 | 1.99 | 0.60 | 0.93 | 1.93 | 1.73 | 0.47 | Curioni et al., 2002 [45] |
8 | Acetoin | 55 | 0.08 | 0.30 | 0.05 | 0.39 | 0.14 | 0.08 | Qian et al., 2003 [44] |
9 | 1-Nonanol | 45.5 | - | - | - | 0.07 | 0.04 | 0.001 | Curioni et al., 2002 [45] |
10 | Formic acid ethenyl ester | 9 | - | - | 1.41 | - | - | - | Gemert, 2003 [46] |
No. | Different Proportional Combinations |
---|---|
A1 | 1:1 |
A2 | 1:10 |
A3 | 1:100 |
A4 | 1:1000 |
A5 | 1:2000 |
JD | A commercial yogurt starter culture supplied by Chr-Hansen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dan, T.; Hu, H.; Tian, J.; He, B.; Tai, J.; He, Y. Influence of Different Ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Yogurt. Molecules 2023, 28, 2123. https://doi.org/10.3390/molecules28052123
Dan T, Hu H, Tian J, He B, Tai J, He Y. Influence of Different Ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Yogurt. Molecules. 2023; 28(5):2123. https://doi.org/10.3390/molecules28052123
Chicago/Turabian StyleDan, Tong, Haimin Hu, Jiale Tian, Binbin He, Jiahui Tai, and Yanyan He. 2023. "Influence of Different Ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Yogurt" Molecules 28, no. 5: 2123. https://doi.org/10.3390/molecules28052123
APA StyleDan, T., Hu, H., Tian, J., He, B., Tai, J., & He, Y. (2023). Influence of Different Ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Yogurt. Molecules, 28(5), 2123. https://doi.org/10.3390/molecules28052123