LC-MS/MS Application in Pharmacotoxicological Field: Current State and New Applications
Abstract
:1. Introduction
2. Drugs
3. Illicit Drugs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACN | Acetonitrile |
ADME | Absorption, Distribution, Metabolism, and Excretion |
BDZ | Benzodiazepines |
CNS | Central Nervous System |
DBS | Dry Blood Spot |
EMCDDA | European Monitoring Centre for Drug and Drug Addiction |
ESI | Electrospray Ionization |
FPSE | Fabric Phase Sorptive Extraction |
GAC | Green Analytical Chemistry |
GC-MS | Gas-Chromatography Mass Spectrometry |
HRMS | High-Resolution Mass Spectrometry |
LC-MS/MS | Liquid Chromatography tandem mass spectrometry |
LLE | Liquid–Liquid Extraction |
LOQ | Limits of quantification |
MALDI | Matrix-Assisted Laser Desorption Ionization |
MeOH | Methanol |
MRM | Multiple Reaction Monitoring |
MS | Mass Spectrometer |
NPS | New Psychoactive Substances |
OF | Oral Fluids |
PD | Pharmacodynamics |
PK | Pharmacokinetics |
PP | Protein Precipitation |
QuEChERS | Quick, Easy, Cheap, Effective, Rugged, and Safe |
TDM | Therapeutic Drug Monitoring |
TOF | Time-of-Flight |
TQD | Triple Quadrupole Tandem Mass Spectrometer |
References
- Campelo, J.D.M.; Rodrigues, T.B.; Costa, J.L.; Santos, J.M. Optimization of QuEChERS extraction for detection and quantification of 20 antidepressants in postmortem blood samples by LC-MS/MS. Forensic Sci. Int. 2021, 319, 110660. [Google Scholar] [CrossRef] [PubMed]
- Beccaria, M.; Cabooter, D. Current developments in LC-MS for pharmaceutical analysis. Analysis 2020, 145, 1129–1157. [Google Scholar] [CrossRef] [PubMed]
- Merone, G.M.; Tartaglia, A.; Rossi, S.; Santavenere, F.; Bassotti, E.; D’Ovidio, C.; Bonelli, M.; Rosato, E.; De Grazia, U.; Locatelli, M.; et al. Fast Quantitative LC-MS/MS Determination of Illicit Substances in Solid and Liquid Unknown Seized Samples. Anal. Chem. 2021, 93, 16308–16313. [Google Scholar] [CrossRef] [PubMed]
- Seger, C.; Salzmann, L. After another decade: LC-MS/MS became routine in clinical diagnostics. Clin. Biochem. 2020, 82, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Rubicondo, J.; Scuffi, L.; Pietrosemoli, L.; Mineo, M.; Terranova, F.; Bartucca, M.; Trignano, C.; Bertol, E.; Vaiano, F. A New Multi-analyte LC–MS-MS Screening Method for the Detection of 120 NPSs and 49 Drugs in Hair. JAT 2022, 46, e262–e273. [Google Scholar] [CrossRef]
- Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.R.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol. 2021, 77, 441–464. [Google Scholar] [CrossRef]
- Llopis, B.; Robidou, P.; Tissot, N.; Pinna, B.; Gougis, P.; Aubart, F.C.; Campedel, L.; Abbar, B.; Weil, D.R.; Uzunov, M.; et al. Development and clinical validation of a simple and fast UPLC-ESI-MS/MS method for simultaneous quantification of nine kinase inhibitors and two antiandrogen drugs in human plasma: Interest for their therapeutic drug monitoring. J. Pharm. Biomed. Anal. 2021, 197, 113968. [Google Scholar] [CrossRef]
- Ferrari, D.; Ripa, M.; Premaschi, S.; Banfi, G.; Castagna, A.; Locatelli, M. LC-MS/MS method for simultaneous determination of linezolid, meropenem, piperacillin and teicoplanin in human plasma samples. J. Pharm. Biomed. Anal. 2019, 169, 11–18. [Google Scholar] [CrossRef]
- Mazaraki, K.; Kabir, A.; Furton, K.G.; Fytianos, K.; Samanidou, V.F.; Zacharis, C.K. Fast fabric phase sorptive extraction of selected -blockers from human serum and urine followed by UHPLC-ESI-MS/MS analysis. J. Pharm. Biomed. Anal. 2021, 199, 114053. [Google Scholar] [CrossRef]
- Mathis, D.; Beese, K.; Ruegg, C.; Plecko, B.; Hersberger, M. LC-MS/MS Method for the Differential Diagnosis of Treatable Early Onset Inherited Metabolic Epilepsies. J. Inherit. Metab. 2020, 43, 1102–1111. [Google Scholar] [CrossRef]
- Mbughuni, M.M.; Jannetto, P.J.; Langman, L.J. Mass spectrometry applications for toxicology. EJIFCC 2016, 27, 272–287. [Google Scholar] [PubMed]
- Puzyrenko, A.; Wang, D.; Schneider, R.; Wallace, G.; Schreiber, S.; Brandt, K.; Gunsolus, I.L. Urine Drug Screening in the Era of Designer Benzodiazepines: Comparison of Three Immunoassay Platforms, LC–QTOF-MS and LC–MS-MS. JAT 2021, 46, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Merone, G.M.; Tartaglia, A.; Rossi, S.; Santavenere, F.; Bassotti, E.; D’Ovidio, C.; Rosato, E.; de Grazia, U.; Locatelli, M.; Del Boccio, P.; et al. Fast LC–MS/MS screening method for the evaluation of drugs, illicit drugs, and other compounds in biological matrices. Talanta Open 2022, 5, 100105. [Google Scholar] [CrossRef]
- Methling, M.; Krumbiegel, F.; Alameri, A.; Hartwig, S.; Parr, M.K.; Tsokos, M. Concentrations of Antidepressants, Antipsychotics, and Benzodiazepines in Hair Samples from Postmortem Cases. SN Compr. Clin. Med. 2020, 2, 284–300. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.-J.; Wang, L.-Y.; Tan, Z.-R.; Zhou, H.-H.; Zhan, X.; Yin, J.-Y. Mass spectrometry-based personalized drug therapy. Mass Spectrom. Rev. 2020, 39, 523–552. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Xu, A.; Nasser, A.F.; Heidbreder, C. Simultaneous determination of buprenorphine, norbuprenorphine and naloxone in human plasma by liquid chromatography/tandem mass spectrometry. J. Pharm. Biomed. Anal. 2016, 120, 142–152. [Google Scholar] [CrossRef]
- Da, S.A.; Raasch, J.R.; Vargas, T.G.; Peteffi, G.P.; Hahn, R.Z.; Antunes, M.V.; Perassolo, M.S.; Linden, R. Simultaneous determination of fluoxetine and norfluoxetine in dried blood spots using high performance liquid chromatography-tandem mass spectrometry. Clin. Biochem. 2018, 52, 85–93. [Google Scholar]
- Linder, C.; Wide, K.; Walander, M.; Beck, O.; Gustafsson, L.L.; Pohanka, A. Comparison between dried blood spot and plasma sampling for therapeutic drug monitoring of an-tiepileptic drugs in children with epilepsy: A step towards home sampling. Clin. Biochem. 2017, 50, 418–424. [Google Scholar] [CrossRef]
- Linder, C.; Andersson, M.; Wide, K.; Beck, O.; Pohanka, A. a LC-MS/MS method for therapeutic drug monitoring of carbamazepine, lamotrigine and valproic acid in DBS. Bioanalysis 2015, 7, 2031–2039. [Google Scholar] [CrossRef]
- Bassotti, E.; Merone, G.M.; D’Urso, A.; Savini, F.; Locatelli, M.; Tartaglia, A.; Dossetto, P.; D’Ovidio, C.; de Grazia;, U. A new LC-MS/MS confirmation method for the determination of 17 drugs of abuse in oral fluid and its application to real samples. Forensic Sci. Int. 2020, 312, 110330. [Google Scholar] [CrossRef]
- Italian Department of Anti-Drug Policies, P. of the C. of M. Annual Report on Addictions. 2021. Available online: https://www.politicheantidroga.gov.it/media/3076/rap2021pdf.pdf (accessed on 14 February 2023).
- Vaiano, F.; Bertol, E.; Mineo, M.; Pietrosemoli, L.; Rubicondo, J.; Supuran, C.T.; Carta, F. Development of a New LC-MS/MS Screening Method for Detection of 120 NPS and 43 Drugs in Blood. Separations 2021, 8, 211–229. [Google Scholar] [CrossRef]
- Lau, T.; Concheiro, M.; Cooper, G. Determination of 30 synthetic cathinones in Postemortem blood using LC-MS-MS. J. Anal. Toxicol. 2020, 44, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Ferrari Junior, E.; Caldas, E.D. Determination of new psychoactive substances and other drugs in postmortem blood and urine by UHPLC–MS/MS: Method validation and analysis of forensic samples. Forensic Toxicol. 2021, 40, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Kahl, K.W.; Seither, J.Z.; Reidy, L.J. LC-MS/MS vs ELISA: Validation of a comprehensive urine toxicology screen by LC-MS/MS and a comparison of 100 forensic specimens. J. Anal. Toxicol. 2019, 43, 734–745. [Google Scholar] [CrossRef]
- Broecker, S.; Herre, S.; Pragst, F. General unknown screening in hair by liquid chromatography–hybrid quadrupole time-of-flight mass spectrometry (LC–QTOF-MS). Forensic Sci. Int. 2012, 218, 68–81. [Google Scholar] [CrossRef]
- Baumgartner, M.R.; Guglielmello, R.; Fanger, M.; Kraemer, T. Analysis of drug of abuse in hair: Evaluation of the immunochemical method VMA-T vs. LC-MS/MS or GC/MS. Forensic Sci. Int. 2012, 215, 56–59. [Google Scholar] [CrossRef]
- Hansen, S.L.; Nielsen, M.K.K.; Linnet, K.; Rasmussen, B.S. Simple implementation of muscle tissue into routine workflow of blood analysis in forensic cases—A validated method for quantification of 29 drugs in postmortem blood and muscle samples by UHPLC–MS/MS. Forensic Sci. Int. 2021, 325, 110901. [Google Scholar] [CrossRef]
- Orfanidis, A.; Gika, H.; Mastrogianni, O.; Krokos, A.; Theodoridis, G.; Zaggelidou, E.; Raikos, N. Determination of drugs of abuse and pharmaceuticals in skeletal tissue by UHPLC–MS/MS. Forensic Sci. Int. 2018, 290, 137–145. [Google Scholar] [CrossRef]
- Orfanidis, A.; Gika, H.G.; Theodoridis, G.; Mastrogianni, O.; Raikos, N. A UHPLC MS-MS Method for the Determination of 84 Drugs of Abuse and Pharmaceuticals in Blood. JAT 2021, 45, 28–43. [Google Scholar] [CrossRef]
- Orfanidis, A.; Gika, H.G.; Theodoridis, G.; Mastrogianni, O.; Raikos, N. Development of a UHPLC-MS/MS method for the determination of 84 pharmaceuticals and drugs of abuse in human liver. J. Chromatogr. B 2020, 1151, 122192. [Google Scholar] [CrossRef]
- Greco, V.; Giuffrida, A.; Locatelli, M.; Savini, F.; de Grazia, U.; Ciriolo, L.; Perrucci, M.; Kabir, A.; Ulusoy, H.I.; D’Ovidio, C.; et al. Emerging Trends in Pharmacotoxicological and Forensic Sample Treatment Procedures. Appl. Sci. 2023, 13, 2836. [Google Scholar] [CrossRef]
- Mannocchi, G.; Di Trana, A.; Tini, A.; Zaami, S.; Gottardi, M.; Pichini, S.; Busardò, F.P. Development and validation of fast UHPLC-MS/MS screening method for 87 NPS and other 32 drugs of abuse in hair and nails: Application to real cases. ABC 2020, 412, 5125–5145. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, J.; Huang, X.; Shi, H.; Xiong, C.; Nie, Z. Direct identification of forensic body fluids by MALDI-MS. Analyst 2019, 144, 7017–7023. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, H.; Minakata, K.; Yamagishi, I.; Hasegawa, K.; Wurita, A.; Gonmori, K.; Suzuki, O.; Watanabe, K. MALDI-TOF mass spectrometric determination of eight benzodiazepines with two of their metabolites in blood. Leg. Med. 2015, 17, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Minakata, K.; Yamagishi, I.; Nozawa, H.; Hasegawa, K.; Wurita, A.; Gonmori, K.; Suzuki, M.; Watanabe, K.; Suzuki, O. MALDI-TOF mass spectrometric determination of four pyrrolidino cathinones in human blood. Forensic Toxicol. 2014, 32, 169–175. [Google Scholar] [CrossRef] [Green Version]
n. of Analytes | Type of Matrix | Column | Source | Mass Analyzer | Mass Spectrometry Technique | Ref. |
---|---|---|---|---|---|---|
9 kinase inhibitors 2 metabolites 2 antiandrogens | Human Plasma | Acquity UPLC® T3 HSS C18 analytical column 2.1 × 100 mm 1.8 μm particle size | ESI+ | TQD | MRM | [7] |
4 antibiotics | Human Plasma | C18 column MassTox TDM Series A basic kit | ESI+ | QTrap 5500 MS | MRM | [8] |
6 beta blockers | Human serum Human urine | Acquity UPLC C18 BEH 100 × 2.1 mm, 1.7 μm | ESI | TQD MS/MS | MRM | [9] |
12 metabolites | Human plasma Human urine | Supelco Discovery HS F5 HPLC column | ESI+ | 5500 Triple Quad MS | MRM | [10] |
739 compound licit and illicit | Human blood Post mortem human blood Human urine | Restek Allure PFPP 5 µm, 60 Å, 50 × 2.1 mm | ESI | 4500 QTrap Plus | MRM | [13] |
52 compound BDZ Tricyclic/tetracyclic antidepressant, selective serotonin inhibitors, and others typical and atypical neuroleptics | Human hair | C18 column 150 × 2.1 mm i.d., 1.7 μm, Phenomenex | ESI+ | 6460 Triple Quad MS | Dynamic MRM | [14] |
20 antidepressants | Post mortem human blood | Atlantis T3 150 × 3.0 mm i.d., 3.0 μm | ESI+ | Triple Quad MS | MRM | [1] |
Buprenorphine Norbuprenorphine Naloxone | Human plasma | Unison UK-C18 2.0 × 50 mm; 3 µm | ESI+ | 5500 Triple-Quad MS | MRM | [16] |
Fluoxetine Norfluoxetine | Dried blood spot | Accucore C18 100 × 2.1 mm p.d. 2.6 µm | ESI+ | Triple Quad MS | MRM | [17] |
Carbamazepine Lamotrigine Valproic acid | Dried blood spot | Acquity BEH C18 2.1 × 100 mm 1.7 µm | ESI+ | Triple Quad MS | MRM | [18,19] |
n. of Analytes | Type of Matrix | Column | Source | Mass Analyzer | Mass Spectrometry Technique | Ref. |
---|---|---|---|---|---|---|
17 drugs of abuse | Oral fluid | Hypersil PFP Gold column 50 × 2.1 mm 1.9 μm particle size | ESI+ | Triple Quad MS | MRM | [20] |
739 compounds both licit and illicit | Human blood Post mortem human blood Human urine | Restek Allure PFPP 5 µm, 60 Å, 50 × 2.1 mm | ESI | QTrap | MRM | [13] |
120 NPSs 43 drugs | Human blood | Zorbax Eclipse Plus C18 2.1 × 100 mm, 1.8 µm, Agilent Technologies | ESI+ | Triple Quad MS | MRM | [22] |
120 NPSs and 49 drugs | Human hair | Zorbax Eclipse Plus C18 column 2.1 × 100 mm, 1.8 µm; Agilent Technologies | ESI+ | Triple Quad MS | MRM | [5] |
30 cathinones | Post mortem human blood | Poroshell 120EC-C18 column 2.1 mm × 100 mm × 2.7 μm | Jet stream-electrospray ionization+ | Triple Quad MS | MRM | [23] |
23 prescription drug 13 synthetic cathinones 11 phenethylamines 8 synthetic cannabinoids 7 amphetamines other 17 psychoactive substances | Post mortem human blood Post mortem human urine | Acquity UHPLC BEH C18-column 2.1 mm i.d. × 100 mm 1.7 µm particle size | ESI | Tandem Quad MS | MRM | [24] |
30 drugs of abuse | Human hair | Zorbax Eclipse plus C18 2.1 mm × 100 mm 3.5 μm | ESI+ | QTOF | [26] | |
29 drugs and metabolites | Post mortem human blood Post mortem human muscle | ACQUITY UPLC® BEH C18 1.7 µm 2.1 × 50 mm | ESI+ | Triple Quad Tandem MS | MRM | [28] |
27 drugs, licit and illicit | Human skeletal tissue | Acquity BEH C18 column 150 × 2.1 mm i.d. 1.7 μm | ESI+/− | TQD | MRM | [29] |
84 drugs of abuse and pharmaceuticals | Post mortem blood | Acquity BEH C18 column 150 × 2.1 mm i.d. 1.7 μm | ESI+/− | TQD | MRM | [30] |
84 pharmaceuticals and drugs of abuse | Post mortem human liver | Acquity BEH C18 column 150 × 2.1 mm i.d. 1.7 μm | ESI+/− | TQD | MRM | [31] |
87 NPS other 32 drugs of abuse | Post mortem human hair Post mortem human nails | Oasis HBL 5 µm 4.6 × 20 mm | ESI+ | Triple Quad MS | MRM | [33] |
88 drugs and illicit drugs | Human urine | Agilent Poroshell 120 EC-C18 3.0 × 5 mm 2.7 µm | ESI+ | TripleQuad MS | Dynamic MRM | [25] |
14 drugs and illicit drugs | Human hair | Synergi 4 µm POLAR-RP 80A 150 × 2.0 mm | ESI | QTrap 3200 | MRM | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ovidio, C.; Locatelli, M.; Perrucci, M.; Ciriolo, L.; Furton, K.G.; Gazioglu, I.; Kabir, A.; Merone, G.M.; de Grazia, U.; Ali, I.; et al. LC-MS/MS Application in Pharmacotoxicological Field: Current State and New Applications. Molecules 2023, 28, 2127. https://doi.org/10.3390/molecules28052127
D’Ovidio C, Locatelli M, Perrucci M, Ciriolo L, Furton KG, Gazioglu I, Kabir A, Merone GM, de Grazia U, Ali I, et al. LC-MS/MS Application in Pharmacotoxicological Field: Current State and New Applications. Molecules. 2023; 28(5):2127. https://doi.org/10.3390/molecules28052127
Chicago/Turabian StyleD’Ovidio, Cristian, Marcello Locatelli, Miryam Perrucci, Luigi Ciriolo, Kenneth G. Furton, Isil Gazioglu, Abuzar Kabir, Giuseppe Maria Merone, Ugo de Grazia, Imran Ali, and et al. 2023. "LC-MS/MS Application in Pharmacotoxicological Field: Current State and New Applications" Molecules 28, no. 5: 2127. https://doi.org/10.3390/molecules28052127
APA StyleD’Ovidio, C., Locatelli, M., Perrucci, M., Ciriolo, L., Furton, K. G., Gazioglu, I., Kabir, A., Merone, G. M., de Grazia, U., Ali, I., Catena, A. M., Treglia, M., Marsella, L. T., & Savini, F. (2023). LC-MS/MS Application in Pharmacotoxicological Field: Current State and New Applications. Molecules, 28(5), 2127. https://doi.org/10.3390/molecules28052127