GC-MS Analysis of the Essential Oil from Seseli mairei H. Wolff (Apiaceae) Roots and Their Nematicidal Activity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material and EO Extraction
3.2. Nematodes
3.3. Nematicidal Activity
3.4. EO Isolation and Fractionation
3.5. GC-MS Analysis
3.6. Data Analysis
Appendix
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mokrini, F.; Janati, S.; Houari, A.; Essarioui, A.; Bouharroud, R.; Mimouni, A. Management of plant parasitic nematodes by means of organic amendments: A review. Rev. Maroc. Sci. Agron. Vét. 2018, 6, 337–344. [Google Scholar]
- Hong, L.J.; Li, G.H.; Zhou, W.; Wang, X.B.; Zhang, K.Q. Screening and isolation of a nematicidal sesquiterpene from Magnolia grandiflora L. Pest Manag. Sci. 2007, 63, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y. The history, dispersal and potential threat of pine wood nematode in China. J. Nanjing For. Univ. 2011, 35, 144–145. [Google Scholar]
- Andres, M.F.; Gonzalez-Coloma, A.; Sanz, J.; Burillo, J.; Sainz, P. Nematicidal activity of essential oils: A review. Phytochem. Rev. 2012, 11, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Chitwood, D.J. Phytochemical based strategies for nematode control. Ann. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.M.; Kim, J.; Kim, E.; Park, H.M.; Kim, Y.J.; Park, I.K. Structure-activity relationship of aliphatic compounds for nematicidal activity against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem. 2010, 58, 1823–1827. [Google Scholar] [CrossRef]
- Park, I.K.; Kim, J.; Lee, S.G.; Shin, S.C. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Nematol. 2007, 39, 275–279. [Google Scholar]
- Barbosa, P.; Lima, A.S.; Vieira, P.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Nematicidal activity of essential oils and volatiles derived from Portuguese aromatic flora against the pinewood nematode, Bursaphelenchus xylophilus. J. Nematol. 2010, 42, 8–16. [Google Scholar]
- Kang, J.S.; Kim, E.; Lee, S.H.; Park, I.K. Inhibition of acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus, by phytochemicals from plant essential oils. Pestic. Biochem. Physiol. 2013, 105, 50–56. [Google Scholar] [CrossRef]
- Liu, X.C.; Lai, D.; Liu, Q.Z.; Zhou, L.; Liu, Q.; Liu, Z.L. Bioactivities of a new pyrrolidine alkaloid from the root barks of Orixa japonica. Molecules 2016, 21, 1665. [Google Scholar] [CrossRef] [Green Version]
- Tarraf, W.; Laquale, S.; Mastro, G.D.; D’Addabbo, T. The potential of Citrullus colocynthis oil as a biocide against phytoparasitic nematodes. Crop Prot. 2019, 124, 104843. [Google Scholar] [CrossRef]
- Mota, M. Phytochemicals as biopesticides against the pinewood nematode Bursaphelenchus xylophilus: A review on essential oils and their volatiles. Plants 2021, 10, 2614. [Google Scholar]
- Editorial Committee of Flora Reipublicae Popularis Sinicae. Flora of China; Science Press: Beijing, China; Vol. 14, p. 125.
- Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200015919 (accessed on 13 April 2005.).
- Jiangsu New Medical College. Dictionary of Chinese Herbal Medicine, Shanghai Science & Technology; Press: Shanghai, China, 1977; p. 909. [Google Scholar]
- Zong, Y.L.; Lin, Y.P.; Ding, Q.G.; He, H.; Rao, G.X. Studies on the chemical constituents of the aerial parts of Seseli mairei. J. Chin. Med. Mater. 2007, 30, 42–44. [Google Scholar]
- Hu, C.Q.; Chang, J.J.; Lee, K.H. Antitumor agents, 115. Seselidiol, a new cytotoxic polyacetylene from Seseli mairei. J. Nat. Prod. 1990, 53, 932–935. [Google Scholar] [CrossRef]
- Hu, C.Q.; Lee, K.H. Coumarins from the roots of Seseli mairei and inhibition of DNA topoisomerase II activity. Nat. Prod. Res. Devel. 1992, 4, 6–10. [Google Scholar]
- Sakuma, M. Probit analysis of preference data. Appl. Entomol. Zool. 1998, 33, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.J.; Wang, C.Q.; Li, X.D.; Wang, Z.B.; Zhu, Y.C. Chemical composition as analyzed by GC-MC and antibacterial activity of volatile oil from stems and leaves of Seseli seseloides Hiroe. Food Sci. 2011, 32, 200–203. [Google Scholar]
- Marcetic, M.D.; Surucic, R.V.; Kovacevic, N.N.; Lakusic, D.V.; Lakusic, B.S. Essential oil composition of different parts of endemic species Seseli gracile Waldst. & Kit. (Apiaceae) from natural and cultivated conditions. J. Serb. Chem. Soc. 2017, 82, 1–14. [Google Scholar]
- Kurkcuoglu, M.; Tabanca, N.; Ali, A.; Khan, I.A.; Duran, A.; Baser, K.H.C. Chemical composition of a new taxon, Seseli gummiferum subsp. ilgazense, and its larvicidal activity against Aedes aegypti. Rec. Nat. Prod. 2018, 12, 184–189. [Google Scholar] [CrossRef]
- Todorova, M.; Trendafilova, A.; Dimitrov, D. Essential oil composition of Seseli rigidum Waldst. from Bulgaria. CHIMIE 2013, 66, 991–996. [Google Scholar] [CrossRef]
- Jovanovic, V.S.; Simonovic, S.; Ilic, M.; Markovic, M.; Mitic, V.; Djordjevic, A.; Nikolic-Mandic, S. Chemical composition, antimicrobial and antioxidant activities of Seseli pallasii Besser. (syn Seseli varium Trev.) essential oils. Rec. Nat. Prod. 2016, 10, 277–286. [Google Scholar]
- Viglierchio, D.R.; Schmitt, R.V. On the methodology of nematode extraction from field samples: Baermann funnel modifications. J. Nematol. 1983, 15, 438–444. [Google Scholar] [PubMed]
- Faria, J.M.S.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus xylophilus: Nematotoxics from essential oils, essential oils fractions and decoction waters. Phytochemistry 2013, 94, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Lai, D.; Liu, Q.Z.; Zhou, L.; Liu, Z.L. Identification of nematicidal constituents of Notopterygium incisum rhizomes against Bursaphelenchus xylophilus and Meloidogyne incognita. Molecules 2016, 21, 1276. [Google Scholar] [CrossRef] [Green Version]
- Czyzewska, M.M.; Chrobok, L.; Kania, A.; Jatczak, M.; Pollastro, F.; Appendino, G.; Mozrzymas, J.W. Dietary acetylenic oxylipin falcarinol differentially modulates GABAA receptors. J. Nat. Prod. 2014, 77, 2671–2677. [Google Scholar] [CrossRef]
- Kang, J.S.; Moon, Y.S.; Lee, S.H.; Park, I.K. Inhibition of acetylcholinesterase and glutathione S-transferase of the pinewood nematode (Bursaphelenchus xylophilus) by aliphatic compounds. Pestic. Biochem. Physiol. 2013, 105, 184–188. [Google Scholar] [CrossRef]
- Kim, J.; Seo, S.M.; Lee, S.G.; Shin, S.C.; Park, I.K. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential Oils against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem. 2008, 56, 7316–7320. [Google Scholar] [CrossRef]
- Baba, K.; Yoneda, Y.; Kozawa, M.; Fujita, E.; Wang, N.H.; Yuan, C.Q. Studies on Chinese traditional medicine "Fang-Feng". (II). Comparison of several Fang-Feng by coumarins, chromones and polyacetylenes. J. Pharm. Soc. Jpn. 1989, 43, 216–221. [Google Scholar]
- Caboni, P.; Ntalli, N.G.; Aissani, N.; Cavoski, I.; Angioni, A. Nematicidal activity of (E, E)-2, 4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. J. Agric. Food Chem. 2012, 60, 1146–1151. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Compounds by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2009. [Google Scholar]
- Tkachev, A.V. Analysis of Plant Volatile Compounds; Ofset Publ. Company: Novosibirsk, Russia, 2008. [Google Scholar]
Peak | Compounds | RI * | Percentage (%) |
---|---|---|---|
Monoterpenoids | 27.50 | ||
1 | α-Pinene | 939 | 0.78 |
2 | Camphene | 954 | 1.53 |
3 | Sabinene | 975 | 2.87 |
4 | β-Pinene | 981 | 1.49 |
5 | β-Myrcene | 991 | 3.37 |
6 | α-Phellandrene | 1005 | 1.08 |
7 | δ-3-Carene | 1008 | 0.44 |
8 | Limonene | 1029 | 2.09 |
9 | β-Phellandrene | 1030 | 2.37 |
10 | 1,8-Cineole | 1033 | 0.95 |
11 | (E)-β-Ocimene | 1048 | 1.35 |
12 | γ-Terpinene | 1057 | 2.05 |
13 | Fenchone | 1088 | 0.79 |
14 | Linalool | 1097 | 0.15 |
15 | Camphor | 1143 | 0.38 |
16 | Borneol | 1174 | 1.21 |
17 | Terpineol-4-ol | 1179 | 0.80 |
18 | α-Terpineol | 1191 | 3.16 |
19 | Bornyl acetate | 1287 | 0.64 |
Sesquiterpenoids | 23.73 | ||
20 | δ-Elemene | 1335 | 1.75 |
21 | β-Cubebene | 1387 | 0.65 |
22 | β-Caryophyllene | 1420 | 6.64 |
23 | (Z)-β-Farnesene | 1438 | 0.69 |
24 | γ-Selinene | 1475 | 0.61 |
25 | Germacrene D | 1485 | 4.28 |
26 | β-Bisabolene | 1506 | 0.59 |
27 | Cuparene | 1511 | 3.52 |
28 | Spathulenol | 1578 | 1.31 |
29 | Caryophyllene oxide | 1584 | 3.69 |
Phenylpropanoids | 3.14 | ||
30 | Eugenol | 1351 | 0.78 |
31 | Methyleugenol | 1403 | 1.41 |
32 | Elemicin | 1558 | 0.95 |
Others | 43.47 | ||
33 | Hexanoic acid | 987 | 0.87 |
34 | Octanoic acid | 1172 | 10.49 |
35 | (E)-2-Decenal | 1265 | 6.17 |
36 | Senkyunolide | 1729 | 0.69 |
37 | Falcarinol | 2038 | 25.25 |
Total | 97.84 |
Treatments | LC50 (μg/mL) | 95% FL * | Slope ± SE | Chi Square (χ2) |
---|---|---|---|---|
Essential oil | 53.45 | 48.61–57.28 | 2.25 ± 0.21 | 13.08 |
(E)-2-Decenal | 176.34 | 159.89–193.21 | 1.21 ± 0.11 | 8.96 |
Falcarinol | 8.53 | 7.76–9.41 | 1.83 ± 0.17 | 10.32 |
Octanoic acid | 65.56 | 59.44–72.35 | 2.45 ± 0.24 | 7.51 |
Rotenone | 2.32 | 1.96–2.51 | 4.25 ± 0.38 | 6.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Zhang, X.; Liu, X.; Chen, Z.; Tang, H.; Hu, D.; Li, H. GC-MS Analysis of the Essential Oil from Seseli mairei H. Wolff (Apiaceae) Roots and Their Nematicidal Activity. Molecules 2023, 28, 2205. https://doi.org/10.3390/molecules28052205
Shi S, Zhang X, Liu X, Chen Z, Tang H, Hu D, Li H. GC-MS Analysis of the Essential Oil from Seseli mairei H. Wolff (Apiaceae) Roots and Their Nematicidal Activity. Molecules. 2023; 28(5):2205. https://doi.org/10.3390/molecules28052205
Chicago/Turabian StyleShi, Shengli, Xinsha Zhang, Xianbin Liu, Zhen Chen, Hewen Tang, Dongbao Hu, and Hongmei Li. 2023. "GC-MS Analysis of the Essential Oil from Seseli mairei H. Wolff (Apiaceae) Roots and Their Nematicidal Activity" Molecules 28, no. 5: 2205. https://doi.org/10.3390/molecules28052205
APA StyleShi, S., Zhang, X., Liu, X., Chen, Z., Tang, H., Hu, D., & Li, H. (2023). GC-MS Analysis of the Essential Oil from Seseli mairei H. Wolff (Apiaceae) Roots and Their Nematicidal Activity. Molecules, 28(5), 2205. https://doi.org/10.3390/molecules28052205