Machine Learning in Unmanned Systems for Chemical Synthesis
Abstract
:1. Introduction
2. Applications of Machine Learning to Unmanned Chemical Systems
2.1. Categories of Machine Learning Models
Categories | Methods | Applications | Ref. |
---|---|---|---|
Supervised learning | Support vector machine, Multivariate linear regression (MLR), Decision trees, etc. | Reactivity prediction, Chemical reaction classification, Autonomous research system, etc. | [25,26,27,28,29,30,31,32,33,34,35] |
Unsupervised learning | K-means and X-means, Gaussian mixture model, Dirichlet process mixture model | Information extraction, Molecular Simulation | [36,37] |
Reinforcement learning | Temporal difference, Q-learning, Deterministic policy gradient, etc. | Robotic control, Synthetic route plan, etc. | [23,24,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68] |
Advanced learning | Deep learning, etc. | Natural language processing, Property prediction, Catalyst design, etc. | [69,70,71] |
2.2. Chemical Automation
3. Implementation and Applications of Unmanned Chemical Systems
3.1. Information Extraction
3.2. Robotic Control for Unmanned Chemical Systems
3.3. Computer Vision for Unmanned Chemical Systems
3.3.1. Computer Vision for Robotic Manipulation
3.3.2. Object Detection
3.4. Intelligent Scheduling for Unmanned Systems
3.5. Augmentation of Automatic Chemical Systems with Computation-Based Screening
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deming, S.N.; Pardue, H.L. Automated instrumental system for fundamental characterization of chemical reactions. Anal. Chem. 1971, 43, 192–200. [Google Scholar] [CrossRef]
- Legrand, M.; Foucard, A. Automation on the laboratory bench. J. Chem. Educ. 1978, 55, 767. [Google Scholar] [CrossRef]
- Frisbee, A.R.; Nantz, M.H.; Kramer, G.W.; Fuchs, P.L. Laboratory automation. 1: Syntheses via vinyl sulfones. 14. Robotic orchestration of organic reactions: Yield optimization via an automated system with operator-specified reaction sequences. J. Am. Chem. Soc. 1984, 106, 7143–7145. [Google Scholar] [CrossRef]
- Steiner, S.; Wolf, J.; Glatzel, S.; Andreou, A.; Granda, J.M.; Keenan, G.; Hinkley, T.; Aragon-Camarasa, G.; Kitson, P.J.; Angelone, D.; et al. Organic Synthesis in a Modular Robotic System Driven by a Chemical Programming Language. Science 2019, 363, eaav2211. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.; Khan, M.B.; Bashier, E.B.M. Machine Learning: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Das, K.; Behera, R.N. A survey on machine learning: Concept, algorithms and applications. IJIRCCE 2017, 5, 1301–1309. [Google Scholar]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. IJSR 2020, 9, 381–386. [Google Scholar]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Zheng, J.; Shen, F.; Fan, H.; Zhao, J. An online incremental learning support vector machine for large-scale data. Neural. Comput. Appl. 2013, 22, 1023–1035. [Google Scholar] [CrossRef]
- Mitchell, T.; Buchanan, B.; DeJong, G.; Dietterich, T.; Rosenbloom, P.; Waibel, A. Machine learning. Annu. Rev. Comput. Sci. 1990, 4, 417–433. [Google Scholar] [CrossRef]
- Ghosh, C.; Cordeiro, C.; Agrawal, D.P.; Rao, M.B. Markov chain existence and hidden Markov models in spectrum sensing. In Proceedings of the 2009 IEEE International Conference on Pervasive Computing and Communications, Galveston, TX, USA, 9–13 March 2009; pp. 1–6. [Google Scholar]
- Yue, K.; Fang, Q.; Wang, X.; Li, J.; Liu, W. A parallel and incremental approach for data-intensive learning of bayesian networks. IEEE Trans. Cybern. 2015, 45, 2890–2904. [Google Scholar] [CrossRef]
- Hinton, G.; Sejnowski, T.J. Unsupervised Learning: Foundations of Neural Computation; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Safatly, L.; Bkassiny, M.; Al-Husseini, M.; El-Hajj, A. Cognitive radio transceivers: Rf, spectrum sensing, and learning algorithms review. Int. J. Antenn. Propag. 2014, 2014, 548473. [Google Scholar] [CrossRef]
- Bkassiny, M.; Jayaweera, S.K.; Li, Y. Multidimensional dirichlet process-based non-parametric signal classification for autonomous self-learning cognitive radios. IEEE Trans. Wirel. Commun. 2013, 12, 5413–5423. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Bellman, R. Dynamic programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef]
- Tesauro, G.; Galperin, G. On-line policy improvement using montecarlo search. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 2–5 December 1996; Volume 9. [Google Scholar]
- Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.; et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P. Benchmarking deep reinforcement learning for continuous control, in International conference on machine learning. PMLR 2016, 48, 1329–1338. [Google Scholar]
- Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for legged robots. Sci. Robot. 2019, 4, eaau5872. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, T.; Kreisbeck, C.; Becker, J.S.; Aspuru-Guzik, A.; Saikin, S.K. Autonomous molecular design: Then and now. ACS Appl. Mater. 2019, 11, 24825–24836. [Google Scholar] [CrossRef]
- King, R.D.; Rowland, J.; Aubrey, W.; Liakata, M.; Markham, M.; Soldatova, L.N.; Whelan, K.E.; Clare, A.; Young, M.; Sparke, A.; et al. The robot scientist Adam. Computer 2009, 42, 46–54. [Google Scholar] [CrossRef]
- Sparkes, A.; Aubrey, W.; Byrne, E.; Clare, A.; Khan, M.N.; Liakata, M.; Markham, M.; Rowland, J.; Soldatova, L.N.; Whelan, K.E.; et al. Towards robot scientists for autonomous scientific discovery. Autom. Exp. 2010, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, D.E.; Battilocchio, C.; Ley, S.V. A novel internet-based reaction monitoring, control and autonomous self-optimization platform for chemical synthesis. Org. Process. Res. Dev. 2016, 20, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Nikolaev, P.; Hooper, D.; Webber, F.; Rao, R.; Decker, K.; Krein, M.; Poleski, J.; Barto, R.; Maruyama, B. Autonomy in materials research: A case study in carbon nanotube growth. NPJ Comput. Mater. 2016, 2, 16031. [Google Scholar] [CrossRef] [Green Version]
- Granda, J.M.; Donina, L.; Dragone, V.; Long, D.L.; Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 2018, 559, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Ahneman, D.T.; Estrada, J.G.; Lin, S.; Dreher, S.D.; Doyle, A.G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 2018, 360, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Sandfort, F.; Strieth-Kalthoff, F.; Kghnemund, M.; Beecks, C.; Glorius, F. A Structure-Based Platform for Predicting Chemical Reactivity. Chem 2020, 6, 1379–1390. [Google Scholar] [CrossRef]
- Zahrt, A.F.; Henle, J.J.; Rose, B.T.; Wang, Y.; Darrow, W.T.; Denmark, S.E. Prediction of Higher Selectivity Catalysts by Computer Driven Workflow and Machine Learning. Science 2019, 363, eaau5631. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.-Q.; Xu, L.-C.; Hong, X. Predicting Regioselectivity in Radical C-H Functionalization of Heterocycles through Machine Learning. Angew. Chem. Int. Ed. 2020, 59, 13253–13259. [Google Scholar] [CrossRef]
- Zhu, Q.; Gu, Y.; Liang, X.; Wang, X.; Ma, J. A Machine Learning Model To Predict CO2 Reduction Reactivity and Products Transferred from Metal-Zeolites. ACS Catal. 2022, 12, 12336–12348. [Google Scholar] [CrossRef]
- Schwaller, P.; Benjamin, H.; Reymond, J.-L.; Strobelt, H.; Laino, T. Extraction of organic chemistry grammar from unsupervised learning of chemical reaction. Sci. Adv. 2021, 7, eabe4166. [Google Scholar] [CrossRef]
- Glielmo, A.; Husic, B.E.; Rodriguez, A.R.; Clementi, C.; Noé, F.; Laio, A. Unsupervised Learning Methods for Molecular Simulation Data. Chem. Rev. 2021, 121, 9722–9758. [Google Scholar] [CrossRef]
- Amarjyoti, S. Deep reinforcement learning for robotic manipulation-the state of the art. arXiv 2017, arXiv:1701.08878. [Google Scholar]
- Finn, C.; Levine, S. Deep visual foresight for planning robot motion. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 2786–2793. [Google Scholar]
- Song, S.; Zeng, A.; Lee, J.; Funkhouser, T. Grasping in the wild: Learning 6-dof closed-loop grasping from low-cost demonstrations. IEEE Robot. Autom. Lett. 2020, 5, 4978–4985. [Google Scholar] [CrossRef]
- Devin, C.; Abbeel, P.; Darrell, T.; Levine, S. Deep object-centric representations for generalizable robot learning. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 7111–7118. [Google Scholar]
- Haarnoja, T.; Pong, V.; Zhou, A.; Dalal, M.; Abbeel, P.; Levine, S. Composable deep reinforcement learning for robotic manipulation. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 6244–6251. [Google Scholar]
- Schaul, T.; Horgan, D.; Gregor, K.; Silver, D. Universal value function approximators. PMLR 2015, 37, 1312–1320. [Google Scholar]
- Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Daan Wierstra, D. Continuous control with deep reinforcement learning. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016; pp. 1–14. [Google Scholar]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Offpolicy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1861–1870. [Google Scholar]
- Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596. [Google Scholar]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. In Proceedings of the Conference and Workshop on Neural Information Processing System, Long Beach, CA, USA, 4–9 December 2017; pp. 1–12. [Google Scholar]
- Breyer, M.; Furrer, F.; Novkovic, T.; Siegwart, R. Comparing task simplifications to learn closed-loop object picking using deep reinforcement learning. IEEE Robot. Autom. Lett. 2019, 4, 1549–1556. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.Y.; Harada, D.; Russell, S. Policy invariance under reward transformations: Theory and application to reward shaping. Proc. Int. Conf. Mach. Learn. 1999, 99, 278–287. [Google Scholar]
- Wiewiora, E.; Cottrell, G.W.; Elkan, C. Principled methods for advising reinforcement learning agents. In Proceedings of the 20th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2003; pp. 792–799. [Google Scholar]
- Devlin, S.M.; Kudenko, D. Dynamic potential-based reward shaping. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, Valencia, Spain, 4–8 June 2012; pp. 433–440. [Google Scholar]
- Harutyunyan, A.; Devlin, S.; Vrancx, P.; Nowé, A. Expressing arbitrary reward functions as potential-based advice. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29. [Google Scholar]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement learning. arXiv 2015, arXiv:1509.02971. [Google Scholar]
- Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; Zaremba, W. Hindsight experience replay. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Liu, R.; Nageotte, F.; Zanne, P.; Mathelin, M.; Dresp-Langley, B. Deep reinforcement learning for the control of robotic manipulation: A focused mini-review. Robotics 2021, 10, 22. [Google Scholar] [CrossRef]
- Yue, J. Learning Locomotion For Legged Robots Based on Reinforcement Learning: A Survey. In Proceedings of the 2020 International Conference on Electrical Engineering and Control Technologies (CEECT), Melbourne, Australia, 10–13 December 2020; pp. 1–7. [Google Scholar]
- Zeng, F.; Wang, C.; Ge, S.S. A survey on visual navigation for artificial agents with deep reinforcement learning. IEEE Access 2020, 8, 135426–135442. [Google Scholar] [CrossRef]
- Gronauer, S.; Diepold, K. Multi-agent deep reinforcement learning: A survey. Artif. Intell. Rev. 2022, 55, 895–943. [Google Scholar] [CrossRef]
- Schulman, J.; Levine, S.; Jordan, M.; Abbeel, P. Trust region policy optimization. International conference on machine learning. PMLR 2015, 37, 1889–1897. [Google Scholar]
- Tsounis, V.; Alge, M.; Lee, J.; Farshidian, F.; Hutter, M. Deepgait: Planning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robot. Autom. Lett. 2020, 5, 3699–3706. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Tang, K.; Li, P.; Zhang, W.; Wang, X.; Deng, G.; Wang, T.; Chen, C. Deep Reinforcement Learning for Multi-contact Motion Planning of Hexapod Robots. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), Montreal, QC, Canada, 19–27 August 2021; pp. 2381–2388. [Google Scholar] [CrossRef]
- Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, T.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic algorithms and applications. arXiv 2018, arXiv:1812.05905. [Google Scholar]
- Peng, X.B.; Abbeel, P.; Levine, S.; Panne, M. Deepmimic: Example-guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph. TOG 2018, 37, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.B.; Ma, Z.; Abbeel, P.; Levine, S. Amp: Adversarial motion priors for stylized physics-based character control. ACM Trans. Graph. TOG 2021, 40, 1–20. [Google Scholar] [CrossRef]
- Zhao, W.; Queralta, J.P.; Westerlund, T. Sim-to-real transfer in deep reinforcement learning for robotics: A survey. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 737–744. [Google Scholar]
- Belter, D.; Łabęcki, P.; Skrzypczyński, P. Adaptive motion planning for autonomous rough terrain traversal with a walking robot. J. Field Robot. 2016, 33, 337–370. [Google Scholar] [CrossRef]
- Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 2020, 5, eabc5986. [Google Scholar] [CrossRef]
- Segler, M.H.S.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018, 555, 604–610. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Shi, Y.; Chen, H.; Qin, T.; Zhou, X.; Huo, J.; Dong, H.; Yang, X.; Zhu, X.; Chen, X.; et al. Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes. NPJ Comput. Mater. 2021, 7, 142. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, L.; Jia, Q.; Cheng, Z.; Jiang, Y.; Guo, Y.; Ma, J. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning. J. Chem. Inf. Model. 2021, 61, 1066–1082. [Google Scholar] [CrossRef]
- Gu, Y.; Zhu, Q.; Liu, Z.; Fu, C.; Wu, J.; Zhu, Q.; Jia, Q.; Ma, J. Nitrogen Reduction Reaction Energy and Pathway in Metal-zeolites: Deep Learning and Explainable Machine Learning with Local Acidity and Hydrogen Bonding Features. J. Mater. Chem. A 2022, 10, 14976–14988. [Google Scholar] [CrossRef]
- Yu, D.; Deng, L. Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Process. Mag. 2010, 28, 145–154. [Google Scholar] [CrossRef]
- Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-dependent pretrained deep neural networks for large-vocabulary speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2011, 20, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Cires, D.C.; Meier, U.; Gambardella, L.M.; Schmidhuber, J. Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 2010, 22, 3207–3220. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Yates, A. Biased representation learning for domain adaptation. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Republic of Korea, 12–14 July 2012; pp. 1313–1323. [Google Scholar]
- Xiang, E.W.; Cao, B.; Hu, D.H.; Yang, Q. Bridging domains using worldwide knowledge for transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 770–783. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Ling, X.; Dai, W.; Xue, G.-R.; Yang, Q.; Yu, Y. Spectral domain-transfer learning. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 488–496. [Google Scholar]
- Raina, R.; Ng, A.Y.; Koller, D. Constructing informative priors using transfer learning. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 713–720. [Google Scholar]
- Zhang, J. Deep transfer learning via restricted boltzmann machine for document classification. In Proceedings of the 2011 10th International Conference on Machine Learning and Applications and Workshops, Honolulu, HI, USA, 18–21 December 2011; pp. 323–326. [Google Scholar]
- Peteiro-Barral, D.; Guijarro-Berdiñas, B. A survey of methods for distributed machine learning. Prog. Artif. Intell. 2013, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Kulkarni, S.R.; Poor, H.V. Attribute-distributed learning: Models, limits, and algorithms. IEEE Trans. Signal Process. 2010, 59, 386–398. [Google Scholar] [CrossRef]
- Fu, Y.; Li, B.; Zhu, X.; Zhang, C. Active learning without knowing individual instance labels: A pairwise label homogeneity query approach. IEEE Trans. Knowl. Data Eng. 2013, 26, 808–822. [Google Scholar] [CrossRef]
- Pyzer-Knapp, E.O.; Suh, C.; Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Aspuru-Guzik, A. What is high-throughput virtual screening? A perspective from organic materials discovery. What Is High-throughput Virtual Screening? A Perspective from Organic Materials Discovery. Annu. Rev. Mater. Sci. 2015, 45, 195–216. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Xin, B.; Wang, G.; Zhang, Y.; Lu, Y.; Guo, L.; Li, S.; Chen, C.; Cheng, X.; Ma, J. Fidelity of Robotic Chemical Operations of Homogenous and Heterogeneous Reactions. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Vaucher, A.C.; Zipoli, F.; Geluykens, J.; Nair, V.H.; Schwaller, P.; Laino, T. Automated extraction of chemical synthesis actions from experimental procedures. Nat. Commun. 2020, 11, 3601. [Google Scholar] [CrossRef]
- Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.L.; et al. Recent advances and applications of deep learning methods in materials science. NPJ Comput. Mater. 2020, 8, 59. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Koroteev, M.V. BERT: A review of applications in natural language processing and understanding. arXiv 2021, arXiv:2103.11943. [Google Scholar]
- Burger, B.; Maffettone, P.M.; Gusev, V.V.; Aitchison, C.M.; Bai, Y.; Wang, X.; Li, X.; Alston, B.M.; Li, B.; Clowes, R.; et al. A mobile robotic chemist. Nature 2020, 583, 237–241. [Google Scholar] [CrossRef]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Almassri, A.M.; Wan Hasan, W.; Ahmad, S.A.; Ishak, A.J.; Ghazali, A.; Talib, D.; Wada, C. Pressure sensor: State of the art, design, and application for robotic hand. J. Sens. 2015, 2015, 846487. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Savur, C.; Sahin, F. Dynamic awareness of an industrial robotic arm using time-of-flight laser-ranging sensors. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 2850–2857. [Google Scholar]
- Lang, S.A.; Demming, M.; Jaeschke, T.; Noujeim, K.M.; Konynenberg, A.; Pohl, N. 3D SAR imaging for dry wall inspection using an 80 GHz FMCW radar with 25 GHz bandwidth. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar]
- Salehi, I.; Rotithor, G.; Saltus, R.; Dani, A.P. Constrained image-based visual servoing using barrier functions. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 14254–14260. [Google Scholar]
- Chaumette, F.; Hutchinson, S. Visual servo control. i. basic approaches. IEEE Robot. Autom. Mag. 2006, 13, 82–90. [Google Scholar] [CrossRef]
- Staniak, M.; Zieliński, C. Structures of visual servos. Robot. Auton. Syst. 2010, 58, 940–954. [Google Scholar] [CrossRef]
- Palmieri, G.; Palpacelli, M.; Battistelli, M.; Callegari, M. A comparison between position-based and image-based dynamic visual servoings in the control of a translating parallel manipulator. J. Robot. 2012, 2012, 103954. [Google Scholar] [CrossRef] [Green Version]
- Malis, E.; Chaumette, F.; Boudet, S. 2 1/2 d visual servoing. IEEE Trans. Robot. Autom. 1999, 15, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Janabi-Sharifi, F.; Marey, M. A kalman-filter-based method for pose estimation in visual servoing. IEEE Trans. Robot. 2010, 26, 939–947. [Google Scholar] [CrossRef]
- Wang, K.; Ding, N.; Dai, F. Dynamic visual servoing based regulation of quadrotors on a predefined marker. In Proceedings of the 2017 IEEE International Conference on Information and Automation (ICIA), Macau, China, 18–20 July 2017; pp. 65–72. [Google Scholar]
- Gans, N.R.; Hutchinson, S.A.; Corke, P.I. Performance tests for visual servo control systems, with application to partitioned approaches to visual servo control. Int. J. Rob. Res. 2003, 22, 955–981. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Tola, E.; Lepetit, V.; Fua, P. Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 815–830. [Google Scholar] [CrossRef] [Green Version]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (surf). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. Orb: An efficient alternative to sift or surf. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Saxena, A.; Pandya, H.; Kumar, G.; Gaud, A.; Krishna, K.M. Exploring convolutional networks for end-to-end visual servoing. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3817–3823. [Google Scholar]
- Bateux, Q.; Marchand, E.; Leitner, J.; Chaumette, F.; Corke, P. Training deep neural networks for visual servoing. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3307–3314. [Google Scholar]
- Neuberger, B.; Patten, T.; Park, K.; Vincze, M. Selfinitialized visual servoing for accurate end-effector positioning. In Proceedings of the 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020; pp. 676–682. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.F. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, CA, USA, 8–14 December 2012. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 20–23 June 2014. [Google Scholar]
- Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhou, X.; Wang, D.; Krahenbuhl, P. CenterNet: Objects as Points. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Eppel, S.; Kachman, T. Computer vision-based recognition of liquid surfaces and phase boundaries in transparent vessels, with emphasis on chemistry applications. arXiv 2014, arXiv:1404.7174. [Google Scholar]
- Eppel, S. Tracing liquid level and material boundaries in transparent vessels using the graph cut computer vision approach. arXiv 2016, arXiv:1602.00177. [Google Scholar]
- Solana-Altabella, A.; Sánchez-Iranzo, M.H.; Bueso-Bordils, J.I.; Lahuerta-Zamora, L.; Mellado-Romero, A.M. Computer vision-based analytical chemistry applied to determining iron in commercial pharmaceutical formulations. Talanta 2018, 188, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Eppel, S.; Xu, H.; Bismuth, M.; Aspuru-Guzik, A. Computer vision for recognition of materials and vessels in chemistry lab settings and the vector-LabPics data set. ACS Cent. Sci. 2020, 6, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Zepel, T.; Lai, V.; Yunker, L.P.E.; Hein, J.E. Automated liquid-level monitoring and control using computer vision. ChemRxiv 2020. [Google Scholar] [CrossRef]
- Kosenkov, Y.; Kosenkov, D. Computer Vision in Chemistry: Automatic Titration. J. Chem. Educ. 2021, 98, 4067–4073. [Google Scholar] [CrossRef]
- Cabrera, C.; Fine-Morris, M.; Pokross, M.; Kish, K.; Michalczyk, S.; Cahn, M.; Klei, H.; Russo, M.F. Dynamically optimizing experiment schedules of a laboratory robot system with simulated annealing. J. Lab. Autom. 2014, 19, 517–527. [Google Scholar] [CrossRef]
- Atencio, F.N.; Prasca, A.B.; Rodado, D.N.; Casseres, D.M.; Santiago, M.R. A Comparative Approach of Ant Colony System and Mathematical Programming for Task Scheduling in a Mineral Analysis Laboratory. In Proceedings of the International Conference in Swarm Intelligence, Bali, Indonesia, 25–30 June 2016. [Google Scholar]
- Li, W.; Chai, X. The medical laboratory scheduling for weighted flow-time. J. Comb. Optim. 2019, 37, 83–94. [Google Scholar] [CrossRef]
- Itoh, T.D.; Horinouchi, T.; Uchida, H.; Takahashi, K.; Ozaki, H. Optimal Scheduling for Laboratory Automation of Life Science Experiments with Time Constraints. SLAS Technol. 2021, 26, 650–659. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Li, N.; Wang, W.; Zhong, S.; Hu, K. Minimizing mean weighted tardiness in unrelated parallel machine scheduling with reinforcement learning. Comput. Oper. Res. 2012, 39, 1315–1324. [Google Scholar] [CrossRef]
- Kim, G.H.; Lee, C.S.G. Genetic reinforcement learning approach to the heterogeneous machine scheduling problem. IEEE Trans. Robot. 1998, 14, 879–893. [Google Scholar]
- Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, F.; Huang, Y.; Xiao, H.; Zhao, L.; Zhang, X.; Song, T.; Tang, X.; Li, X.; He, G.; et al. An all-round AI-Chemist with scientific mind. Natl. Sci. Rev. 2022, 9, nwac190. [Google Scholar] [CrossRef]
- Guo, Y.; Li, S. Unusual Concerted Lewis Acid-Lewis Base Mechanism for Hydrogen Activation by a Phosphine-Borane Compound. Inorg. Chem. 2008, 47, 6212. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, H.; Zhao, J.; Li, W.; Cao, J.; Zhu, C.; Li, S. Homolytic Cleavage of a B−B Bond by the Cooperative Catalysis of Two Lewis Bases: Computational Design and Experimental Verification. Angew. Chem. Int. Ed. 2016, 55, 5985. [Google Scholar] [CrossRef]
- Cheng, G.-J.; Zhang, X.; Chung, L.W.; Xu, L.; Wu, Y.-D. Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. J. Am. Chem. Soc. 2015, 137, 1706–1725. [Google Scholar] [CrossRef]
- Unsleber, J.P.; Reiher, M. The Exploration of Chemical Reaction Networks. Annu. Rev. Phys. Chem. 2020, 71, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Zou, J.; Wang, G.; Li, S. Automatic Reaction Pathway Search via Combined Molecular Dynamics and Coordinate Driving Method. J. Phys. Chem. A 2017, 121, 1351–1361. [Google Scholar] [CrossRef]
- Yang, M.; Yang, L.; Wang, G.; Zhou, Y.; Xie, D.; Li, S. Combined Molecular Dynamics and Coordinate Driving Method for Automatic Reaction Pathway Search of Reactions in Solution. J. Chem. Theory Comput. 2018, 14, 5787–5796. [Google Scholar] [CrossRef]
- Huang, S.-D.; Shang, C.; Kang, P.-L.; Zhang, X.-J.; Liu, Z.-P. LASP: Fast global potential energy surface exploration. WIREs Comput. Mol. Sci. 2019, 9, e1415. [Google Scholar] [CrossRef]
- Hansen, E.; Rosales, A.R.; Tutkowski, B.; Norrby, P.; Wiest, O. Prediction of Stereochemistry using Q2MM. Acc. Chem. Res. 2016, 49, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Jorner, K.; Tomberg, A.; Bauer, C.; Sköld, C.; Norrby, P. Organic reactivity from mechanism to machine learning. Nat. Rev. Chem. 2021, 5, 240–255. [Google Scholar] [CrossRef]
- Coley, C.W.; Thomas, D.A.; Lummiss, J.A.M.; Jaworski, J.N.; Breen, C.P.; Schultz, V.; Hart, T.; Fishman, J.S.; Rogers, L.; Gao, H.; et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 2019, 365, eaax1566. [Google Scholar] [CrossRef] [PubMed]
- Klucznik, T.; Mikulak-Klucznik, B.; McCormack, M.P.; Lima, H.; Szymkuć, S.; Bhowmick, M.; Molga, K.; Zhou, Y.; Rickershauser, L.; Gajewska, E.P.; et al. Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory. Chem 2018, 4, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Zhang, C.; Wang, L.; Yao, C.; Ge, J.; Duan, H. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level. Molecules 2020, 25, 2357. [Google Scholar] [CrossRef]
- Jia, Q.; Ni, Y.; Liu, Z.; Gu, X.; Cui, Z.; Fan, M.; Zhu, Q.; Wang, Y.; Ma, J. Fast Prediction of Lipophilicity of Organofluorine Molecules: Deep Learning Derived Polarity Characters and Experimental Tests. J. Chem. Inf. Model. 2022, 62, 4928–4936. [Google Scholar] [CrossRef]
- Lu, S.; Zhou, Q.; Ouyang, Y.; Guo, Y.; Li, Q.; Wang, J. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 2018, 9, 3405. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Hu, H.; Zhu, Q.; Zheng, L.; Gu, Y.; Wen, Y.; Ma, H.; Yin, H.; Ma, J. Machine Learning Assisted Prediction of Charge Transfer Properties in Organic Solar Cells by Using Morphology-related Descriptors. Nano Res. 2023, 16, 3588–3596. [Google Scholar] [CrossRef]
- Zhu, Q.; Ge, Y.; Li, W.; Ma, J. Treating Polarization Effects in Charged and Polar Bio-Molecules Through Variable Electrostatic Parameters. J. Chem. Theory Comput. 2023, 19, 396–411. [Google Scholar] [CrossRef]
- Yang, L.; Sun, L.; Zhao, Y.; Sun, J.; Deng, Q.; Wang, H.; Deng, W. Digital-intellectual design of microporous organic polymers. Phys. Chem. Chem. Phys. 2021, 23, 22835–22853. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Wu, X.; Xin, B.; Gu, X.; Wang, G.; Zhang, Y.; Zhao, J.; Cheng, X.; Chen, C.; Ma, J. Machine Learning in Unmanned Systems for Chemical Synthesis. Molecules 2023, 28, 2232. https://doi.org/10.3390/molecules28052232
Wang G, Wu X, Xin B, Gu X, Wang G, Zhang Y, Zhao J, Cheng X, Chen C, Ma J. Machine Learning in Unmanned Systems for Chemical Synthesis. Molecules. 2023; 28(5):2232. https://doi.org/10.3390/molecules28052232
Chicago/Turabian StyleWang, Guoqiang, Xuefei Wu, Bo Xin, Xu Gu, Gaobo Wang, Yong Zhang, Jiabao Zhao, Xu Cheng, Chunlin Chen, and Jing Ma. 2023. "Machine Learning in Unmanned Systems for Chemical Synthesis" Molecules 28, no. 5: 2232. https://doi.org/10.3390/molecules28052232
APA StyleWang, G., Wu, X., Xin, B., Gu, X., Wang, G., Zhang, Y., Zhao, J., Cheng, X., Chen, C., & Ma, J. (2023). Machine Learning in Unmanned Systems for Chemical Synthesis. Molecules, 28(5), 2232. https://doi.org/10.3390/molecules28052232