New, Low–Molecular Weight Chemical Compounds Inhibiting Biological Activity of Interleukin 15
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of Active and Inactive IL–15 Rα Inhibitors from the Group of Benzoic Acid Derivatives
2.2. Design and In Silico Analysis of New Potential IL–15Rα Inhibitors
2.3. The Effect of Novel Benzoic Acid Derivatives on PBMC Viability, IL–15–Dependent PBMC Proliferation and TNF–α and IL–17 Release
3. Materials and Methods
3.1. Computational Methods
3.2. Compound Synthesis
3.2.1. Synthesis of Succinic Derivatives
3.2.2. Synthesis of Maleic Derivatives
3.3. Preparation of PBMC
3.4. Cytotoxicity and Cell Proliferation Assays
3.5. TNF–α and IL–17 Secretion
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waldmann, T.A.; Miljkovic, M.D.; Conlon, K.C. Interleukin–15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. J. Exp. Med. 2020, 217, 1–12. [Google Scholar] [CrossRef]
- Smith, X.G.; Bolton, E.M.; Ruchatz, H.; Wei, X.; Liew, F.Y.; Bradley, J.A. Selective Blockade of IL–15 by Soluble IL–15 Receptor α–Chain Enhances Cardiac Allograft Survival. J. Immunol. 2000, 165, 3444–3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, F.Y.; McInnes, I.B. Role of interleukin 15 and interleukin 18 in inflammatory response. Ann. Rheum. Dis. 2002, 61 (Suppl. 2), ii100–ii102. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-q.; Orchardson, M.; Grazie, J.A.; Leung, B.P.; Bm, G.; Guan, H.; Niedbala, W.; Paterson, G.K.; McInnes, I.B.; Liew, F.Y. The Sushi Domain of Soluble IL–15 Receptor α Is Essential for Binding IL–15 and Inhibiting Inflammatory and Allogenic Responses In Vitro and In Vivo. J. Immunol. 2001, 167, 277–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, J.C.; Janik, J.E.; White, J.D.; Fleisher, T.A.; Brown, M.; Tsudo, M.; Goldman, C.K.; Bryant, B.; Petrus, M.; Top, L.; et al. Preclinical and phase I clinical trial of blockade of IL–15 using Mikβ1 monoclonal antibody in T cell large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA 2006, 103, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villadsen, L.S.; Schuurman, J.; Beurskens, F.; Dam, T.N.; Dagnæs–Hansen, F.; Skov, L.; Rygaard, J.; Voorhorst–Ogink, M.M.; Gerritsen, A.F.; van Dijk, M.A.; et al. Resolution of psoriasis upon blockade of IL–15 biological activity in a xenograft mouse model. J. Clin. Investig. 2003, 112, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Sestak, K.; Dufour, J.P.; Liu, D.X.; Rout, N.; Alvarez, X.; Blanchard, J.; Faldas, A.; Laine, D.J.; Clarke, A.W.; Doyle, A.G. Beneficial effects of human anti–interleukin–15 antibody in gluten–sensitive rhesus macaques with celiac disease. Front. Immunol. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nata, T.; Basheer, A.; Cocchi, F.; van Besien, R.; Massoud, R.; Jacobson, S.; Azimi, N.; Tagaya, Y. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum. J. Biol. Chem. 2015, 290, 22338–22351. [Google Scholar] [CrossRef] [Green Version]
- Ferrari–Lacraz, S.; Zanelli, E.; Neuberg, M.; Donskoy, E.; Kim, Y.S.; Zheng, X.X.; Hancock, W.W.; Maslinski, W.; Li, X.C.; Strom, T.B.; et al. Targeting IL–15 Receptor–Bearing Cells with an Antagonist Mutant IL–15/Fc Protein Prevents Disease Development and Progression in Murine Collagen–Induced Arthritis. J. Immunol. 2004, 173, 5818–5826. [Google Scholar] [CrossRef] [Green Version]
- Jakobisiak, M.; Golab, J.; Lasek, W. Interleukin 15 as a promising candidate for tumor immunotherapy. Cytokine Growth Factor Rev. 2011, 22, 99–108. [Google Scholar] [CrossRef]
- Żyżyńska–Granica, B.; Trzaskowski, B.; Niewieczerzał, S.; Filipek, S.; Zegrocka–Stendel, O.; Dutkiewicz, M.; Krzeczyński, P.; Kowalewska, M.; Koziak, K. Pharmacophore guided discovery of small–molecule interleukin 15 inhibitors. Eur. J. Med. Chem. 2017, 136, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Chirifu, M.; Hayashi, C.; Nakamura, T.; Toma, S.; Shuto, T.; Kai, H.; Yamagata, Y.; Davis, S.J.; Ikemizu, S. Crystal structure of the IL–15/IL–15Ralpha complex, a cytokine–receptor unit presented in trans. Nat. Immunol. 2007, 8, 1001–1007. [Google Scholar] [CrossRef]
- Ring, A.M.; Lin, J.X.; Feng, D.; Mitra, S.; Rickert, M.; Bowman, G.R.; Pande, V.S.; Li, P.; Moraga, I.; Spolski, R.; et al. Mechanistic and structural insight into the functional dichotomy between IL–2 and IL–15. Nat. Immunol. 2012, 13, 1187–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Chen, D.; Xu, J.; Ding, X.; Wu, Y.; Shen, H.C.; Tan, X. Small molecule approaches to treat autoimmune and inflammatory diseases (Part III): Targeting cytokines and cytokine receptor complexes. Bioorg. Med. Chem. Lett. 2021, 48, 128229. [Google Scholar] [CrossRef] [PubMed]
- Allouche, A.R. Software News and Updates Gabedit—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32, 174–182. [Google Scholar] [CrossRef]
- Solomon, K.A.; Sundararajan, S.; Abirami, V. QSAR studies on N–aryl derivative activity towards alzheimer’s disease. Molecules 2009, 14, 1448–1455. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.M.; Kora, F.A.; El-Naggar, A.M.; Abdel-Magged, T.T. Synthesis of some aminoacid and dipeptide derivatives with expected antimicrobial activity. Al–Azhar J. Pharm. Sci. 1998, 21, 133–141. [Google Scholar]
- Jarikote, D.V.; Patil, P.S.; Jadhav, W.N.; Bhusare, S.R.; Andurkar, N.M.; Pawar, R.P. Synthesis and Antimicrobial Activity of Some New Anilinic Acids. Orient J. Chem. 2000, 16, 135–138. [Google Scholar]
- Oktay, K.; Köse, L.P.; Şendil, K.; Gültekin, M.S.; Gülçin, İ.; Supuran, C.T. The synthesis of (Z)–4–oxo–4–(arylamino)but–2–enoic acids derivatives and determination of their inhibition properties against human carbonic anhydrase I and II isoenzymes. J. Enzym. Inhib. Med. Chem. 2016, 31, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Metz, A.; Schanda, J.; Grez, M.; Wichmann, C.; Gohlke, H. From Determinants of RUNX1/ETO Tetramerization to Small–Molecule Protein–Protein Interaction Inhibitors Targeting Acute Myeloid Leukemia. J. Chem. Inf. Model 2013, 53, 2197–2202. [Google Scholar] [CrossRef]
- Ptasinska, A.; Assi, S.A.; Mannari, D.; James, S.R.; Williamson, D.; Dunne, J.; Hoogenkamp, M.; Wu, M.; Care, M.; McNeill, H.; et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome–wide changes in chromatin structure and transcription factor binding. Leukemia 2012, 26, 1829–1841. [Google Scholar] [CrossRef] [PubMed]
- Mackerell, A.; Hayashi, J. Immunomodulatory compounds that target and inhibit the PY+3 binding site of tyrosine kinase P56 LCK SH2 domain. US20070099970A1, 23 August 2007. [Google Scholar]
- Kołt–Kamińska, M.; Koziak, K.; Dutkiewicz, M.; Zegrocka–Stendel, O.; Reich, A. Can topical cefazolin be a useful treatment for psoriasis? Forum Dermatol. 2020, 6, 43–49. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xu, L.; Wolan, D.W.; Wilson, I.A.; Olson, A.J. Virtual Screening of Human 5–Aminoimidazole–4–carboxamide Ribonucleotide Transformylase against the NCI Diversity Set by Use of AutoDock to Identify Novel Nonfolate Inhibitors. J. Med. Chem. 2004, 47, 6681–6690. [Google Scholar] [CrossRef]
- Cason, J. β–carbomethoxypropionyl chloride. Org. Synth. 1945, 25, 19–22. [Google Scholar] [CrossRef]
- Mellor, J.M.; Wagland, A.M. Synthesis of hydroisoindoles via intramolecular Diels–Alder reaction of functionalised amino trienes. J. Chem. Soc. Perkin Trans. 1989, 1, 997–1005. [Google Scholar] [CrossRef]
- Ludwig, A.; Georgescu, R.I. Reaction of succinic anhydride, phthalic anhydride and phthalaldehydic acid with Schiff’s bases. Bull. Chim. Soc. Rom. Chim. 1938, 39, 41–63. [Google Scholar]
- Balasubramaniyan, V.; Argade, N.P. Reactions of cyclic anhydrides. Part XIII. Facile synthesis of 1,2,3,4–tetrahydro–10H–pyridazino[6,1–b]quinazoline–2,10–diones. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 1988, 27B, 906–908. [Google Scholar]
- Gupta, L.; Gupta, C.S. Thorium(IV) complexes of various 2’–carboxyanilidocarboxylic acids. Asian J. Chem. 2003, 15, 1467–1472. [Google Scholar]
- Altamirano–Espino, J.A.; Sanchez–Labastida, L.A.; Martinez–Archundia, M.; Andrade–Jorge, E.; Trujillo–Ferrara, J.G. Acetylcholinesterase Inhibition (Potential Anti–Alzheimer Effects) by Aminobenzoic Acid Derivatives: Synthesis, In–Vitro and In–Silico Evaluation. ChemistrySelect 2020, 5, 14177–14182. [Google Scholar] [CrossRef]
- Trujillo–Ferrara, J.; Montoya Cano, L.; Espinoza–Fonseca, M. Synthesis, anticholinesterase activity and structure–activity relationships of m–Aminobenzoic acid derivatives. Bioorganic. Med. Chem. Lett. 2003, 13, 1825–1827. [Google Scholar] [CrossRef] [PubMed]
- Grammaticakis, P. Ultraviolet absorption of maleic and fumaric arylmonoamides and N–arylaspartic arylimides. Compt. Rend. 1961, 252, 556–558. [Google Scholar]
- Abdolmaleki, A.; Sorvand, E.; Sabzalian, M.R. Synthesis and characterization of novel antibacterial poly(imidosulfide)/Ag nanocomposite. Polym. Bull. 2015, 72, 1007–1023. [Google Scholar] [CrossRef]
- Bowers, E.M.; Yan, G.; Mukherjee, C.; Orry, A.; Wang, L.; Holbert, M.A.; Crump, N.T.; Hazzalin, C.A.; Liszczak, G.; Yuan, H.; et al. Virtual Ligand Screening of the p300/CBP Histone Acetyltransferase: Identification of a Selective Small Molecule Inhibitor. Chem. Biol. 2010, 17, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Lu, H.; Hou, L.; Qi, Z.; Teixeira, C.; Barbault, F.; Fan, B.-T.; Liu, S.; Jiang, S.; Xie, L. Design, Synthesis, and Biological Evaluation of N–Carboxyphenylpyrrole Derivatives as Potent HIV Fusion Inhibitors Targeting gp41. J. Med. Chem. 2008, 51, 7843–7854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guevara–Salazar, J.A.; Quintana–Zavala, D.; Jimenez–Vazquez, H.A.; Trujillo–Ferrara, J. Synthesis of Diels–Alder adducts of N–arylmaleimides by a multicomponent reaction between maleic anhydride, dienes, and anilines. Monatsh. Chem. 2011, 142, 827–836. [Google Scholar] [CrossRef]
- Anand, P.; Singh, B. Synthesis and evaluation of novel 4–[(3H,3aH,6aH)–3–phenyl)–4,6–dioxo–2–phenyldihydro–2H–pyrrolo[3,4–d]isoxazol–5(3H,6H,6aH)–yl]benzoic acid derivatives as potent acetylcholinesterase inhibitors and anti–amnesic agents. Bioorg Med. Chem. 2012, 20, 521–530. [Google Scholar] [CrossRef]
- Correa–Basurto, J.; Espinosa–Raya, J.; Gonzalez–May, M.; Espinoza–Fonseca, L.M.; Vazquez–Alcantara, I.; Trujillo–Ferrara, J. Inhibition of acetylcholinesterase by two arylderivatives: 3a-acetoxy–5H–pyrrolo(1,2–a) (3,1)benzoxazin–1,5–(3aH)–dione and cis–N–p–acetoxy–phenylisomaleimide. J. Enzym. Inhib. Med. Chem. 2006, 21, 133–138. [Google Scholar] [CrossRef]
- Balasubramaniyan, V.; Argade, N.P. Reactions of cyclic anhydrides. Part XII. A facile approach to 3,1–benzoxazin–4–ones via anilic acids. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 1987, 26B, 476–477. [Google Scholar]
A. | |||||
Chemical Name (Compound) Active Concentration | R | R1 | R2 | R3 | R4 |
4–{[1–(4–fluorophenyl)–1(H)–tetrazol–5–yl]thio}methyl-benzoic acid (R9) 50 μM | H | H | H | H | |
methyl 2,4-dihydroxy–3–methylbenzoate (R10) 50 μM | CH3 | OH | CH3 | OH | H |
4–{[(2–carboxycyclohexyl)- carbonyl]amino}methyl-benzoic acid (R11) 100 μM | H | H | H | H | |
3–[(2–carboxyethenyl)amino]–5–[(3–carboxy–1–oxo–2–propen–1–yl)amino]benzoic acid (R12) 200 μM | H | H | H | ||
4–{[2–carboxy(bicyclo [2.2.1]hept–1–yl)carbonyl]amino}- methylbenzoic acid (R13) 200 μM | H | H | H | H | |
3,5–bis–[(3–carboxy–1–oxo– propyl)amino]benzoic acid (R15) 100 μM | H | H | H | ||
4–{[(4–methoxy–1,4–dioxobutyl)- amino]methyl}benzoate (R16) 100 μM | CH3 | H | H | H | |
B. | |||||
Chemical Name (Compound) | R | R1 | R2 | R3 | R4 |
4–[(3–carboxypropanoyl)- amino]methylbenzoic acid (R1) | H | H | H | H | |
4–[(6–carboxycyclohex–3–en –1–yl)carbonyl]amino- benzeneacetic acid (R2) | H | H | H | H | |
5–{[(3–carboxyphenyl)- amino]sulfonyl}–2–methoxybenzoic acid (R3) | H | —OCH3 | H | H | |
methylene–3,3’–bis–[6–[(1–ethylcarbonyl)amino]-benzoic acid (R4) | H | H | H | ||
4–[(6–carboxycyclohex–3–en –1–yl)carbonyl]amino-methylbenzoic acid (R5) | H | H | H | H | |
4–[1–(4–methoxyphenyl)–1H–tetrazol–5–yl]sulfonylmethyl-benzoic acid (R7) | H | H | H | H | |
4–(1–cyclohexyl–1H–tetrazol–5–yl)thiomethylbenzoic acid (R8) | H | H | H | H |
Molecule | ΔGbind [kcal/mol] | Ki [pM] |
---|---|---|
6a | −13.31 | 175.3 |
6b | −13.75 | 83.1 |
6c | −13.73 | 85.6 |
6d | −12.38 | 848.7 |
6e | −12.24 | 1070.0 |
6f | −12.37 | 862.2 |
6g | −11.90 | 1890.0 |
6h | −12.87 | 369.4 |
7a | −14.60 | 19.8 |
7b | −13.41 | 148.3 |
7c | −12.80 | 411.5 |
7d | −13.33 | 169.4 |
7e | −12.64 | 539.1 |
7f | −12.36 | 867.7 |
7g | −12.36 | 867.5 |
7h | −13.52 | 123.5 |
Mol | MW | Dipole | SASA | Volume | donorHB | accptHB | Glob | QPlogPo/w | QPPCaco | QPlogBB | #metab | Ro5 | Ro3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6a | 237.2 | 3.8 | 481.0 | 773.7 | 3 | 6.5 | 0.847 | 0.722 | 2.2 | −2.14 | 2 | 0 | 1 |
6b | 237.2 | 4.2 | 467.4 | 762.9 | 2 | 5.5 | 0.864 | 1.289 | 3.4 | −1.87 | 3 | 0 | 1 |
6c | 237.2 | 4.8 | 481.3 | 773.9 | 3 | 6.5 | 0.847 | 0.723 | 2.2 | −2.14 | 3 | 0 | 1 |
6d | 251.2 | 4.0 | 499.2 | 822.4 | 2 | 5.5 | 0.850 | 1.565 | 3.4 | −1.94 | 3 | 0 | 1 |
6e | 291.2 | 6.3 | 493.9 | 808.2 | 3 | 6.5 | 0.850 | 1.298 | 2.9 | −1.77 | 2 | 0 | 1 |
6f | 271.7 | 4.1 | 497.0 | 811.6 | 3 | 6.5 | 0.847 | 1.185 | 2.6 | −1.92 | 3 | 0 | 1 |
6g | 301.7 | 5.5 | 535.5 | 890.7 | 3 | 7.25 | 0.836 | 1.366 | 3.0 | −1.98 | 3 | 0 | 1 |
6h | 363.1 | 7.9 | 502.2 | 825.5 | 2 | 5.5 | 0.847 | 1.901 | 3.3 | −1.76 | 2 | 0 | 1 |
7a | 235.2 | 5.7 | 468.3 | 753.1 | 3 | 6.5 | 0.855 | 0.696 | 2.6 | −2.03 | 0 | 0 | 1 |
7b | 235.2 | 4.2 | 453.4 | 740.1 | 2 | 5.5 | 0.873 | 1.244 | 4.0 | −1.76 | 1 | 0 | 1 |
7c | 235.2 | 6.9 | 468.7 | 753.5 | 3 | 6.5 | 0.854 | 0.697 | 2.6 | −2.03 | 1 | 0 | 1 |
7d | 249.2 | 3.9 | 485.8 | 800.3 | 2 | 5.5 | 0.858 | 1.519 | 4.0 | −1.83 | 1 | 0 | 1 |
7e | 289.2 | 8.2 | 481.3 | 787.3 | 3 | 6.5 | 0.857 | 1.273 | 3.5 | −1.66 | 0 | 0 | 1 |
7f | 269.6 | 4.9 | 484.5 | 791.2 | 3 | 6.5 | 0.854 | 1.143 | 2.9 | −1.83 | 1 | 0 | 1 |
7g | 299.7 | 6.4 | 522.4 | 869.7 | 3 | 7.25 | 0.844 | 1.325 | 3.5 | −1.88 | 1 | 0 | 1 |
7h | 361.1 | 6.1 | 487.8 | 802.9 | 2 | 5.5 | 0.856 | 1.861 | 4.0 | −1.64 | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzeczyński, P.; Dutkiewicz, M.; Zegrocka-Stendel, O.; Trzaskowski, B.; Koziak, K. New, Low–Molecular Weight Chemical Compounds Inhibiting Biological Activity of Interleukin 15. Molecules 2023, 28, 2287. https://doi.org/10.3390/molecules28052287
Krzeczyński P, Dutkiewicz M, Zegrocka-Stendel O, Trzaskowski B, Koziak K. New, Low–Molecular Weight Chemical Compounds Inhibiting Biological Activity of Interleukin 15. Molecules. 2023; 28(5):2287. https://doi.org/10.3390/molecules28052287
Chicago/Turabian StyleKrzeczyński, Piotr, Małgorzata Dutkiewicz, Oliwia Zegrocka-Stendel, Bartosz Trzaskowski, and Katarzyna Koziak. 2023. "New, Low–Molecular Weight Chemical Compounds Inhibiting Biological Activity of Interleukin 15" Molecules 28, no. 5: 2287. https://doi.org/10.3390/molecules28052287
APA StyleKrzeczyński, P., Dutkiewicz, M., Zegrocka-Stendel, O., Trzaskowski, B., & Koziak, K. (2023). New, Low–Molecular Weight Chemical Compounds Inhibiting Biological Activity of Interleukin 15. Molecules, 28(5), 2287. https://doi.org/10.3390/molecules28052287