Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review
Abstract
:1. Introduction
2. Antioxidant Components of Medicinal Plants
3. Overview of Electrochemical Methods Used for the Evaluation of Medicinal Plants Antioxidant Properties
4. Electrochemical Evaluation of Total Antioxidant Parameters
4.1. Methods Based on the Reactions with Oxidants
4.2. Methods Based on the Reactions of Antioxidants with Radicals
4.3. Methods Based on the Reactions of Radicals and Oxidants Immobilized at the Electrode Surface
4.4. Methods Based on the Oxidation of Antioxidants on Electrodes
5. Electrochemical Determination of Individual Antioxidants in Medicinal Plants
- The creation of highly sensitive electrodes to the target antioxidant, which is a major and typical component of the medicinal plant. The determination should be performed by voltammetry after a significant dilution of the sample. In this case, other antioxidants will not give a sufficient response due to the low concentration, and the signal of the target antioxidant will be enough for quantification;
- Fabrication of highly selective electrodes allowing simultaneous determination of structurally related antioxidants.
- irreversible adsorption of modifier on the electrode surface;
- chemical binding of modifier via various groups (spacers, linkers) with covalent bond formation;
- inclusion in the polymer film;
- addition in the volume of the carbon paste or composite material mechanically or using screen printing technology;
- formation of modifier layer using the sol-gel technology;
- drop casting or electrochemical formation of polymer or cavity-containing material capable to work on the guest–host principles (molecularly imprinted materials).
Antioxidant | Method | Electrode | Limit of Detection (µM) | Linear Dynamic Range (µM) | Plant Sample | Refs. |
---|---|---|---|---|---|---|
Quercetin | DPV | Three-dimensional reduced graphene oxide aerogel/Carbon ionic liquid electrode | 0.065 | 0.1–100 | Ginkgo tablets | [143] |
LSV 1 | Lewatit FO36 Nanoresin/MWCNTs/GPE 2 | 0.213 | 1.8–25; 25–570 | Gincora tablets | [144] | |
DPV | CeO2 nanoparticles–Sodium dodecyl sulfate/GCE | 0.0029 | 0.010–1.00; 1.00–250 | Hyperici herba, Calendulae officinalis flores, Arctostaphyli uvae ursi folia extracts, infusions, decoctions, hydrolysates | [145] | |
DPV | Au-Co nanoparticles-embedded N-doped carbon nanotube hollow polyhedron/GCE | 0.023 | 0.050–35 | Ginkgo tablets | [146] | |
DPV | Poly(gallic acid)/ MWCNTs/GCE | 0.054 | 0.075–25; 25–100 | Arctostaphylos uva-ursi (L.) Spreng. Leaves and Calendula officinalis L. flowers decoctions, infusions, and tincture | [147] | |
DPV | Pt-Au alloy–Biomass-derived porous carbon nanocomposite/Carbon ionic liquid electrode | 0.050 | 0.15–6.0; 10–25 | Ginkgo tablets | [148] | |
Rutin | AdASWV 3 | Mesoporous carbon and 1-butyl-3-methylimidazolium hexafluorophosphate based paste electrode | 0.00117 | 0.008–4.0 | Ruta graveolens extract | [149] |
AdASWV | Neodymium(III) oxide-SWCNTs 4 in chitosan/GCE | 0.092 | 0.99–8.00 | Extract of Zamia furfuracea L.f. ex Aiton | [150] | |
DPV | CeO2 nanoparticles–Sodium dodecyl sulfate/GCE | 0.028 | 0.10–100 | Hyperici herba extract, infusion, decoction | [145] | |
Quercetin | DPV | Polythymolphthalein/Carbon nanofibers/GCE | 0.00073 | 0.025–1.00 | Infusion of Tilia L. flowers | [151] |
Rutin | 0.0047 | 0.025–1.00 | ||||
Quercetin | DPV | Fe3O4@ZnO core/shell magnetic nanoparticles-CPE | 0.14 | 0.29–64.7 | Borage, chamomile, asparagus, teucrium, tarragon, pennyroyal extracts | [152] |
Rutin | 0.07 | 0.099–99 | ||||
Morin | DPV | Poly(2,5-dimercapto-1,3,4-thiadiazole)/CFPE 5 | 8.3 × 10−5 | 2.5 × 10−4–2.75 × 10−3 | Mulberry leaves | [153] |
Nickel (II) phthalocyanine–CPE 6 | 0.0020 | 0.10–2500 | Psidium guajava leaf extract | [154] | ||
Gum arabic stabilized Ag nanoparticles–CPE | 0.216 × 10−3 | (0.65–7.0) × 10−3 | Mulberry leaves | [155] | ||
Cetylpyridinium bromide/Carboxylated SWNTs/GCE | 0.0289 | 0.1–100; 100–750 | Mulberry leaves | [156] | ||
Hesperidin | DPV | Nano-graphene-platelets–Brilliant green/CPE | 0.050 | 0.1–7.0; 7.0–100.0 | Peppermint extract | [157] |
Dihydromyricetin | DPV | Double-layered membranes from Au nanoparticles anchored on reduced graphene oxide and polyacrylamide-based MIP 7/GCE | 0.012 | 0.020–100 | Ampelopsis grossedentata leaves extract | [158] |
Naringenin | LSV | SWNTs/GCE | 0.020 | 0.080–5.0; 5.0–12 | Fructus Aurantii Immaturus | [159] |
Hyperin | AdDPV | Poly(diallyldimethylammonium chloride)-functionalized graphene/GCE | 0.005 | 0.007–0.70 | Hypericum Perforatum | [160] |
DPV | α-Fe2O3 doped graphene/GCE | 0.5 × 10−3 | 0.001–0.10 | Abelmoschus manihot, Semen cuscutae, and Chinese Herba Hypericum perforatum | [161] | |
DPV | ZrO2 nanoparticles–Sodium dodecyl sulfate–Carboxylated SWCNTs/GCE | 0.5 × 10−3 | 0.001–0.30 | Abelmoschus manihot | [162] | |
Esculetin | DPV | TiO2 nanoparticles-coated poly(diallyldimethylammonium chloride)-functionalized graphene/GCE | 0.004 | 0.010–3.5 | Viola yedoensis Makino and Cotex fraxini | [163] |
sp-Hybridized nitrogen atom doped ultrathin graphdiyne/carbon ionic liquid electrode | 0.0023 | 0.02–10.0 | Capsules, pills, and Cortex fraxini | [164] | ||
Mangiferin | DPV | Au-Ag nanoparticles/MWCNTs–sulfonated graphene sheets/GCE | 0.017 | 0.05–500.0 | Rhizoma Anemarrhenae, Artemisia Capillaris Herba, and the leaves of Epimedium Macranthum | [165] |
Iicariin | 0.017 | 0.05–100.0 | ||||
Chrysin | LSV | Ta2O5 particles–Chitosan–CPE | 0.03 | 0.08–4 | Oroxylum indicum | [166] |
Baicalein | 0.05 | 0.08–4 | ||||
Baicalein | DPV | Ta2O5-Nb2O5@Chitosan–CPE | 0.05 | 0.08–8 | Scutellariae Radix | [167] |
Baicalin | 0.03 | 0.08–8 | ||||
Gallic acid | AdADPV 8 | Pt nanoparticle–poly(diallyldimethylammonium chloride)-functionalized graphene/GCE | 0.007 | 0.030–1.0 | Jianmin Yanhou tablets, Cortex moutan | [168] |
LSV | Electropolymerized methylene blue on graphene oxide framework/GCE | 49 | 50–1000 | Herbal tablets containing Euphorbia prostrata | [169] | |
Ferulic acid | AdADPV | Electrochemically reduced graphene oxide/GCE | 0.0206 | 0.0849–38.9 | Angelica sinensis | [170] |
CV | Graphene oxide–MWCNTs/GCE | 0.08 | 0.24–1230 | Pinellia ternata | [171] | |
DPV | Poly(phenol)-based MIP/Au nanoparticles/Electrochemically reduced graphene oxide/SPEa 9 | 0.0031 | 0.010–1.0 | Orange peel | [172] | |
Ferulic acid | DPV | Poly(bromocresol purple)/Polyaminobenzene sulfonic acid functionalized SWCNTs/GCE | 0.072 | 0.10–5.0; 5.0–25 | Vanilla planifolia (two-fold and three-fold strength) extracts | [173] |
Vanillin | 0.064 | 0.10–5.0; 5.0–25 | ||||
Rosmarinic Acid | DPV | Fe3O4@SiO2@NH2 decorated poly(methacrylic acid)-based MIP–CPE | 0.085 | 0.1–100; 100–500 | Salvia officinalis, Zataria multiflora, Mentha longifolia, Rosmarinus officinalis | [174] |
Rosmarinic Acid | DPV | Pt nanoparticles/poly(o-phenylenediamine)/GCE | 0.7 | 2–10 | Melissa officinalis | [175] |
Protocatechuic Acid | 0.7 | 1–35 | ||||
Chlorogenic acid | CV | Poly(aminosulfonic acid)/GCE | 0.080 | 0.40–12 | Traditional Chinese herbal medicines | [176] |
AdASWV | Highly defective mesoporous carbon–1-Butyl-3-methylimidazolium hexafluorophosphate paste electrode | 0.01 | 0.02–2.5 | Echinacea purpurea, Calendula officinalis flowers extracts | [177] | |
Ascorbic acid | AdCSWV 10 | Mn(thiophen-2-carboxylic acid)2(triethanolamine) complex/Graphene oxide paste electrode | 0.00697 | 0.0222–0.897 | Rosa canina hips | [178] |
AdSDPV 11 | Sepiolite clay nanoparticle–CPE | 0.0042 | 0.014–0.9 | Natural Rosa canina tea | [179] | |
Potentiometry | Iodine-modified Pt electrode | — | 10.0–1000 | Aqueous extracts of rosehip fruits and hop cones | [180] | |
DPV | GCE | 5.05 | 20–1000 | Rosa species of Turkey | [181] | |
Ascorbic acid | SWV | Hydroxyapatite-TiO2 composite/GCE | 0.0633 | 2.78–2490 | Clove oil and herbal decoction Kabasura Kudineer | [182] |
Eugenol | 0.094 | 1.4–78 | ||||
Eugenol | CV | GCE in 0.1 M Triton X100 medium | 3.8 | 15–1230 | Clove and sweet basil essential oils | [183] |
DPV | Graphene/GCE | 0.007 | 0.10–17 | Clove–lemon herbal pastille | [184] | |
DPV | CeO2 nanoparticles dispersed in cetylpyridinium bromide/GCE | 0.0191 | 0.075–75.0 | Clove, cinnamon, basil, and nutmeg essential oils | [185] | |
SWV | Immobilized eugenol–Carbon black nanoparticles in dihexadecyl hydrogen phosphate/GCE | 0.00013 12 | 0.029–26 12 | Clove oil | [186] | |
Anethole | SWV | La2O3 nanoparticles–CPE | — | 9.45–28.3 | Anise essential oil | [187] |
6. Conclusions and Future Development
- To date, extracts with toxic solvents have often been studied to characterize the antioxidant constituents of the medicinal plant. Investigation of the medicinal plants’ dosage forms such as infusions, decoctions, tinctures, and essential oils has to be enlarged. Essential oils are almost out of the investigation, although of high interest;
- Unification of standard antioxidants used to express the total antioxidant parameters.
- Development of electrochemical methods for the determination of tocopherols and terpenes in medicinal plants and products on their basis. Total contents of tocopherols and tocotrienols or terpenes and their individual quantification are required;
- Enlargement of individual antioxidants studied. A limited range of natural phenolics are considered to date, whereas many other important for medicinal plants antioxidants and even classes of antioxidants are out of investigation;
- Application of flow systems including microfluidic chips that can significantly improve the operating characteristics of the systems and decrease electrode fouling and interference effects of co-existing components;
- Attention should be paid to the methods of electrochemical generation of reactive oxygen species and detection of their reaction to antioxidants;
- Creation of novel highly selective electrodes for the simultaneous determination of the antioxidants of the same class or group including isomers for the phytochemical profiling of the plant samples. Novel functional materials acting as electrode surface modifiers are required and can be predicted using molecular modeling and quantum chemical calculations with the following controlled synthesis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef]
- Synthesis of Medicinal Agents from Plants; Tewari, A.; Tiwari, S. (Eds.) Elsevier: Amsterdam, The Netherlands, 2018; 357p. [Google Scholar] [CrossRef]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar] [CrossRef]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, W.C. Trease and Evans’ Pharmacognosy, 16th ed.; Saunders Ltd.: London, UK, 2009; pp. 148–167. [Google Scholar]
- Jayanthy, A.; Prakash, K.U.; Remashree, A.B. Seasonal and geographical variations in cellular characters and chemical contents in Desmodium gangeticum (L.) DC.—An ayurvedic medicinal plant. Int. J. Herb. Med. 2013, 1, 34–37. [Google Scholar]
- Ramasar, R.; Naidoo, Y.; Dewir, Y.H.; El-Banna, A.N. Seasonal change in phytochemical composition and biological activities of Carissa macrocarpa (Eckl.) A. DC. leaf extract. Horticulturae 2022, 8, 780. [Google Scholar] [CrossRef]
- Kumar, S.; Yadav, A.; Yadav, M.; Yadav, J.P. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Res. Notes 2017, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Ziyatdinova, G.K.; Budnikov, H.C. Natural phenolic antioxidants in bioanalytical chemistry: State of the art and prospects of development. Russ. Chem. Rev. 2015, 84, 194–224. [Google Scholar] [CrossRef]
- González-Burgos, E.; Gómez-Serranillos, M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem. 2012, 19, 5319–5341. [Google Scholar] [CrossRef] [PubMed]
- Grassmann, J. Terpenoids as plant antioxidants. Vitam. Horm. 2005, 72, 505–535. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Alarcon, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta. 2013, 763, 1–10. [Google Scholar] [CrossRef]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.; Gerasimova, E.; Gazizullina, E. Study of antioxidant properties of agents from the perspective of their action mechanisms. Molecules 2020, 25, 4251. [Google Scholar] [CrossRef]
- Noreen, F.; Semmar, N.; Farman, M.; McCullagh, J.S.O. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 2017, 10, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Wang, Y.; Zhou, W.; He, S.; Yang, M.; Xue, Q.; Wang, Y.; Zhao, T.; Cao, J.; Khan, A. Phenolic composition, antioxidant and cytoprotective effects of aqueous-methanol extract from Anneslea fragrans leaves as affected by drying methods. Int. J. Food Sci. Technol. 2021, 56, 4807–4819. [Google Scholar] [CrossRef]
- Skotti, E.; Anastasaki, E.; Kanellou, G.; Polissiou, M.; Tarantilis, P.A. Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Ind. Crops Prod. 2014, 53, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Assaggaf, H.M.; Naceiri Mrabti, H.; Rajab, B.S.; Attar, A.A.; Alyamani, R.A.; Hamed, M.; El Omari, N.; El Menyiy, N.; Hazzoumi, Z.; Benali, T.; et al. Chemical analysis and investigation of biological effects of Salvia officinalis essential oils at three phenological stages. Molecules 2022, 27, 5157. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Polumackanycz, M.; Petropoulos, S.A.; Añibarro-Ortega, M.; Pinela, J.; Barros, L.; Plenis, A.; Viapiana, A. Chemical Composition and Antioxidant Properties of Common and Lemon Verbena. Antioxidants 2022, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
- Aniya; Nomura, Y.; Appiah, K.S.; Fuerdeng; Suzuki, Y.; Fujii, Y.; Xia, Q. Relationship between the antioxidant activity and allelopathic activities of 55 Chinese pharmaceutical plants. Plants 2022, 11, 2481. [Google Scholar] [CrossRef] [PubMed]
- Wojcikowski, K.; Stevenson, L.; Leach, D.; Wohlmuth, H.; Gobe, G. Antioxidant capacity of 55 medicinal herbs traditionally used to treat the urinary system: A comparison using a sequential three-solvent extraction process. J. Altern. Complement Med. 2007, 13, 103–109. [Google Scholar] [CrossRef]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS ONE 2018, 13, e0190790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Desmarchelier, C.; Repetto, M.; Coussio, J.; Llesuy, S.; Ciccia, G. Total reactive antioxidant potential (TRAP) and total antioxidant reactivity (TAR) of medicinal plants used in Southwest Amazonia (Bolivia and Peru). Int. J. Pharmacogn. 1997, 35, 288–296. [Google Scholar] [CrossRef]
- Lima, B.S.; Ramos, C.S.; Santos, J.P.A.; Rabelo, T.K.; Serafini, M.R.; Souza, C.A.S.; Soares, L.A.L.; Quintans Júnior, L.J.; Moreira, J.C.F.; Gelain, D.P.; et al. Development of standardized extractive solution from Lippia sidoides by factorial design and their redox active profile. Rev. Bras. Farmacogn. 2015, 25, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.; John, J.A.; Shahidi, F. Polyphenol composition and antioxidant potential of mint leaves. Food Prod. Process. Nutr. 2019, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Murdifin, M.; Pakki, E.; Alam, G.; Manggau, M.A.; Muslimin, L.; Rusdi, M.; Wahyudin, E. Lipid peroxidation inhibitory activity in vitro of Mezzetia parviflora Becc. wood bark polar extract. Pharmacogn. J. 2017, 9, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Gedikoğlu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutr. 2019, 7, 1704–1714. [Google Scholar] [CrossRef] [Green Version]
- Dziurka, M.; Kubica, P.; Kwiecień, I.; Biesaga-Kościelniak, J.; Ekiert, H.; Abdelmohsen, S.A.M.; Al-Harbi, F.F.; El-Ansary, D.O.; Elansary, H.O.; Szopa, A. In vitro cultures of some medicinal plant species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a rich potential source of antioxidants—Evaluation by CUPRAC and QUENCHER-CUPRAC assays. Plants 2021, 10, 454. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Sieniawska, E.; Świątek, Ł.; Sinan, K.I.; Zengin, G.; Boguszewska, A.; Polz-Dacewicz, M.; Bibi Sadeer, N.; Etienne, O.K.; Mahomoodally, M.F. Phytochemical insights into Ficus sur extracts and their biological activity. Molecules 2022, 27, 1863. [Google Scholar] [CrossRef] [PubMed]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays (Reprinted). J. Funct. Food. 2015, 18, 782–796. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant capacity determination in plants and plant-derived products: A review. Oxid. Med. Cell. Longev. 2016, 2016, 9130976. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.W.; Najeeb, J.; Naeem, S.; Usman, S.M.; Nahvi, I.; Alismail, F.; Abuzir, A.; Farhan, M.; Nawaz, A. Electrochemical methodologies for investigating the antioxidant potential of plant and fruit extracts: A review. Antioxidants 2022, 11, 1205. [Google Scholar] [CrossRef]
- Dobes, J.; Zítka, O.; Sochor, J.; Ruttkay-Nedecky, B.; Babula, P.; Kynický, J.; Hubálek, J.; Klejdus, B.; Kizek, R.; Adam, V. Electrochemical tools for determination of phenolic compounds in plants. A review. Int. J. Electrochem. Sci. 2013, 8, 4520–4542. [Google Scholar]
- Ziyatdinova, G.; Budnikov, H. Analytical Capabilities of Coulometric Sensor Systems in the Antioxidants Analysis. Chemosensors 2021, 9, 91. [Google Scholar] [CrossRef]
- Haque, M.A.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Electrochemical methods to evaluate the antioxidant activity and capacity of foods: A review. Electroanalysis 2021, 33, 1419–1435. [Google Scholar] [CrossRef]
- Ruiz-Caro, P.; Espada-Bellido, E.; García-Guzmán, J.J.; Bellido-Milla, D.; Vázquez-González, M.; Cubillana-Aguilera, L.; Palacios-Santander, J.M. An electrochemical alternative for evaluating the antioxidant capacity in walnut kernel extracts. Food Chem. 2022, 393, 133417. [Google Scholar] [CrossRef] [PubMed]
- Forzato, C.; Vida, V.; Berti, F. Biosensors and sensing systems for rapid analysis of phenolic compounds from plants: A comprehensive review. Biosensors 2020, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- García-Guzmán, J.J.; López-Iglesias, D.; Marin, M.; Lete, C.; Lupu, S.; Palacios-Santander, J.M.; Cubillana-Aguilera, L. Electrochemical biosensors for antioxidants. In Advanced Biosensors for Health Care Applications; Inamuddin Khan, R., Mohammad, A., Asiri, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 105–146. [Google Scholar]
- Munteanu, I.G.; Apetrei, C. A review on electrochemical sensors and biosensors used in assessing antioxidant activity. Antioxidants 2022, 11, 584. [Google Scholar] [CrossRef]
- López, A.; De Tangil, M.S.; Vega-Orellana, O.; Ramírez, A.S.; Rico, M. Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera (L.) Burm. f. (syn. A. barbadensis Mill.) from the Canary Islands (Spain). Molecules 2013, 18, 4942–4954. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liu, J.; Zeng, Y.; Jin, S.; Liu, W.; Li, Z.; Qin, X.; Bai, Y. Traditional uses, phytochemistry, pharmacology, toxicity and quality control of medicinal genus Aralia: A review. J. Ethnopharmacol. 2022, 284, 114671. [Google Scholar] [CrossRef]
- Qi, M.; Hua, X.; Peng, X.; Yan, X.; Lin, J. Comparison of chemical composition in the buds of Aralia elata from different geographical origins of China. R. Soc. Open. Sci. 2018, 5, 180676. [Google Scholar] [CrossRef] [Green Version]
- Ukiya, M.; Akihisa, T.; Yasukawa, K.; Tokuda, H.; Suzuki, T.; Kimura, Y. Anti-inflammatory, anti-tumor-promoting, and cytotoxic activities of constituents of marigold (Calendula officinalis) flowers. J. Nat. Prod. 2006, 69, 1692–1696. [Google Scholar] [CrossRef]
- Muley, B.P.; Khadabadi, S.S.; Banarase, N.B. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review. Trop. J. Pharm. Res. 2009, 8, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Carvalho Lemos, V.; Reimer, J.J.; Wormit, A. Color for life: Biosynthesis and distribution of phenolic compounds in pepper (Capsicum annuum). Agriculture 2019, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Liu, P. Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins. J. Sci. Food Agric. 2012, 92, 1578–1590. [Google Scholar] [CrossRef] [PubMed]
- Pellati, F.; Benvenuti, S.; Magro, L.; Melegari, M.; Soragni, F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharm. Biochem. Anal. 2004, 35, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Mei, B.; Xie, H.; Xing, H.; Kong, D.; Pan, X.; Li, Y.; Wu, H. Changes of phenolic acids and antioxidant activities in diploid and tetraploid Echinacea purpurea at different growth stages. Rev. Bras. Farmacogn. 2020, 30, 510–518. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Cho, M.L.; Kim, D.-B.; Shin, G.-H.; Lee, J.-H.; Lee, J.S.; Park, S.-O.; Lee, S.-J.; Shin, H.M.; Lee, O.-H. The antioxidant activity and their major antioxidant compounds from Acanthopanax senticosus and A. koreanum. Molecules 2015, 20, 13281–13295. [Google Scholar] [CrossRef]
- Graczyk, F.; Gębalski, J.; Makuch-Kocka, A.; Gawenda-Kempczyńska, D.; Ptaszyńska, A.A.; Grzyb, S.; Bogucka-Kocka, A.; Załuski, D. Phenolic Profile, Antioxidant, Anti-Enzymatic and Cytotoxic Activity of the Fruits and Roots of Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. Molecules 2022, 27, 5579. [Google Scholar] [CrossRef]
- Baczek, K.; Przybyl, J.L.; Kosakowska, O.; Weglarz, Z. Accumulation of phenolics in Eleuthero (Eleutherococcus senticosus (Rupr. et Maxim.) Maxim.) as affected by plant development. Acta Sci. Pol. Hortorum Cultus 2017, 16, 89–99. [Google Scholar] [CrossRef]
- Kuźniewski, R.; Załuski, D.; Olech, M.; Banaszczak, P.; Nowak, R. LC-ESI-MS/MS profiling of phenolics in the leaves of Eleutherococcus senticosus cultivated in the West Europe and anti-hyaluronidase and anti-acetylcholinestarase activities. Nat. Prod. Res. 2017, 32, 448–452. [Google Scholar] [CrossRef]
- Limam, H.; Ezzine, Y.; Tammar, S.; Ksibi, N.; Selmi, S.; Del Re, G.; Ksouri, R.; Msaada, K. Phenolic composition and antioxidant activities of thirteen Eucalyptus species cultivated in north east of Tunisia. Plant Biosyst. 2021, 115, 587–597. [Google Scholar] [CrossRef]
- Kelebek, H.; Sevindik, O.; Selli, S. LC-DAD-ESI-MS/MS-based phenolic profiling of St John’s Wort teas and their antioxidant activity: Eliciting infusion induced changes. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 9–15. [Google Scholar] [CrossRef]
- Alahmad, A.; Alghoraibi, I.; Zein, R.; Kraft, S.; Dräger, G.; Walter, J.-G.; Scheper, T. Identification of major constituents of Hypericum perforatum L. extracts in Syria by development of a rapid, simple, and reproducible HPLC-ESI-Q-TOF MS analysis and their antioxidant activities. ACS Omega 2022, 7, 13475–13493. [Google Scholar] [CrossRef]
- Kobus, J.; Flaczyk, E.; Siger, A.; Nogala-Kałucka, M.; Korczak, J.; Pegg, R.B. Phenolic compounds and antioxidant activity of extracts of Ginkgo leaves. Eur. J. Lipid Sci. Technol. 2009, 111, 150–1160. [Google Scholar] [CrossRef]
- Ražná, K.; Sawinska, Z.; Ivanišová, E.; Vukovic, N.; Terentjeva, M.; Stričík, M.; Kowalczewski, P.Ł.; Hlavačková, L.; Rovná, K.; Žiarovská, J.; et al. Properties of Ginkgo biloba L.: Antioxidant characterization, antimicrobial activities, and genomic microRNA based marker fingerprints. Int. J. Mol. Sci. 2020, 21, 3087. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, S.; Spinozzi, E.; Maggi, F.; Sagratini, G.; Caprioli, G.; Borsetta, G.; Ak, G.; Sinan, K.I.; Zengin, G.; Arpini, S.; et al. Phytochemical profile and biological activities of crude and purified Leonurus cardiaca Extracts. Plants 2021, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Catani, M.V.; Rinaldi, F.; Tullio, V.; Gasperi, V.; Savini, I. Comparative analysis of phenolic composition of six commercially available chamomile (Matricaria chamomilla L.) extracts: Potential biological implications. Int. J. Mol. Sci. 2021, 22, 10601. [Google Scholar] [CrossRef] [PubMed]
- Ćavar Zeljković, S.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic compounds and biological activity of selected Mentha species. Plants 2021, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Sharma, S.; Mittal, A.; Gupta, S.; Dua, A. Phytochemical and antioxidant profiling of Ocimum sanctum. J. Food Sci. Technol. 2020, 57, 3852–3863. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lim, S.J.; Oidovsambuu, S.; Nho, C.W. Gnetin H isolated from Paeonia anomala inhibits FcεRI-mediated mast cell signaling and degranulation. J. Ethnopharmacol. 2014, 154, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Enkhtuya, E.; Kashiwagi, T.; Shimamura, T.; Ukeda, H. Antioxidative constituents in the leaves of Paeonia anomala grown in Mongolia. Food Sci. Technol. Res. 2017, 23, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S. Investigation of phenolic, flavonoid, and vitamin contents in different parts of Korean ginseng (Panax ginseng C.A. Meyer). Prev. Nutr. Food Sci. 2016, 21, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malathy, R.; Prabakaran, M.; Kalaiselvi, K.; Chung, I.-M.; Kim, S.-H. Comparative polyphenol composition, antioxidant and anticorrosion properties in various parts of Panax ginseng extracted in different solvents. Appl. Sci. 2021, 11, 93. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Konieczynski, P.; Orhan, I.E.; Abaci, N.; Viapiana, A. Chemical composition, antioxidant and anti-enzymatic activity of golden root (Rhodiola rosea L.) commercial samples. Antioxidants 2022, 11, 919. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, S.; Deng, N.; Zheng, B.; Li, T.; Liu, R.H. Phytochemical Profiles, Antioxidant Activity and Antiproliferative Mechanism of Rhodiola rosea L. Phenolic Extract. Nutrients 2022, 14, 3602. [Google Scholar] [CrossRef] [PubMed]
- Kosakowska, O.; Bączek, K.; Przybył, J.L.; Pióro-Jabrucka, E.; Czupa, W.; Synowiec, A.; Gniewosz, M.; Costa, R.; Mondello, L.; Węglarz, Z. Antioxidant and antibacterial activity of roseroot (Rhodiola rosea L.) Dry Extracts. Molecules 2018, 23, 1767. [Google Scholar] [CrossRef] [Green Version]
- Lucini, L.; Kane, D.; Pellizzoni, M.; Ferrari, A.; Trevisi, E.; Ruzickova, G.; Arslan, D. Phenolic profile and in vitro antioxidant power of different milk thistle [Silybum marianum (L.) Gaertn.] cultivars. Ind. Crops Prod. 2016, 83, 11–16. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Bernatoniene, J. Antioxidant Effects of Schisandra chinensis fruits and their active constituents. Antioxidants 2021, 10, 620. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.M.; Ramu, R.; Shirahatti, P.S.; Shivamallu, C.; Amachawadi, R.G. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 2021, 7, e07054. [Google Scholar] [CrossRef]
- Houghton, P.J. Valerian—The Genus Valeriana; Harwood Academic Publishers: Amsterdam, The Netherlands, 1997; 142p. [Google Scholar]
- Osuna-García, J.A.; Wall, M.M.; Waddell, C.A. endogenous levels of tocopherols and ascorbic acid during fruit ripening of New Mexican-type chile (Capsicum annuum L.) cultivars. J. Agric. Food Chem. 1998, 46, 5093–5096. [Google Scholar] [CrossRef]
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2014; Volume 7, pp. 340–371. [Google Scholar] [CrossRef]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci. 2017, 8, 613. [Google Scholar] [CrossRef]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef]
- Abdullin, I.F.; Turova, E.N.; Gaisina, G.K.; Budnikov, G.K. Use of electrogenerated bromine for estimating the total antioxidant capacity of plant raw materials and plant-based medicinal preparations. J. Anal. Chem. 2002, 57, 557–560. [Google Scholar] [CrossRef]
- Abdullin, I.F.; Turova, E.N.; Budnikov, G.K.; Ziyatdinova, G.K.; Gajsina, G.K. Electrogenerated bromine-reagent for determination of antioxidant capacity of juices and extracts. Zavod. Laboratoriya. Diagn. Mater. 2002, 68, 12–15. [Google Scholar]
- Ziyatdinova, G.; Kalmykova, A.; Kupriyanova, O. Constant–current coulometry with electrogenerated titrants as a novel tool for the essential oils screening using total antioxidant parameters. Antioxidants 2022, 11, 1749. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.V.; Gerasimova, E.L.; Gazizullina, E.R.; Popova, K.G.; Matern, A.I. Study of the antioxidant activity and total polyphenol concentration of medicinal plants. J. Anal. Chem. 2017, 72, 415–420. [Google Scholar] [CrossRef]
- Ivanova, A.V.; Gerasimova, E.L.; Gazizullina, E.R. An integrated approach to the investigation of antioxidant properties by potentiometry. Anal. Chim. Acta 2020, 1111, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Brainina, K.; Stozhko, N.; Bukharinova, M.; Khamzina, E.; Vidrevich, M. Potentiometric method of plant microsuspensions antioxidant activity determination. Food Chem. 2019, 278, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Intarakamhang, S.; Schulte, A. Automated electrochemical free radical scavenger screening in dietary samples. Anal. Chem. 2012, 84, 6767–6774. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.K.F.; Tormin, T.F.; Sousa, R.M.F.; de Oliveira, A.; de Morais, S.A.L.; Richter, E.M.; Munoz, R.A.A. Batch-injection analysis with amperometric detection of the DPPH radical for evaluation of antioxidant capacity. Food Chem. 2016, 192, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Milardović, S.; Iveković, D.; Grabarić, B.S. A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 2006, 68, 175–180. [Google Scholar] [CrossRef]
- Gerasimova, E.; Gazizullina, E.; Kolbaczkaya, S.; Ivanova, A. The novel potentiometric approach to antioxidant capacity assay based on the reaction with stable radical 2,2′-diphenyl-1-picrylhydrazyl. Antioxidants 2022, 11, 1974. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 6. [Google Scholar] [CrossRef]
- Blanc, N.; Hauchard, D.; Audibert, L.; Gall, E.A. Radical-scavenging capacity of phenol fractions in the brown seaweed Ascophyllum nodosum: An electrochemical approach. Talanta 2011, 84, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Keffous, F.; Belboukhari, N.; Sekkoum, K.; Djeradi, H.; Cheriti, A.; Aboul-Enein, H.Y. Determination of the antioxidant activity of Limoniastrum feei aqueous extract by chemical and electrochemical methods. Cogent Chem. 2016, 2, 1186141. [Google Scholar] [CrossRef]
- Rahmani, Z.; Belfar, A.; Touahria, T.; Bensaci, C.; Rahmani, Z.; Dekmouche, M.; Saidi, M.; Douadi, A. Evaluation of antioxidant activity by electrochemical and chemical methods, kinetics and thermodynamic parameters of superoxide anion radical towards Cupressus sempervirens L. extracts. J. New Mater. Electrochem. Syst. 2022, 25, 55–61. [Google Scholar] [CrossRef]
- Ahmed, S.; Shakeel, F. Voltammetric determination of antioxidant character in Berberis lycium Royel, Zanthoxylum armatum and Morus nigra Linn plants. Pak. J. Pharm. Sci. 2012, 25, 501–507. [Google Scholar] [PubMed]
- Muhammad, H.; Qasim, M.; Ikram, A.; Versiani, M.A.; Tahiri, I.A.; Yasmeen, K.; Abbasi, M.W.; Azeem, M.; Ali, S.T.; Gul, B. Antioxidant and antimicrobial activities of Ixora coccinea root and quantification of phenolic compounds using HPLC. S. Afr. J. Bot. 2020, 135, 71–79. [Google Scholar] [CrossRef]
- Gonçalves, R.S.; Battistin, A.; Pauletti, G.; Rota, L.; Serafini, L.A. Antioxidant properties of essential oils from Mentha species evidenced by electrochemical methods. Rev. Bras. Plantas Med. 2009, 11, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Ziyatdinova, G.K.; Zakharova, S.P.; Budnikov, H.C. Reactions of phenolic antioxidants with electrogenerated superoxide anion radical and their analytical application. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. 2015, 157, 129–142. (In Russian) [Google Scholar]
- René, A.; Abasq, M.-L.; Hauchard, D.; Hapiot, P. How do phenolic compounds react toward superoxide ion? A simple electrochemical method for evaluating antioxidant capacity. Anal. Chem. 2010, 82, 8703–8710. [Google Scholar] [CrossRef]
- Jadreško, D.; Miličević, A.; Jovanović, I.N. Reactivity of flavonoids toward superoxide radical: An electrochemical approach. Electrochim. Acta 2022, 421, 140501. [Google Scholar] [CrossRef]
- Mello, L.D.; Hernandez, S.; Marrazza, G.; Mascini, M.; Kubota, L.T. Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor. Biosens. Bioelectron. 2006, 21, 1374–1382. [Google Scholar] [CrossRef]
- Barroso, A.F.; Ramalhosa, M.J.; Alves, A.C.; Dias, A.; Soares, C.M.D.; Oliva-Teles, M.T.; Delerue-Matos, C. Total antioxidant capacity of plant infusions: Assessment using electrochemical DNA-based biosensor and spectrophotometric methods. Food Control. 2016, 68, 153–161. [Google Scholar] [CrossRef]
- Labuda, J.; Bučková, M.; Heilerová, L.; Čaniová-Žiaková, A.; Brandšteterová, E.; Mattusch, J.; Wennrich, R. Detection of antioxidative activity of plant extracts at the DNA-modified screen-printed electrode. Sensors 2002, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hilgemann, M.; Scholz, F.; Kahlert, H.; de Carvalho, L.M.; da Rosa, M.B.; Lindequist, U.; Wurster, M.; do Nascimento, P.C.; Bohrer, D. Electrochemical assay to quantify the hydroxyl radical scavenging activity of medicinal plant extracts. Electroanalysis 2010, 22, 406–412. [Google Scholar] [CrossRef]
- Hashkavayi, A.B.; Hashemnia, S.; Osfouri, S. Investigations of antioxidant potential and protective effect of Acanthophora algae on DNA damage: An electrochemical approach. Microchem. J. 2020, 159, 105455. [Google Scholar] [CrossRef]
- Ivanova, A.V.; Gerasimova, E.L.; Gazizullina, E.R. New antiradical capacity assay with the use potentiometric method. Anal. Chim. Acta 2019, 1046, 69–76. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Snegureva, Y.; Budnikov, H. Novel approach for the voltammetric evaluation of antioxidant activity using DPPH•-modified electrode. Electrochim. Acta 2017, 247, 97–106. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Zelenova, Y.; Budnikov, H. Novel modified electrode with immobilized galvinoxyl radical for the voltammetric determination of antioxidant activity. J. Electroanal. Chem. 2020, 856, 113677. [Google Scholar] [CrossRef]
- Ayaz, S.; Üzer, A.; Dilgin, Y.; Apak, R. A novel flow injection amperometric method for sensitive determination of total antioxidant capacity at cupric-neocuproine complex modified MWCNT glassy carbon electrode. Microchim. Acta 2022, 189, 167. [Google Scholar] [CrossRef]
- Ziyatdinova, G.K.; Budnikov, H.C. Evaluation of the antioxidant properties of spices by cyclic voltammetry. J. Anal. Chem. 2014, 69, 990–997. [Google Scholar] [CrossRef]
- Menezes Peixoto, C.R.D.; Fraga, S.; Rosa Justim, J.D.; Silva Gomes, M.; Gonçalves Carvalho, D.; Jarenkow, J.A.; Fernandes de Moura, N. Voltammetric determination of total antioxidant capacity of Bunchosia glandulifera tree extracts. J. Electroanal. Chem. 2017, 799, 519–524. [Google Scholar] [CrossRef]
- Latos-Brozio, M.; Masek, A.; Chrzescijanska, E.; Podsędek, A.; Kajszczak, D. Characteristics of the polyphenolic profile and antioxidant activity of cone extracts from conifers determined using electrochemical and spectrophotometric methods. Antioxidants 2021, 10, 1723. [Google Scholar] [CrossRef]
- Amidi, S.; Mojab, F.; Bayandori Moghaddam, A.; Tabib, K.; Kobarfard, F. A simple electrochemical method for the rapid estimation of antioxidant potentials of some selected medicinal plants. Iran. J. Pharm. Res. IJPR 2012, 11, 117–121. [Google Scholar] [PubMed]
- Blasco, A.J.; Rogerio, M.C.; González, M.C.; Escarpa, A. “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal. Anal. Chim. Acta 2005, 539, 237–244. [Google Scholar] [CrossRef]
- Barros, L.; Cabrita, L.; Vilas Boas, M.; Carvalho, A.M.; Ferreira, I.C.F.R. Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem. 2011, 127, 1600–1608. [Google Scholar] [CrossRef]
- Głód, B.K.; Kiersztyn, I.; Piszcz, P. Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements. J. Electroanal. Chem. 2014, 719, 24–29. [Google Scholar] [CrossRef]
- Leite, K.C.S.; Garcia, L.F.; Lobón, G.S.; Thomaz, D.V.; Moreno, E.K.G.; de Carvalho, M.F.; Rocha, M.L.; dos Santos, W.T.P.; Gil, E.D.S. Antioxidant activity evaluation of dried herbal extracts: An electroanalytical approach. Rev. Bras. Farmacogn. 2018, 28, 325–332. [Google Scholar] [CrossRef]
- Banica, F.; Bungau, S.; Tit, D.M.; Behl, T.; Otrisal, P.; Nechifor, A.C.; Gitea, D.; Pavel, F.-M.; Nemeth, S. Determination of the total polyphenols content and antioxidant activity of echinacea purpurea extracts using newly manufactured glassy carbon electrodes modified with carbon nanotubes. Processes 2020, 8, 833. [Google Scholar] [CrossRef]
- Newair, E.F.; Abdel-Hamid, R.; Kilmartin, P.A. Electrochemical determination of the antioxidant activity in Echinacea Purpurea roots using square wave voltammetry. Electroanalysis 2017, 29, 1131–1140. [Google Scholar] [CrossRef]
- Čižmek, L.; Bavcon Kralj, M.; Čož-Rakovac, R.; Mazur, D.; Ul’yanovskii, N.; Likon, M.; Trebše, P. Supercritical carbon dioxide extraction of four medicinal mediterranean plants: Investigation of chemical composition and antioxidant activity. Molecules 2021, 26, 5697. [Google Scholar] [CrossRef]
- Cosio, M.S.; Buratti, S.; Mannino, S.; Benedetti, S. Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the Labiatae family. Food Chem. 2006, 97, 725–731. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Kozlova, E.; Morozova, E.; Budnikov, H. Chronocoulometric method for the evaluation of antioxidant capacity of medicinal plant tinctures. Anal. Methods 2018, 10, 4995–5003. [Google Scholar] [CrossRef]
- Kalmykova, A.; Ziyatdinova, G. Screening of essential oil antioxidant capacity using electrode modified with carboxylated multi-walled carbon nanotubes. Eng. Proc. 2022, 27, 48. [Google Scholar] [CrossRef]
- Robledo, S.N.; Pierini, G.D.; Díaz Nieto, C.H.; Fernández, H.; Zon, M.A. Development of an electrochemical method to determine phenolic monoterpenes in essential oils. Talanta 2019, 196, 362–369. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Kozlova, E.; Budnikov, H.; Davletshin, R. Selective determination of total capsaicinoids in plant material using poly(gallic acid)-modified electrode. Electroanalysis 2019, 31, 222–230. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Ziganshina, E.; Shamsevalieva, A.; Budnikov, H. Voltammetric determination of capsaicin using CeO2-surfactant/SWNT-modified electrode. Arab. J. Chem. 2020, 13, 1624–1632. [Google Scholar] [CrossRef]
- Gomes, J.S.; da Costa, É.A.; Munoz, R.A.A.; de Oliveira, A.; Sousa, R.M.F. Selective Electrochemical detection of catechin compounds in herbal medicines. J. Electrochem. Soc. 2022, 169, 017516. [Google Scholar] [CrossRef]
- Konieczyński, P. Electrochemical fingerprint studies of selected medicinal plants rich in flavonoids. Acta Pol. Pharm.—Drug Res. 2015, 72, 655–661. [Google Scholar]
- Gandhi, M.; Amreen, K. Electrochemical profiling of plants. Electrochem 2022, 3, 30. [Google Scholar] [CrossRef]
- Doménech-Carbó, A. Electrochemistry of plants: Basic theoretical research and applications in plant science. J. Solid State Electrochem. 2021, 25, 2747–2757. [Google Scholar] [CrossRef]
- Adarakatti, P.S.; Kempahanumakkagari, S.K. Modified electrodes for sensing. In Electrochemistry; Banks, C., McIntosh, S., Eds.; The Royal Society of Chemistry: London, UK, 2019; Volume 15, pp. 58–95. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Budnikov, H. Electroanalysis of antioxidants in pharmaceutical dosage forms: State-of-the-art and perspectives. Monatsh. Chem. 2015, 146, 741–753. [Google Scholar] [CrossRef]
- Murtada, K.; Moreno, V. Nanomaterials-based electrochemical sensors for the detection of aroma compounds-towards analytical approach. J. Electroanal. Chem. 2020, 861, 113988. [Google Scholar] [CrossRef]
- Ziyatdinova, G.K.; Budnikov, H.C. Spice antioxidants as objects of analytical chemistry. J. Anal. Chem. 2018, 73, 946–965. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Z. Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids. Nanomaterials 2020, 10, 2020. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinova, G.; Guss, E.; Yakupova, E. Electrochemical sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. Sensors 2021, 21, 8385. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinova, G.K.; Zhupanova, A.S.; Budnikov, H.C. Electrochemical sensors for the simultaneous detection of phenolic antioxidants. J. Anal. Chem. 2022, 77, 155–172. [Google Scholar] [CrossRef]
- Niu, X.; Li, X.; Chen, W.; Li, X.; Weng, W.; Yin, C.; Dong, R.; Sun, W.; Li, G. Three-dimensional reduced graphene oxide aerogel modified electrode for the sensitive quercetin sensing and its application. Mater. Sci. Eng. C 2018, 89, 230–236. [Google Scholar] [CrossRef]
- Rajabi, H.; Noroozifar, M. Modified graphite paste electrode with Lewatit FO36 nanoresin/multi-walled carbon nanotubes for determination of quercetin. Russ. J. Electrochem. 2018, 54, 234–242. [Google Scholar] [CrossRef]
- Ziyatdinova, G.K.; Zakharova, S.P.; Ziganshina, E.R.; Budnikov, H.C. Voltammetric determination of flavonoids in medicinal plant materials using electrodes modified by cerium dioxide nanoparticles and surfactants. J. Anal. Chem. 2019, 74, 816–824. [Google Scholar] [CrossRef]
- Luo, G.; Deng, Y.; Zhu, L.; . Liu, J.; Zhang, B.; Zhang, Y.; Sun, W.; Li, G. Au-Co nanoparticles-embedded N-doped carbon nanotube hollow polyhedron modified electrode for electrochemical determination of quercetin. Microchim. Acta 2020, 187, 546. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Kozlova, E.; Budnikov, H. Poly(gallic acid)/MWNT-modified electrode for the selective and sensitive voltammetric determination of quercetin in medicinal herbs. J. Electroanal. Chem. 2018, 821, 73–81. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Weng, W.; Xie, H.; Luo, G.; Niu, Y.; Zhang, S.; Li, G.; Sun, W. A biomass-derived porous carbon-based nanocomposite for voltammetric determination of quercetin. Microchim. Acta 2019, 186, 783. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, N.; Adeh, N.B.; Najafi, M. A highly defective mesoporous carbon–ionic liquid paste electrode toward the sensitive electrochemical determination of rutin. Anal. Methods 2017, 9, 84–93. [Google Scholar] [CrossRef]
- Calderón, J.A.; Cardozo-Pérez, M.; Torres-Benítez, A.; García-Beltrán, O.; Nagles, E. New combination between chitosan, single walled carbon nanotubes and neodymium(III) oxide found to be useful in the electrochemical determination of rutin in the presence of morin and quercetin. Anal. Methods 2017, 9, 6474–6481. [Google Scholar] [CrossRef]
- Guss, E.V.; Ziyatdinova, G.K.; Zhupanova, A.S.; Budnikov, H.C. Voltammetric determination of quercetin and rutin on their simultaneous presence on an electrode modified with polythymolphthalein. J. Anal. Chem. 2020, 75, 526–535. [Google Scholar] [CrossRef]
- Arvand, M.; Daneshvar., S. Facile strategy for preparation of core/shell-structured zinc oxide-magnetite hybrids for quantification of quercetin and rutin in pharmaceutical herbs. J. Anal. Chem. 2019, 74, 920. [Google Scholar] [CrossRef]
- Varghese, A.; Chitravathi, S.; Munichandraiah, N. Electrocatalytic oxidation and determination of morin at a poly(2,5-dimercapto-1,3,4-thiadiazole) modified carbon fiber paper electrode. J. Electrochem. Soc. 2016, 163, B471–B477. [Google Scholar] [CrossRef]
- Erady, V.; Mascarenhas, R.J.; Satpati, A.K.; Bhakta, A.K.; Mekhalif, Z.; Delhalle, J. Sensitive voltammetric determination of morin in Psidium guajava leaf extract at nickel (II) phthalocyanine modified carbon paste electrode. Surf. Interf. 2020, 19, 100517. [Google Scholar] [CrossRef]
- Agnihotri, A.S.; Nidhin, M.; Rison, S.; Akshaya, K.B.; Varghese, A. Tuning of the surface structure of silver nanoparticles using gum arabic for enhanced electrocatalytic oxidation of morin. Appl. Surf. Sci. Adv. 2021, 6, 100181. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Ziganshina, E.; Budnikov, H. Electrooxidation of morin on glassy carbon electrode modified by carboxylated single-walled carbon nanotubes and surfactants. Electrochim. Acta 2014, 145, 209–216. [Google Scholar] [CrossRef]
- Manasa, G.; Mascarenhas, R.J.; Bhakta, A.K.; Mekhalif, Z. Nano-graphene-platelet/Brilliant-green composite coated carbon paste electrode interface for electrocatalytic oxidation of flavanone hesperidin. Microchem. J. 2021, 160, 105768. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, R.; Lin, H.; Wei, Q.; Hu, F.; Yang, X. Novel plant flavonoid electrochemical sensor based on in-situ and controllable double-layered membranes modified electrode. PLoS ONE 2020, 15, e0237583. [Google Scholar] [CrossRef]
- Wang, W.; Gao, J.; Wang, L.; Ye, B. Electrochemical behavior of naringenin and its sensitive determination based on a single-walled carbon nanotube modified electrode. Anal. Methods 2015, 7, 8847–8856. [Google Scholar] [CrossRef]
- Li, H.; Sheng, K.; Xie, Z.; Zou, L.; Ye, B. Highly sensitive determination of hyperin on poly(diallyldimethylammonium chloride)-functionalized graphene modified electrode. J. Electroanal. Chem. 2016, 76, 105–113. [Google Scholar] [CrossRef]
- Li, H.; Shi, Y.; Gao, Y. A electrochemical sensor for hyperin determination in Chinese Medicine based on graphene composites modified electrode. J. Inorg. Organomet. Polym. 2020, 30, 3973–3979. [Google Scholar] [CrossRef]
- Li, S.; Lei, S.; Yu, Q.; Zou, L.; Ye, B. A novel electrochemical sensor for detecting hyperin with a nanocomposite of ZrO2-SDS-SWCNTs as decoration. Talanta 2018, 185, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, L.; Sheng, K.; Zou, L.; Ye, B. Highly sensitive determination of esculetin on TiO2-NPs-coated poly(diallyldimethylammonium chloride)-functionalized graphene modified electrode. Talanta 2016, 161, 838–846. [Google Scholar] [CrossRef]
- Yan, L.; Huang, L.; Hu, T.; Ai, Y.; Wang, B.; Sun, W. Synthesis of sp-hybridized nitrogen doped ultrathin graphdiyne and application to the electrochemical detection for 6,7-dihydroxycoumarin. Talanta 2022, 242, 123295. [Google Scholar] [CrossRef]
- Zhai, H.; Wang, H.; Wang, S.; Chen, Z.; Wang, S.; Zhou, Q.; Pan, Y. Electrochemical determination of mangiferin and icariin based on Au-AgNPs/MWNTs-SGSs modified glassy carbon electrode. Sens. Actuators B Chem. 2018, 255, 1771–1780. [Google Scholar] [CrossRef]
- Xie, Z.; Li, G.; Fu, Y.; Sun, M.; Ye, B. Sensitive, simultaneous determination of chrysin and baicalein based on Ta2O5-chitosan composite modified carbon paste electrode. Talanta 2017, 165, 553–562. [Google Scholar] [CrossRef]
- Xie, Z.; Lu, W.; Yang, L.; Li, G.; Ye, B. A voltammetry sensor platform for baicalein and baicalin simultaneous detection in vivo based on Ta2O5-Nb2O5@CTS composite. Talanta 2017, 170, 358–368. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, L.; Zhang, Y.; Zou, L.; Li, G.; Ye, B. Highly sensitive determination of gallic acid based on a Pt nanoparticle decorated polyelectrolyte-functionalized graphene modified electrode. Anal. Methods 2016, 8, 8474–8482. [Google Scholar] [CrossRef]
- Krishnan, V.; Gunasekaran, E.; Prabhakaran, C.; Kanagavalli, P.; Ananth, V.; Veerapandian, M. Electropolymerized methylene blue on graphene oxide framework for the direct voltammetric detection of gallic acid. Mater. Chem. Phys. 2023, 295, 127071. [Google Scholar] [CrossRef]
- Liu, L.; Gou, Y.; Gao, X.; Zhang, P.; Chen, W.; Feng, S.; Hu, F.; Li, Y. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples. Mater. Sci. Engin. C 2014, 42, 227–233. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, Y.; Li, Q.; Du, H.; Gui, G.; Zhao, G. Electrochemical determination of ferulic acid in Pinellia Ternata based on GOs/MWCNTs nanocomposite modified electrode. Int. J. Electrochem. Sci. 2020, 15, 559–566. [Google Scholar] [CrossRef]
- Buffon, E.; Stradiotto, N.R. A molecularly imprinted polymer on reduced graphene oxide-gold nanoparticles modified screen-printed electrode for selective determination of ferulic acid in orange peels. Microchem. J. 2021, 167, 106339. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Zhupanova, A.; Davletshin, R. Simultaneous determination of ferulic acid and vanillin in vanilla extracts using voltammetric sensor based on electropolymerized bromocresol purple. Sensors 2022, 22, 288. [Google Scholar] [CrossRef]
- Alipour, S.; Azar, P.A.; Husain, S.W.; Rajabi, H.R. Determination of rosmarinic acid in plant extracts using a modified sensor based on magnetic imprinted polymeric nanostructures. Sens. Actuators B Chem. 2020, 323, 128668. [Google Scholar] [CrossRef]
- Özdokur, K.V.; Koçak, Ç.C. Simultaneous determination of rosmarinic acid and protocatechuic acid at poly(o-phenylenediamine)/Pt nanoparticles modified glassy carbon electrode. Electroanalysis 2019, 31, 2359–2367. [Google Scholar] [CrossRef]
- Chao, M.; Ma, X. Voltammetric determination of chlorogenic acid in pharmaceutical products using poly(aminosulfonic acid) modified glassy carbon electrode. J. Food Drug Anal. 2014, 22, 512–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, N.; Najafi, M.; Adeh, N.B. Highly defective mesoporous carbon–ionic liquid paste electrode as sensitive voltammetric sensor for determination of chlorogenic acid in herbal extracts. Sens. Actuators B Chem. 2017, 243, 838–846. [Google Scholar] [CrossRef]
- Karastogianni, S.; Diamantidou, D.; Girousi, S. Selective voltammetric detection of ascorbic acid from rosa canina on a modified graphene oxide paste electrode by a manganese(II) complex. Biosensors 2021, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Pekin, M.; Eskiköy Bayraktepe, D.; Yazan, Z. Electrochemical sensor based on a sepiolite clay nanoparticle-based electrochemical sensor for ascorbic acid detection in real-life samples. Ionics 2017, 23, 3487–3495. [Google Scholar] [CrossRef]
- Abdullin, I.F.; Turova, E.N.; Ziyatdinova, G.K.; Budnikov, G.K. Potentiometric determination of ascorbic acid: Estimation of its contribution to the total antioxidant capacity of plant materials. J. Anal. Chem. 2002, 57, 353–355. [Google Scholar] [CrossRef]
- Erdurak-Kiliç, C.S.; Uslu, B.; Dogan, B.; Ozgen, U.; Ozkan, S.A.; Coskun, M. Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some Rosa species of Turkey. J. Anal. Chem. 2006, 61, 1113–1120. [Google Scholar] [CrossRef]
- Veerapandi, G.; Meenakshi, S.; Anitta, S.; Arul, C.; Ashokkumar, P.; Sekar, C. Precise and quick detection of ascorbic acid and eugenol in fruits, pharmaceuticals and medicinal herbs using hydroxyapatite-titanium dioxide nanocomposite-based electrode. Food Chem. 2022, 382, 132251. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Ziganshina, E.; Budnikov, H. Voltammetric sensing and quantification of eugenol using nonionic surfactant self-organized media. Anal. Methods 2013, 5, 4750–4756. [Google Scholar] [CrossRef]
- Yildiz, G.; Aydogmus, Z.; Cinar, M.E.; Senkal, F.; Ozturk, T. Electrochemical oxidation mechanism of eugenol on graphene modified carbon paste electrode and its analytical application to pharmaceutical analysis. Talanta 2017, 173, 1–8. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Ziganshina, E.; Romashkina, S.; Budnikov, H. Highly sensitive amperometric sensor for eugenol quantification based on CeO2 nanoparticles and surfactants. Electroanalysis 2017, 29, 1197–1204. [Google Scholar] [CrossRef]
- Maciel, J.V.; Silva, T.A.; Dias, D.; Fatibello-Filho, O. Electroanalytical determination of eugenol in clove oil by voltammetry of immobilized microdroplets. J. Solid State Electrochem. 2018, 22, 2277–2285. [Google Scholar] [CrossRef]
- Kowalcze, M.; Wyrwa, J.; Dziubaniuk, M.; Jakubowska, M. Voltammetric determination of anethole on La2O3/CPE and BDDE. J. Anal. Methods Chem. 2018, 2018, 2158407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertuola, M.; Fagali, N.; de Mele, M.F.L. Detection of carvacrol in essential oils by electrochemical polymerization. Heliyon 2020, 6, e03714. [Google Scholar] [CrossRef] [PubMed]
- Ciszewski, A.; Milczarek, G. Preparation and general properties of chemically modified electrodes based on electrosynthesized thin polymeric films derived from eugenol. Electroanalysis 2001, 13, 860–867. [Google Scholar] [CrossRef]
- Paul, D.W.; Prajapati, I.; Reed, M.L. Electropolymerized eugenol: Evaluation as a protective film for oxygen sensing. Sens. Actuators B Chem. 2013, 183, 129–135. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Kozlova, E.; Budnikov, H. Electropolymerized eugenol-MWNT-based electrode for voltammetric evaluation of wine antioxidant capacity. Electroanalysis 2015, 27, 1660–1668. [Google Scholar] [CrossRef]
- Pierini, G.D.; Bortolato, S.A.; Robledo, S.N.; Alcaraz, M.A.; Fernández, H.; Goicoechea, H.C.; Zon, M.A. Second-order electrochemical data generation to quantify carvacrol in oregano essential oils. Food Chem. 2022, 368, 130840. [Google Scholar] [CrossRef]
- Kowalcze, M.; Jakubowska, M. Multivariate approach in voltammetric identification and simultaneous determination of eugenol, carvacrol, and thymol on boron-doped diamond electrode. Monatsh. Chem. 2019, 150, 991–1002. [Google Scholar] [CrossRef] [Green Version]
Medicinal Plant | Phenolic Antioxidants | Refs. |
---|---|---|
Aloe vera (L.) Webb. | Flavonoids (quercetin, kaempferol, apigenin, catechins, rutin, myricetin), hydroxybenzoic (gallic, protocatechuic, vanillic, syringic, gentisic), and hydroxycinnamic (sinapic, chlorogenic, caffeic, coumaric, ferulic) acids | [48] |
Aralia elata (Miq.) Seem. | Phenolic acids (gallic, ferulic, sinapic, caffeic, chlorogenic, 3,5-di-O-caffeoylquinic, cryptochlorogenic, neochlorogenic, protocatechuic), flavonoids (catechin, epicatechin, quercetin, kaempferol, and their glycosides), coumarins, and lignans | [49,50] |
Calendula officinalis L. | Flavonoids (quercetin, isorhamnetin, and their glycosides, isoquercetin, narcissin, calendoflaside, calendoflavoside, calendoflavobioside, neohesperidoside) | [51,52] |
Capsicum annuum L. | Capsaicinoids, hydroxybenzoic and hydroxycinnamic acids; flavonoids (quercetin, kaempferol, apigenin, luteolin, and their glycosides, catechins), resveratrol, anthocyanidins, and coumarins | [53] |
Crataegus spp. | Procyanidins (epicatechin-type oligomers), flavonoids (vitexin, quercetin, hyperoside, luteolin, and their glycosides, rutin), chlorogenic acid | [54] |
Echinacea purpurea (L.) Moench | Caffeic acid and its derivatives (caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid), rutin | [55,56] |
Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. | Lignans (eleutherosides), flavonoids (rutoside, hyperoside, prunin, isoquercetin, kaempferol glycosides), hydroxycinnamic (chlorogenic, ferulic, rosmarinic, caffeic), and hydroxybenzoic (protocatechuic, vanillic, gallic) acids | [57,58,59,60] |
Eucalyptus spp. | Flavonoids (quercetin, rutin, catechin) and phenolic acids (gallic, chlorogenic, and ellagic) | [61] |
Hypericum perforatum L. | Hydroxycinnamic acids (chlorogenic, cryptochlorogenic, neochlorogenic, ferulic, caffeic, 4- and 5-O-p-coumaroylquinic acids), protocatechuic acid, flavonoids (hyperoside, isoquercitrin, miquelianin, quercitrin, quercetin, rutin, hyperforin, adhyperforin, hypericin, biapigenin) | [62,63] |
Ginkgo biloba L. | Flavonoids (quercetin, kaempferol, isorhamnetin, luteolin, and their glycosides, myricetin, morin), hydroxybenzoic (protocatechuic, syringic) and hydroxycinnamic (chlorogenic, caffeic, p-coumaric, rosmarinic) acids | [64,65] |
Leonurus cardiaca L. | Hydroxybenzoic (p-hydroxybenzoic, vanillic) and hydroxycinnamic (chlorogenic, caffeic, caffeoylmalic, and trans-ferulic) acids, flavonoids (rutin and quercetin), phenylethanoid glycosides (verbascoside and lavandulifolioside) | [66] |
Matricaria chamomilla L. | Flavonoids (apigenin, luteolin and their 7-O-glucosides, quercetin, rutin) and hydroxycinnamic (chlorogenic, caffeic, ferulic, p-coumaric) acids | [67] |
Mentha x piperita L. | Flavonoids (eriodictyol, luteolin, hesperetin, and apigenin glycosides, pebrellin, and gardenin B), hydroxycinnamic acids (rosmarinic and caffeic) | [68] |
Ocimum sanctum L. | Flavonoids (apigenin, vitexin, isovitexin, vicenin 2, apigenin-7-O-glucuronide, luteolin, orientin, isorientin, galuteolin, luteolin-7-O-glucuronide, quercetin), aesculin, hydroxycinnamic acids (caffeic, rosmarinic, chlorogenic) | [69] |
Paeonia anomala L. | Flavonoids (onopordin and its derivatives, quercetin glycosides), tannins, fischeroside B, gnetin H, resveratrol, ellagic acid, ethyl- and methylgallates | [70,71] |
Panax ginseng C. A. Meyer | Hydroxybenzoic (p-hydroxybenzoic, vanillic, protocatechuic, syringic, gentisic) and hydroxycinnamic (caffeic, p-, o-and m-coumaric and ferulic) acids, flavonoids (rutin, catechin, epicatechin, epigallocatechin gallate, quercitrin, apigenin, myricetin, morin, quercetin, kaempferol, naringenin, naringin), resveratrol, gomisins A and N51 | [72,73] |
Rhodiola rosea L. | Salidroside and its aglycon tyrosol, rosavin, rosarin, rosin, flavonoids (catechin, epigallocatechin, epigallocatechin gallate, quercetin, rutin), hydroxybenzoic (gallic, protocatechuic, vanillic) and hydroxycinnamic (caffeic, p-coumaric, ferulic, sinapic) acids | [74,75,76] |
Silybum marianum (L.) Gaertn. | Hydroxycinnamic acids (caffeic, ferulic, chlorogenic), flavonoids (luteolin, myricetin, apigenin, silybin) | [77] |
Schisandra chinensis (Turcz.) Baill. | Dibenzocyclooctadiene lignans (schisandrins A, B, C, gomisins, schisantherins and etc.), hydroxycinnamic (chlorogenic, p-coumaric) and hydroxybenzoic (p-hydroxybenzoic, protocatechuic, syringic and trace amounts of gentisic) acids, flavonoids (hyperoside, rutin, quercetin, and isoquercitrin) | [78] |
Syzygium aromaticum L. | Eugenol, vanillin, carvacrol, flavonoids (kaempferol, rhamnetin, myricetin, quercetin), eugenitin and eugenin, biflorin, ellagic, and gallic acids | [79] |
Thymus vulgaris L. | Thymol, carvacrol, flavonoids (6-hydroxyluteolin, apigenin, luteolin, cirsimaritin or genkwanin, cirsilineol, 5-desmethylnobiletin, 8-methoxycirsilineol, 7-methoxyluteolin, gardenin B, salvigenin, thymonin, sideritoflavone, xanthomicrol, thymusin), hydroxycinnamic (rosmarinic, caffeic, p-coumaric, ferulic) and hydroxybenzoic (p-hydroxybenzoic, gentisic, syringic) acids | [80] |
Valeriana officinalis L. | Hydroxycinnamic acids (caffeic, chlorogenic, and isoferulic), lignans ((+)-hydroxypinoresinol and pinoresinol), flavonoids (luteolin, diosmetin, kaempferol, apigenin, linarin) | [81] |
Electrode | Supporting Electrolyte | Superoxide Scavenging Capacity Expression | Plant Samples | Refs. |
---|---|---|---|---|
GCE | 0.5 M Bu4NPF6 in DMF | Ia50 | Ascophyllum nodosum phenol fractions | [97] |
0.1 M Bu4NPF6 in DMF | Ia (%) in ascorbic acid equivalents | Limoniastrum feei aqueous extract | [98] | |
0.1 M Bu4NBF4 in DMF | Ia50 | Cupressus sempervirens L. extracts | [99] | |
0.1 M Bu4NClO4 in DMSO | Antioxidant coefficient (Kao) | Berberis lycium Royel, Zanthoxylum armatum, and Morus nigra L. | [100] | |
0.1 M Bu4NClO4 in acetonitrile | Antioxidant coefficient (Kao) | Ixora coccinea Linn. root extract | [101] | |
Pt | 0.1 M Et4NCl in ethanol | Antioxidant coefficient (Kao) | 5 Mentha species essential oils | [102] |
MWCNTs/GCE | 0.05 M Et4NI in DMF | Ic in gallic acid equivalents | 11 medicinal herb tinctures | [103] |
Method | Electrode | Supporting Electrolyte | Antioxidant Parameters | Plant Samples | Refs. |
---|---|---|---|---|---|
DPV | Pt | 0.1 M Bu4NClO4 in acetonitrile | EI | Ethanolic extracts of Douglas fir, Scots pine, and Korean fir cones | [117] |
GCE | 0.1 M NaClO4 in methanol | Total electrochemical antioxidant power in ascorbic acid equivalents | Methanolic extracts from Cytisus multiflorus, Filipendula ulmaria, and Sambucus nigra flowers | [120] | |
0.1 M NaClO4 and 1 mM camphorsulfonic acid in 0.2 M PB 1 pH 7.4. | Total antioxidant potential (integral under the DPV curve) | 14 herbal extracts | [121] | ||
0.1 M PB pH 6.0 | EI | 10 herbal ethanolic extracts | [122] | ||
CNTs in 0.5% CS 2/GCE | Britton-Robinson buffer pH 3.0 | Total content of polyphenols Antioxidant capacity equivalent to ascorbic or gallic acids | Echinacea purpurea-based capsules, tablets, tincture | [123] | |
SWV | GCE | Britton-Robinson buffer pH 1.8 | Total polyphenol contents (area under the curve) | Roots of three Echinacea purpurea species | [124] |
Britton-Robinson buffer pH 2.5 | TAC in gallic acid equivalents (area under the curve) | CO2 supercritical fluid extracts from Matricaria chamomilla, Achillea millefolium, Helichrysum italicum, and Hypericum perforatum | [125] |
Method | Advantages | Disadvantages |
---|---|---|
Constant-current coulometry | Method is universal, simple, does not require standard antioxidants, is highly sensitive, and rapid. Low consumption of sample and possibility of automation, low cost. | Possible impact of non-antioxidants due to the relatively high reactivity of the electrogenerated bromine. Basic medium for the generation of ferrocyanide ions can cause chemical oxidation of the antioxidants with air oxygen. |
Potentiometry | Simplicity, low cost, the possibility of miniaturization and automation. | Necessity to use calibration. Estimation of high concentrations of the antioxidants due to low sensitivity. Limited range of antioxidants. |
Voltammetry using DPPH• | Rapidity, automation, and high throughput in flow mode. DPPH• immobilization on the electrode surface simplifies the procedure and reduces reagent consumption. | Limited range of reactive antioxidants. Insufficient stability of the reagent in solution and its applicability in organic medium and mainly to the liposoluble antioxidants. Low similarity of DPPH• to radicals acting in living systems. |
Voltammetry using O2•– | Rapidity, simplicity, and no need to use additional reagents. O2•– is a reactive oxygen specimen that occurs in living systems. | Necessity to use organic solvents and inapplicability in water media. Limited range of antioxidants to be studied. Narrow range of antioxidant concentrations due to the distortion of voltammograms shape making impossible calculations. |
Voltammetry using DNA-modified electrodes | Application of Fenton reaction occurred in biological systems. Possibility of device miniaturization. | DNA-immobilization technology, stability of the DNA-modified electrode. Effect of •OH on DNA in the cell and on the electrode is different. Fenton reactive mixture components and components of the sample can also affect the DNA. Sensitivity can be improved. Relatively high cost. |
Amperometric flow-injection analysis with copper(II)-neocuproine complex | Simplicity, rapidity, automation, high throughput, selectivity, low-cost, portability, and reagent stability. | Necessity to use standard antioxidant, chelating, or complexing compounds in the sample can affect the measurement results. |
Voltammetric EI | Method is universal, simple, rapid, low cost, and does not require additional reagents. | Only major components with high concentrations are measured. Impact of ascorbic acid or tocopherols cannot be excluded. |
Chrono methods | Method is universal, simple, rapid, low cost, and does not require additional reagents. Possibility of device miniaturization and operated using smartphone. Contribution of all components is taken into account. | Necessity of the electrode surface modification for sufficient sensitivity. Application of a standard antioxidant for comparison to other methods. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziyatdinova, G.; Kalmykova, A. Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review. Molecules 2023, 28, 2308. https://doi.org/10.3390/molecules28052308
Ziyatdinova G, Kalmykova A. Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review. Molecules. 2023; 28(5):2308. https://doi.org/10.3390/molecules28052308
Chicago/Turabian StyleZiyatdinova, Guzel, and Alena Kalmykova. 2023. "Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review" Molecules 28, no. 5: 2308. https://doi.org/10.3390/molecules28052308
APA StyleZiyatdinova, G., & Kalmykova, A. (2023). Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review. Molecules, 28(5), 2308. https://doi.org/10.3390/molecules28052308