A Turn-On Lipid Droplet-Targeted Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Intracellular Carboxylesterases and Cell Viability Imaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Photophysical Properties
2.2. Spectroscopic Response of DBPpys to CEs
2.3. Exploration of Reaction Mechanism
2.4. Temperature and pH Effect on the Probe and Selectivity
2.5. Intracellular Endogenous CE Detection
2.6. Detection of Healthy Status of Cells Pretreated with H2O2
2.7. Intracellular Lipid Droplet Colocalization
3. Experimental Section
3.1. Materials
3.2. Instruments
3.3. Titration and Calculation of LOD
3.4. Anti-Interference
3.5. Cell Cultures
3.6. Cytotoxicity Assay by CCK-8
3.7. Intracellular CE Detection
3.8. Cell Co-Localization Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hosokawa, T.S.M. The mammalian carboxylesterases: From molecules to functions. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 257–288. [Google Scholar]
- Buratti, F.M.; Testai, E. Malathion detoxification by human hepatic carboxylesterases and its inhibition by isomalathion and other pesticides. J. Biochem. Mol. Toxicol. 2005, 19, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Bayle, E.D.; Svensson, F.; Atkinson, B.N.; Steadman, D.; Willis, N.J.; Woodward, H.L.; Whiting, P.; Vincent, J.P.; Fish, P.V. Carboxylesterase notum is a druggable target to modulate wnt signaling. J. Med. Chem. 2021, 64, 4289–4311. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Perino, A.; Huang, Q.; Von Alvensleben, G.V.G.; Banaei-Esfahani, A.; Velazquez-Villegas, L.A.; Gariani, K.; Korbelius, M.; Bou Sleiman, M.; Imbach, J.; et al. Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis. Cell Metab. 2022, 34, 1594–1610. [Google Scholar] [CrossRef]
- Quiroga, A.D.; Li, L.; Trotzmuller, M.; Nelson, R.; Proctor, S.D.; Kofeler, H.; Lehner, R. Deficiency of carboxylesterase 1/esterase-x results in obesity, hepatic steatosis, and hyperlipidemia. Hepatology 2012, 56, 2188–2198. [Google Scholar] [CrossRef]
- Chalhoub, G.; Kolleritsch, S.; Maresch, L.K.; Taschler, U.; Pajed, L.; Tilp, A.; Eisner, H.; Rosina, P.; Kien, B.; Radner, F.P.W.; et al. Carboxylesterase 2 proteins are efficient diglyceride and monoglyceride lipases possibly implicated in metabolic disease. J. Lipid Res. 2021, 62, 100075. [Google Scholar] [CrossRef]
- Zhuang, J.; Li, N.; Zhang, Y.; Li, B.; Wen, H.; Zhang, X.; Zhang, T.; Zhao, N.; Tang, B.Z. Esterase-activated theranostic prodrug for dual organelles-targeted imaging and synergetic chemo-photodynamic cancer therapy. CCS Chem. 2022, 4, 1028–1043. [Google Scholar] [CrossRef]
- Lian, J.; Nelson, R.; Lehner, R. Carboxylesterases in lipid metabolism: From mouse to human. Protein Cell 2018, 9, 178–195. [Google Scholar] [CrossRef]
- Tan, P.; Zhuang, W.; Li, S.; Zhang, J.; Xu, H.; Yang, L.; Liao, Y.; Chen, M.; Wei, Q. A lipid droplet targeted fluorescent probe for high-efficiency image-guided photodynamic therapy of renal cell carcinoma. Chem. Commun. 2021, 57, 1046–1049. [Google Scholar] [CrossRef]
- Xu, X.; Deng, G.; Sun, Z.; Luo, Y.; Liu, J.; Yu, X.; Zhao, Y.; Gong, P.; Liu, G.; Zhang, P.; et al. A biomimetic aggregation-induced emission photosensitizer with antigen-presenting and hitchhiking function for lipid droplet targeted photodynamic immunotherapy. Adv. Mater. 2021, 33, 2102322. [Google Scholar] [CrossRef]
- Walther, T.; Farese, R.V., Jr. Lipid Droplets and Cellular Lipid Metabolism. Annu. Rev. Biochem. 2012, 81, 687–714. [Google Scholar] [CrossRef] [Green Version]
- Farese, R.V., Jr.; Walther, T.C. Lipid Droplets Finally Get a Little RESPECT. Cell 2009, 139, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Sedgwick, A.; Han, H.; Sen, S.; Chen, G.; Zang, Y.; Sessler, J.; James, T.; Li, J.; He, X. Fluorescent probes for the imaging of lipid droplets in live cells. Coord. Chem. Rev. 2021, 427, 213577. [Google Scholar] [CrossRef]
- Cao, M.; Zhu, T.; Zhao, M.; Meng, F.; Liu, Z.; Wang, J.; Niu, G.; Yu, X. Structure rigidification promoted ultrabright solvatochromic fluorescent probes for super-resolution imaging of cytosolic and nuclear lipid droplets. Anal. Chem. 2022, 94, 10676–10684. [Google Scholar] [CrossRef]
- Li, X.; Long, C.; Cui, Y.; Tao, F.; Yu, X.; Lin, W. Charge-dependent strategy enables a single fluorescent probe to study the interaction relationship between mitochondria and lipid droplets. ACS Sens. 2021, 6, 1595–1603. [Google Scholar] [CrossRef]
- De Silva, A.P.; Gunaratne, H.N.; Gunnlaugsson, T.; Huxley, A.J.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515–1566. [Google Scholar] [CrossRef]
- Tian, X.; Murfin, L.C.; Wu, L.; Lewis, S.E.; James, T.D. Fluorescent small organic probes for biosensing. Chem. Sci. 2021, 12, 3406–3426. [Google Scholar] [CrossRef]
- Li, Y.X.; Xie, D.T.; Yang, Y.X.; Chen, Z.; Guo, W.Y.; Yang, W.C. Development of small-molecule fluorescent probes targeting enzymes. Molecules 2022, 27, 4501. [Google Scholar] [CrossRef]
- Kamiya, M.; Kobayashi, H.; Hama, Y.; Koyama, Y.; Bernardo, M.; Nagano, T.; Peter; Choyke, L.; Urano, Y. An enzymatically activated fluorescence probe for targeted tumor imaging. J. Am. Chem. Soc. 2007, 129, 3918–3929. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.B.; Tan, W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem. Soc. Rev. 2018, 47, 7140–7180. [Google Scholar] [CrossRef]
- Wu, X.; Wang, R.; Kwon, N.; Ma, H.; Yoon, J. Activatable fluorescent probes for in situ imaging of enzymes. Chem. Soc. Rev. 2022, 51, 450–463. [Google Scholar] [CrossRef] [PubMed]
- Halabi, E.A.; Thiel, Z.; Trapp, N.; Pinotsi, D.; Rivera-Fuentes, P. A photoactivatable probe for super-resolution imaging of enzymatic activity in live cells. J. Am. Chem. Soc. 2017, 139, 13200–13207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; He, Z.; Yang, Y.; Li, X.; Li, Z.; Ma, H. New fluorescent probe with recognition moiety of bipiperidinyl reveals the rise of hepatocellular carboxylesterase activity during heat shock. Biosens. Bioelectron. 2022, 211, 114392. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.L.; Wang, H.R.; Chen, L.L.; Yang, B.; Yang, Y.S.; He, Z.X.; Zhu, H.L. Multifunctional fluorescent probe for simultaneously detecting microviscosity, micropolarity, and carboxylesterases and its application in bioimaging. Anal. Chem. 2022, 94, 4594–4601. [Google Scholar] [CrossRef]
- Gao, M.; Hu, Q.; Feng, G.; Tang, B.Z.; Liu, B. A fluorescent light-up probe with "AIE + ESIPT" characteristics for specific detection of lysosomal esterase. J. Mater. Chem. B 2014, 2, 3438–3442. [Google Scholar] [CrossRef]
- Wang, J.; Xu, W.; Yang, Z.; Yan, Y.; Xie, X.; Qu, N.; Wang, Y.; Wang, C.; Hua, J. New Diketopyrrolopyrrole-based ratiometric fluorescent probe for intracellular esterase detection and discrimination of live and dead cells in different fluorescence channels. ACS Appl. Mater. Inter. 2018, 10, 31088–31095. [Google Scholar] [CrossRef]
- Li, H.; Kim, H.; Xu, F.; Han, J.; Yao, Q.; Wang, J.; Pu, K.; Peng, X.; Yoon, J. Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: Design strategy, biomedical applications, and outlook. Chem. Soc. Rev. 2022, 51, 1795–1835. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.; Zhang, Y.; Jia, C.; Ji, M. Development and application of several fluorescent probes in near infrared region. Dyes. Pigm. 2021, 190, 109284. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Yang, J.; Qu, Y.; Hua, J. Colorimetric and ratiometric near-infrared fluorescent cyanide chemodosimeter based on phenazine derivatives. ACS Appl. Mater. Inter. 2013, 5, 1317–1326. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, T.; Chang, B.; Fang, J. Recent progress on NIR fluorescent probes for enzymes. Molecules 2022, 27, 5922. [Google Scholar] [CrossRef]
- Guo, Z.; Park, S.; Yoon, J.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 2014, 43, 16–29. [Google Scholar] [CrossRef]
- Li, S.; He, M.; Jin, X.; Geng, W.; Li, C.; Li, X.; Zhang, Z.; Qian, J.; Hua, J. Extending the stokes shifts of donor–acceptor fluorophores by regulating the donor configuration for in vivo three-photon fluorescence imaging. Chem. Mater. 2022, 34, 5999–6008. [Google Scholar] [CrossRef]
- Ren, T.-B.; Xu, W.; Zhang, W.; Zhang, X.-X.; Wang, Z.-Y.; Xiang, Z.; Yuan, L.; Zhang, X.-B. A general method to increase stokes shift by introducing alternating vibronic structures. J. Am. Chem. Soc. 2018, 140, 7716–7722. [Google Scholar] [CrossRef]
- Sharma, H.; Kakkar, R.; Bishnoi, S.; Milton, M.D. Synthesis of acceptor-donor-acceptor based phenothiazine-5-oxide aldehydes displaying large Stokes shift-“on-off-on” acidofluorochromic switch and molecular logic gate operation. J. Photoch. Photobio. A 2022, 430, 113944. [Google Scholar] [CrossRef]
- Li, X.; Yan, T.; Bin, H.; Han, G.; Xue, L.; Liu, F.; Yi, Y.; Zhang, Z.-G.; Russell, T.P.; Li, Y. Insertion of double bond π-bridges of A–D–A acceptors for high performance near-infrared polymer solar cells. J. Mater. Chem. A 2017, 5, 22588–22597. [Google Scholar] [CrossRef]
- Hu, X. Synthesis of novel hyperbranched polybenzo-bisthiazole amide with donor(-)acceptor (D-A) architecture, high fluorescent quantum yield and large stokes shift. Polymers 2017, 9, 304. [Google Scholar] [CrossRef] [Green Version]
- Zong, Z.Z.; Zhang, Q.; Qiu, S.H.; Wang, Q.; Zhao, C.X.; Zhao, C.X.; Tian, H.; Qu, D.H. Dynamic timing control over multicolor molecular emission by temporal chemical locking. Angew. Chem. Int. Ed. 2022, 134, e202116414. [Google Scholar] [CrossRef]
- Che, Y.X.; Qi, X.N.; Qu, W.J.; Shi, B.B.; Lin, Q.; Yao, H.; Zhang, Y.M.; Wei, T.B. Synthetic strategies of phenazine derivatives: A review. J. Hetero. Chem. 2022, 59, 969–996. [Google Scholar] [CrossRef]
- Qiu, S.H.; Zhang, Z.Y.; Wu, Y.F.; Tong, F.; Chen, K.; Liu, G.G.; Zhang, L.; Wang, Z.H.; Qu, D.H.; Tian, H. Vibratile dihydrophenazines with controllable luminescence enabled by precise regulation of π-conjugated wings. CCS Chem. 2021, 3, 2239–2248. [Google Scholar] [CrossRef]
- Ni, F.; Xie, M.; Liu, T.; Zhou, X.; Chen, Z.; Zheng, K.; Wu, Y.; Zhao, Q.; Yang, C. Aggregation-induced delayed fluorescence for time-resolved luminescence sensing of carboxylesterase in living cells. Chem. Eng. J. 2022, 437, 135396. [Google Scholar] [CrossRef]
- Zhou, H.; Tang, J.; Zhang, J.; Chen, B.; Kan, J.; Zhang, W.; Zhou, J.; Ma, H. A red lysosome-targeted fluorescent probe for carboxylesterase detection and bioimaging. J. Mater. Chem. B 2019, 7, 2989–2996. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Qu, Y.; Qu, W.; Zhang, X.; Hang, Y.; Ågren, H.; Hua, J. Red turn-on fluorescent phenazine-cyanine chemodosimeters for cyanide anion in aqueous solution and its application for cell imaging. Sensor. Actuat. B-Chem. 2014, 203, 833–847. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, L.; Li, C.; Yang, Z.; Yi, T.; Hua, J. A NIR fluorescent probe based on phenazine with a large Stokes shift for the detection and imaging of endogenous H2O2 in RAW 264.7 cells. Analyst 2020, 145, 4196–4203. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhao, Z.; Huang, Y.; Fan, F.; Wang, F.; Li, W.; Wu, X.; Hua, R.; Wang, Y. Hydrazine exposure: A near-infrared ICT-based fluorescent probe and its application in bioimaging and sewage analysis. Sci. Total. Environ. 2021, 759, 143102. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, C.X.; Crespi, S.; Li, X.; Zhang, Q.; Zhang, Z.Y.; Mei, J.; Tian, H.; Qu, D.H. Reversibly modulating a conformation-adaptive fluorophore in [2]catenane. Chem 2021, 7, 1544–1556. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Shi, Y.; He, Y.P.; Du, J.; Li, R.S.; Shi, H.J.; Sun, Z.G.; Wang, J. Serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibits the rat embryo implantation in vivo and interferes with cell adhesion in vitro. Contraception 2011, 84, 642–648. [Google Scholar] [CrossRef]
- Nakabo, Y.; Pabst, M.J. Lysis of leukemic cells by human macrophages: Inhibition by 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), a serine protease inhibitor. J. Leukoc. Biol. 1996, 60, 328–336. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Yang, Z.; Li, S.; Gu, X.; Yuan, T.; Li, C.; Wang, Y.; Hua, J. A lipid droplet-targeted multifunctional AIE-active fluorescent probe for hydrogen peroxide detection and imaging-guided photodynamic therapy. Sensor. Actuat. B-Chem. 2023, 375, 132892. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, L.; Su, W.; Liang, X.; Lin, W. A Fluorescent probe targeting mitochondria and lipid droplets for visualization of cell death. Chem. Asian J. 2022, 17, e202101304. [Google Scholar] [CrossRef]
- Welte, M.A. Expanding roles for lipid droplets. Curr. Biol. 2015, 25, R470–R481. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, S.; Li, X.; Yuan, T.; Xu, J.; Gu, X.; Hua, J. A Turn-On Lipid Droplet-Targeted Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Intracellular Carboxylesterases and Cell Viability Imaging. Molecules 2023, 28, 2317. https://doi.org/10.3390/molecules28052317
Li C, Li S, Li X, Yuan T, Xu J, Gu X, Hua J. A Turn-On Lipid Droplet-Targeted Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Intracellular Carboxylesterases and Cell Viability Imaging. Molecules. 2023; 28(5):2317. https://doi.org/10.3390/molecules28052317
Chicago/Turabian StyleLi, Chenglin, Sifan Li, Xinsheng Li, Tao Yuan, Jialei Xu, Xixin Gu, and Jianli Hua. 2023. "A Turn-On Lipid Droplet-Targeted Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Intracellular Carboxylesterases and Cell Viability Imaging" Molecules 28, no. 5: 2317. https://doi.org/10.3390/molecules28052317
APA StyleLi, C., Li, S., Li, X., Yuan, T., Xu, J., Gu, X., & Hua, J. (2023). A Turn-On Lipid Droplet-Targeted Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Intracellular Carboxylesterases and Cell Viability Imaging. Molecules, 28(5), 2317. https://doi.org/10.3390/molecules28052317