Ganoderic Acid A and Its Amide Derivatives as Potential Anti-Cancer Agents by Regulating the p53-MDM2 Pathway: Synthesis and Biological Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Anti-Proliferation Activity
2.2.1. The Anti-Proliferation Activity on MCF-7
2.2.2. The Anti-Proliferation Activity on SJSA-1, HepG2 and HK2
2.3. A2 Induces Apoptosis in SJSA-1 Cells
2.4. A2 Effects MDM2-P53 Signaling Pathway
2.4.1. A2 Effects the Expression of p53 Protein, MDM2 and Bcl-2/Bax
2.4.2. GAA and A2 Have In Vitro Binding Affinity with MDM2
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of (n-butyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A1)
3.1.2. Synthesis of (n-hexyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A2)
3.1.3. Synthesis of (4-Methylphenyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A3)
3.1.4. Synthesis of (4-Chlorophenyl)-(7β,15α,25R)-7,15-Dhydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A4)
3.1.5. Synthesis of (4-methylbenzyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A5)
3.1.6. Synthesis of (4-Fluorobenzyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A6)
3.1.7. Synthesis of (4-Chlorobenzyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A7)
3.1.8. Synthesis of (3,5-Dichlorobenzyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A8)
3.1.9. Synthesis of (2,3-Dihydro-1H-inden-2-yl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A9)
3.1.10. Synthesis of (4-Methylphenethyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A10)
3.1.11. Synthesis of (4-Fluorophenethyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A11)
3.1.12. Synthesis of (4-Chlorophenethyl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A12)
3.1.13. Synthesis of (4-Methylpiperazin-1-yl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A13)
3.1.14. Synthesis of (4-Ethylpiperazin-1-yl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A14)
3.1.15. Synthesis of (4-Phenylpiperazin-1-yl)-(7β,15α,25R)-7,15-Dihydroxy-3,11,23-Trioxolanost-8-en-26-oic Amide (A15)
3.2. Cell Culture
3.3. Cell Viability Assay
3.4. Target Fishing and Molecular Docking by In Silico Approaches
3.5. Surface Plasmon Resonance (SPR) Assay
3.6. Flow Cytometric Analysis of the Apoptosis Rate with Annexin V-FITC/PI Staining
3.7. Western Blot Analysis of Protein Expression
3.8. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, R.; He, Y. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. J. Ethnopharmacol. 2018, 210, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Yang, X.; Yang, X.; Xue, J.; Yang, Y. Ganoderic Acid A to Alleviate Neuroinflammation of Alzheimer’s Disease in Mice by Regulating the Imbalance of the Th17/Tregs Axis. J. Agric. Food Chem. 2021, 69, 14204–14214. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Ma, J.; Zhao, X.; Yu, X.; Ma, Y. Ganoderic Acid A Attenuates IL-1β-Induced Inflammation in Human Nucleus Pulposus Cells Through Inhibiting the NF-κB Pathway. Inflammation 2021, 45, 851–862. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, D.; Li, H.; Luo, S.; Xiao, Y.; Zhou, F.; Wang, C.; Feng, L.; Wang, G.; Wu, P.; et al. Activation of FXR by ganoderic acid A promotes remyelination in multiple sclerosis via anti-inflammation and regeneration mechanism. Biochem. Pharmacol. 2021, 185, 114422. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Sui, R. Ganoderic Acid A-Mediated Modulation of Microglial Polarization is Involved in Depressive-Like Behaviors and Neuroinflammation in a Rat Model of Post-Stroke Depression. Neuropsych. Dis. Treat. 2021, 17, 2671–2681. [Google Scholar] [CrossRef]
- Bao, H.; Li, H.; Jia, Y.; Xiao, Y.; Luo, S.; Zhang, D.; Han, L.; Dai, L.; Xiao, C.; Feng, L.; et al. Ganoderic acid A exerted antidepressant-like action through FXR modulated NLRP3 inflammasome and synaptic activity. Biochem. Pharmacol. 2021, 188, 114561. [Google Scholar] [CrossRef]
- Qi, L.; Liu, S.; Liu, Y.; Li, P.; Xu, X. Ganoderic Acid A Promotes Amyloid-β Clearance (In Vitro) and Ameliorates Cognitive Deficiency in Alzheimer’s Disease (Mouse Model) through Autophagy Induced by Activating Axl. Int. J. Mol. Sci. 2021, 22, 5559. [Google Scholar] [CrossRef]
- Yu, Z.; Jia, W.; Liu, C.; Wang, H.; Yang, H.; He, G.; Chen, R.; Du, G. Ganoderic acid A protects neural cells against NO stress injury in vitro via stimulating β adrenergic receptors. Acta Pharmacol. Sin. 2020, 41, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, Y.; Tian, Z. Anti-oxidant, anti-inflammatory and anti-fibrosis effects of ganoderic acid A on carbon tetrachloride induced nephrotoxicity by regulating the Trx/TrxR and JAK/ROCK pathway. Chem. Biol. Interact. 2021, 344, 109529. [Google Scholar] [CrossRef]
- Liu, F.; Shi, K.; Dong, J.; Jin, Z.; Wu, Y.; Cai, Y.; Lin, T.; Cai, Q.; Liu, L.; Zhang, Y. Ganoderic acid A attenuates high-fat-diet-induced liver injury in rats by regulating the lipid oxidation and liver inflammation. Arch. Pharm. Res. 2020, 43, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Song, H. Ganoderic acid A against cyclophosphamide-induced hepatic toxicity in mice. J. Biochem. Mol. Toxic. 2019, 33, e22271. [Google Scholar] [CrossRef]
- Guo, W.; Guo, J.; Liu, B.; Lu, J.; Chen, M.; Liu, B.; Bai, W.; Rao, P.; Ni, L.; Lv, X. Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food Funct. 2020, 11, 6818–6833. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jin, J.; Ding, J.; Li, S.; Cen, P.; Wang, K.; Wang, H.; Xia, J. Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway. Chem. Biol. Interact. 2018, 290, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, K.; Lin, T.; Xia, F.; Cai, Y.; Ye, Y.; Liu, L.; Liu, F. Ganoderic acid A alleviates myocardial ischemia-reperfusion injury in rats by regulating JAK2/STAT3/NF-κB pathway. Int. Immunopharmacol. 2020, 84, 106543. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Xie, P. Ganoderic acid A holds promising cytotoxicity on human glioblastoma mediated by incurring apoptosis and autophagy and inactivating PI3K/AKT signaling pathway. J. Biochem. Mol. Toxic. 2019, 33, e22392. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, K.; Shan, X. Effects of Ganoderic Acid A on Proliferation, Apoptosis and Invasion of Human Glioma U251 Cells. Chin. J. Comp. Med. 2016, 26, 64–69. [Google Scholar]
- Kanapathipillai, M. Treating p53 Mutant Aggregation-Associated Cancer. Cancers 2018, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yu, H.; Hu, W. The regulation of MDM2 oncogene and its impact on human cancers. Acta. Biochim. Biophys. Sin. 2014, 46, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Cheng, Q.; Li, Z.; Chen, J. p53 inactivation by MDM2 and MDMX negative feedback loops in testicular germ cell tumors. Cell Cycle 2010, 9, 1411–1420. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Obata, T.; Daikoku, T.; Fujiwara, H. The Association and Significance of p53 in Gynecologic Cancers: The Potential of Targeted Therapy. Int. J. Mol. Sci. 2019, 20, 5482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munisamy, M.; Mukherjee, N.; Thomas, L.; Pham, A.; Shakeri, A.; Zhao, Y.; Kolesar, J.; Rao, P.; Rangnekar, V.M.; Rao, M. Therapeutic opportunities in cancer therapy: Targeting the p53-MDM2/MDMX interactions. Am. J. Cancer Res. 2021, 11, 5762–5781. [Google Scholar] [PubMed]
- Hassin, O.; Oren, M. Drugging p53 in cancer: One protein, many targets. Nat. Rev. Drug Discov. 2023, 22, 127–144. [Google Scholar] [CrossRef]
- Xu, B.; Jia, W.; Wang, Z.; Zhang, H.; Wu, D.; Tang, C.; Yang, Y.; Liu, D.; Zhang, J.; Wang, W. Inhibitory effect and mechanism of ganoderic acid A on the growth of prostate cancer LNCaP cells. Mycosystema 2019, 38, 717–727. [Google Scholar] [CrossRef]
- Tang, W.; Wu, Y.; Wang, Y.; Sun, P.; Ouyang, J. P53 protein participates in the process of ganoderic acid inhibiting the proliferation of cancer cells. Sci. Technol. Food Ind. 2015, 36, 193–196. [Google Scholar] [CrossRef]
- Froufe, H.; Abreu, R.; Ferreira, I. Virtual screening of low molecular weight mushrooms compounds as potential Mdm2 inhibitors. J. Enzym. Inhib. Med. Chem. 2013, 28, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Staszczak, M. Fungal Secondary Metabolites as Inhibitors of the Ubiquitin-Proteasome System. Int. J. Mol. Sci. 2021, 22, 13309. [Google Scholar] [CrossRef]
- Walczak, J.; Maksymilian, D.; Ziomkowska, M.; Śliwka-Kaszyńska, M.; Daśko, M.; Trzonkowski, P.; Cholewiński, G. Novel amides of mycophenolic acid and some heterocyclic derivatives as immunosuppressive agents. J. Enzym. Inhib. Med. Chem. 2022, 37, 2725–2741. [Google Scholar] [CrossRef] [PubMed]
- Nassim, E.; Wang, M. Synthesis and biological evaluation of naloxone and naltrexone-derived hybrid opioids. Med. Chem. 2012, 8, 683–689. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Aguilar, A.; McEachern, D.; Przybranowski, S.; Liu, L.; Yang, C.; Wang, M.; Han, X.; Wang, S. Discovery of MD-224 as a First-in-Class, Highly Potent, and Efficacious Proteolysis Targeting Chimera Murine Double Minute 2 Degrader Capable of Achieving Complete and Durable Tumor Regression. J. Med. Chem. 2019, 62, 448–466. [Google Scholar] [CrossRef] [PubMed]
- Wurz, R.; Cee, V. Targeted Degradation of MDM2 as a New Approach to Improve the Efficacy of MDM2-p53 Inhibitors. J. Med. Chem. 2019, 62, 445–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodi, G.; Gentili, V.; Casciano, F.; Romani, A.; Zauli, G.; Secchiero, P.; Zauli, E.; Simioni, C.; Beltrami, S.; Fernandez, M.; et al. Cell cycle block by p53 activation reduces SARS-CoV-2 release in infected alveolar basal epithelial A549-hACE2 cells. Front. Pharmacol. 2022, 13, 1018761. [Google Scholar] [CrossRef] [PubMed]
Compound | R | Viability of Cells (% of Control) | ||
---|---|---|---|---|
25 µM | 50 µM | 100 µM | ||
A1 | 96.6 ± 6.2 | 114.3 ± 1.2 | 78.7 ± 3.4 | |
A2 | 66.76 ± 6.2 | 59.4 ± 4.7 | 50.37 ± 1.7 | |
A3 | 110.9 ± 2.2 | 114.3 ± 1.2 | 78.7 ± 3.9 | |
A4 | 116.4 ± 4.8 | 120.7 ± 2.0 | 108.9 ± 1.1 | |
A5 | 115.0 ± 2.9 | 107.4 ± 6.7 | 99.5 ± 1.0 | |
A6 | 77.1 ± 4.2 | 36.4 ± 2.6 | 26.4 ± 1.5 | |
A7 | 73.5 ± 4.0 | 46.6 ± 2.5 | 75.1 ± 13.2 | |
A8 | 63.3 ± 8.3 | 45.4 ± 3.9 | 39.4 ± 5.8 | |
A9 | 87.5 ± 7.6 | 53.3 ± 6.9 | 40.3 ± 7.8 | |
A10 | 120.8 ± 4.8 | 118.3 ± 6.0 | 104.1 ± 2.2 | |
A11 | 100.5 ± 2.5 | 101.8 ± 0.2 | 58.4 ± 5.5 | |
A12 | 119.0 ± 3.4 | 110.5 ± 6.0 | 102.9 ± 3.8 | |
A13 | 113.6 ± 2.1 | 107.3 ± 9.1 | 102.7 ± 3.5 | |
A14 | 106.2 ± 4.7 | 102.2 ± 5.9 | 96.2 ± 5.0 | |
A15 | 74.3 ± 5.2 | 70.4 ± 1.5 | 66.5 ± 1.4 | |
GAA | 109.9 ± 2.1 | 86.2 ± 5.2 | 83.6 ± 9.4 |
Compound | Viability of Cells (% of Control) | |||||
---|---|---|---|---|---|---|
HepG2 | SJSA-1 | HK-2 | ||||
25 µM | 50 µM | 50 µM | 100 µM | 50 µM | 100 µM | |
A1 | 90.5 ± 1.1 | 87.2 ± 3.1 | 87.9 ± 0.9 | 74.0 ± 3.8 | - | - |
A2 | 78.8 ± 1.7 | 48.4 ± 2.1 | 51.4 ± 1.7 | 28.5 ± 3.4 | 97.1 ± 4.1 | 90.9 ± 3.0 |
A3 | 90.1 ± 1.1 | 76.3 ± 1.1 | 85.3 ± 1.1 | 83.3 ± 3.0 | - | - |
A4 | 87.7 ± 1.9 | 72.0 ± 1.9 | 83.9 ± 5.4 | 57.4 ± 4.2 | - | - |
A5 | 78.5 ± 3.0 | 69.1 ± 1.9 | 75.0 ± 2.6 | 64.5 ± 1.2 | 110.4 ± 13.1 | 97.0 ± 8.8 |
A6 | 84.0 ± 0.8 | 76.6 ± 1.6 | 92.6 ± 3.1 | 65.8 ± 3.2 | 89.6 ± 6.9 | 80.2 ± 9.0 |
A7 | 73.8 ± 1.2 | 53.4 ± 1.0 | 81.6 ± 2.8 | 77.1 ± 4.6 | 86.2 ± 3.7 | 81.3 ± 3.3 |
A8 | 54.2 ± 2.0 | 48.1 ± 1.5 | 92.4 ± 1.4 | 80.4 ± 4.7 | 107.8 ± 14.3 | 91.0 ± 2.4 |
A9 | 64.2 ± 1.4 | 52.4 ± 2.1 | 99.2 ± 2.6 | 89.6 ± 3.8 | 79.0 ± 2.9 | 80.1 ± 2.8 |
A10 | 57.9 ± 0.5 | 58.8 ± 1.4 | 80.0 ± 2.7 | 75.6 ± 4.8 | 110.9 ± 9.6 | 91.1 ± 5.5 |
A11 | 78.5 ± 3.0 | 69.1 ± 2.0 | 56.1 ± 8.7 | 41.9 ± 3.1 | 89.8 ± 9.6 | 86.9 ± 2.7 |
A12 | 29.1 ± 0.4 | 25.6 ± 0.8 | 73.5 ± 1.2 | 65.5 ± 1.5 | 124.1 ± 2.6 | 111.2 ± 6.5 |
A13 | 104.4 ± 2.0 | 99.3 ± 4.9 | 87.6 ± 3.8 | 77.6 ± 3.5 | - | - |
A14 | 95.6 ± 1.9 | 99.3 ± 0.2 | 70.4 ± 1.6 | 47.3 ± 2.1 | - | - |
A15 | 77.1 ± 2.1 | 99.3 ± 0.2 | 75.9 ± 0.9 | 83.5 ± 0.8 | 123.3 ± 5.5 | 111.0 ± 8.7 |
GAA | 83.0 ± 1.5 | 84.0 ± 0.1 | 73.5 ± 1.1 | 74.0 ± 4.0 | 117.8 ± 6.3 | 104.9 ± 7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Li, Y.; Shang, H.; Luo, Y.; Tian, Y. Ganoderic Acid A and Its Amide Derivatives as Potential Anti-Cancer Agents by Regulating the p53-MDM2 Pathway: Synthesis and Biological Evaluation. Molecules 2023, 28, 2374. https://doi.org/10.3390/molecules28052374
Jia Y, Li Y, Shang H, Luo Y, Tian Y. Ganoderic Acid A and Its Amide Derivatives as Potential Anti-Cancer Agents by Regulating the p53-MDM2 Pathway: Synthesis and Biological Evaluation. Molecules. 2023; 28(5):2374. https://doi.org/10.3390/molecules28052374
Chicago/Turabian StyleJia, Yi, Yan Li, Hai Shang, Yun Luo, and Yu Tian. 2023. "Ganoderic Acid A and Its Amide Derivatives as Potential Anti-Cancer Agents by Regulating the p53-MDM2 Pathway: Synthesis and Biological Evaluation" Molecules 28, no. 5: 2374. https://doi.org/10.3390/molecules28052374