Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia ramosissima and Sarcocornia perennis alpini
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutritional Composition Analysis
2.1.1. Proximate Composition
2.1.2. Mineral Profile
2.2. Phenolic Compounds and Antioxidant Capacity
2.2.1. Extraction Yield, Total Phenolic Content (TPC), and Total Flavonoid Content (TFC)
2.2.2. Phenolic Profile
2.2.3. Antioxidant Capacity
2.3. Contaminants
2.3.1. Mycotoxins
2.3.2. Essential and Non-Essential Heavy Metals
3. Materials and Methods
3.1. Sampling Area
3.2. Sample Collection and Preparation
3.3. Chemicals and Reagents
3.4. Nutritional Composition Analysis
3.4.1. Proximate Composition
3.4.2. Mineral Profile
3.5. Phenolic Compounds and Antioxidant Capacity
3.5.1. Extraction Procedure
3.5.2. Total Phenolic Content (TPC)
3.5.3. Total Flavonoid Content (TFC)
3.5.4. Phenolic Profile
3.5.5. Antioxidant Capacity
DPPH (2,2-Diphenyl-1-Picryl-Hydrazyl) Radical Scavenging Assay
β-Carotene Bleaching Assay
3.6. Contaminants
3.6.1. Mycotoxins
Extraction Procedure
Ultra-High Performance Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry (UHPLC-ToF-MS) Analysis
3.6.2. Essential and Non-Essential Heavy Metals
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lughadha, E.N.; Govaerts, R.; Belyaeva, I.; Black, N.; Lindon, H.; Allkin, R.; Magill, R.E.; Nicolson, N. Counting counts: Revised estimates of numbers of accepted species of flowering plants, seed plants, vascular plants and land plants with a review of other recent estimates. Phytotaxa 2016, 272, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Gruber, K. Agrobiodiversity: The living library. Nature 2017, 544, S8–S10. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021; FAO: Rome, Italy, 2021. [Google Scholar]
- Flowers, T.J.; Muscolo, A. Introduction to the special issue: Halophytes in a changing world. AoB Plants 2015, 7, plv020. [Google Scholar] [CrossRef]
- Lopes, M.; Sanches-Silva, A.; Castilho, M.; Cavaleiro, C.; Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 1078–1101. [Google Scholar] [CrossRef] [PubMed]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Custódio, L.; Rodrigues, M.J.; Pereira, C.G.; Castañeda-Loaiza, V.; Fernandes, E.; Standing, D.; Neori, A.; Shpigel, M.; Sagi, M. A review on Sarcocornia species: Ethnopharmacology, nutritional properties, phytochemistry, biological activities and propagation. Foods 2021, 10, 2778. [Google Scholar] [CrossRef]
- Lopes, M.; Roque, M.J.; Cavaleiro, C.; Ramos, F. Nutrient value of Salicornia ramosissima—A green extraction process for mineral analysis. J. Food Compos. Anal. 2021, 104, 104135. [Google Scholar] [CrossRef]
- Kadereit, G.; Ball, P.; Beer, S.; Mucina, L.; Sokoloff, D.; Teege, P.; Yaprak, A.E.; Freitag, H. A taxonomic nightmare comes true: Phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). Taxon 2007, 56, 1143–1170. [Google Scholar] [CrossRef] [Green Version]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Loaiza, V.; Oliveira, M.; Santos, T.; Schüler, L.; Lima, A.R.; Gama, F.; Salazar, M.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; et al. Wild vs cultivated halophytes: Nutritional and functional differences. Food Chem. 2020, 333, 127536. [Google Scholar] [CrossRef]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Bertin, R.L.; Gonzaga, L.V.; Borges, G.S.C.; Azevedo, M.S.; Maltez, H.F.; Heller, M.; Micke, G.A.; Tavares, L.B.B.; Fett, R. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC–ESI-MS/MS. Food Res. Int. 2014, 55, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Essaidi, I.; Brahmi, Z.; Snoussi, A.; Koubaier, H.B.H.; Casabianca, H.; Abe, N.; Omri, E.A.; Chaabouni, M.M.; Bouzouita, N. Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control 2013, 32, 125–133. [Google Scholar] [CrossRef]
- Benjamin, J.J.; Miras-Moreno, B.; Araniti, F.; Salehi, H.; Bernardo, L.; Parida, A.; Lucini, L. Proteomics revealed distinct responses to salinity between the halophytes Suaeda maritima (L.) Dumort and Salicornia brachiata (Roxb). Plants 2020, 9, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norziah, M.H.; Ching, C.Y. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem. 2000, 68, 69–76. [Google Scholar] [CrossRef]
- Dewangani, H.G.N.; Jayawardena, B.M.; Chandrasekara, N.V.; Wijayagunaratne, H.D.S.P. Effect of common culinary methods practiced in Sri Lanka on the nutrient composition of commonly consumed vegetables and other foods. Int. J. Food Sci. 2021, 2021, 5537683. [Google Scholar] [CrossRef] [PubMed]
- Tsydendambaev, V.D.; Ivanova, T.V.; Khalilova, L.A.; Kurkova, E.B.; Myasoedov, N.A.; Balnokin, Y.V. Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity. Russ. J. Plant Physiol. 2013, 60, 661–671. [Google Scholar] [CrossRef]
- Trouvelot, S.; Héloir, M.C.; Poinssot, B.; Gauthier, A.; Paris, F.; Guillier, C.; Combier, M.; Trdá, L.; Daire, X.; Adrian, M. Carbohydrates in plant immunity and plant protection: Roles and potential application as foliar sprays. Front. Plant Sci. 2014, 5, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigore, M.-N. Handbook of Halophytes: From Molecules to Ecosystems Towards Biosaline Agriculture, 1st ed.; Grigore, M.-N., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Patel, M.K.; Pandey, S.; Tanna, B.; Alkan, N.; Mishra, A. Comparative metabolomics unveils the role of metabolites and metabolic pathways in the adaptive mechanisms of shrubby halophytes. Environ. Exp. Bot. 2022, 202, 105030. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The health benefits of dietary fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Lima, A.R.; Castañeda-Loaiza, V.; Salazar, M.; Nunes, C.; Quintas, C.; Gama, F.; Pestana, M.; Correia, P.J.; Santos, T.; Varela, J.; et al. Influence of cultivation salinity in the nutritional composition, antioxidant capacity and microbial quality of Salicornia ramosissima commercially produced in soilless systems. Food Chem. 2020, 333, 127525. [Google Scholar] [CrossRef]
- Riquelme, J.; Olaeta, J.A.; Gálvez, L.; Undurraga, P.; Fuentealba, C.; Osses, A.; Orellana, J.; Gallardo, J.; Pedreschi, R. Nutritional and functional characterization of wild and cultivated Sarcocornia neei grown in Chile. Cienc. E Investig. Agrar. 2016, 43, 283–293. [Google Scholar] [CrossRef]
- Flowers, T.J.; Munns, R.; Colmer, T.D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 2015, 115, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Ushakova, S.A.; Kovaleva, N.P.; Gribovskaya, I.V.; Dolgushev, V.A.; Tikhomirova, N.A. Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS. Adv. Space Res. 2005, 36, 1349–1353. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Cybulska, I.; Chaturvedi, T.; Alassali, A.; Brudecki, G.P.; Brown, J.J.; Sgouridis, S.; Thomsen, M.H. Characterization of the chemical composition of the halophyte Salicornia bigelovii under cultivation. Energy Fuels 2014, 28, 3873–3883. [Google Scholar] [CrossRef]
- Ventura, Y.; Eshel, A.; Pasternak, D.; Sagi, M. The development of halophyte-based agriculture: Past and present. Ann. Bot. 2015, 115, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci. Hortic. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Castagna, A.; Mariottini, G.; Gabriele, M.; Longo, V.; Souid, A.; Dauvergne, X.; Magné, C.; Foggi, G.; Conte, G.; Santin, M.; et al. Nutritional composition and bioactivity of Salicornia europaea L. plants grown in monoculture or intercropped with tomato plants in salt-affected soils. Horticulturae 2022, 8, 828. [Google Scholar] [CrossRef]
- Limongelli, F.; Crupi, P.; Clodoveo, M.L.; Corbo, F.; Muraglia, M. Overview of the polyphenols in Salicornia: From recovery to health-promoting effect. Molecules 2022, 27, 7954. [Google Scholar] [CrossRef]
- Martins, C.; Vilarinho, F.; Sanches-Silva, A.; Andrade, M.; Machado, A.V.; Castilho, M.C.; Sá, A.; Cunha, A.; Vaz, M.F.; Ramos, F. Active polylactic acid film incorporated with green tea extract: Development, characterization and effectiveness. Ind. Crop. Prod. 2018, 123, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Vilarinho, F.; Stanzione, M.; Buonocore, G.G.; Barbosa-Pereira, L.; Sendón, R.; Vaz, M.F.; Sanches-Silva, A. Green tea extract and nanocellulose embedded into polylactic acid film: Properties and efficiency on retarding the lipid oxidation of a model fatty food. Food Packag. Shelf Life 2021, 27, 100609. [Google Scholar] [CrossRef]
- Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of chemopreventive components from halophytes belonging to Aizoaceae and Cactaceae through LC/MS—Bioassay guided approach. J. Chromatogr. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
- Rocha, M.I.; Rodrigues, M.J.; Pereira, C.; Pereira, H.; Silva, M.M.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. Biochemical profile and in vitro neuroprotective properties of Carpobrotus edulis L., a medicinal and edible halophyte native to the coast of South Africa. S. Afr. J. Bot. 2017, 111, 222–231. [Google Scholar] [CrossRef]
- Barbosa, C.H.; Andrade, M.A.; Séndon, R.; Silva, A.S.; Ramos, F.; Vilarinho, F.; Khwaldia, K.; Barbosa-Pereira, L. Industrial fruits by-products and their antioxidant profile: Can they be exploited for industrial food applications? Foods 2021, 10, 272. [Google Scholar] [CrossRef]
- Sánchez-Gavilán, I.; Ramírez, E.; Fuente, V. Bioactive compounds in Salicornia patula duval-jouve: A mediterranean edible euhalophyte. Foods 2021, 10, 410. [Google Scholar] [CrossRef]
- Andrade, M.A.; Torres, L.R.O.; Silva, A.S.; Barbosa, C.H.; Vilarinho, F.; Ramos, F.; Quirós, A.R.B.; Khwaldia, K.; Sendón, R. Industrial multi-fruits juices by-products: Total antioxidant capacity and phenolics profile by LC–MS/MS to ascertain their reuse potential. Eur. Food Res. Technol. 2020, 246, 2271–2282. [Google Scholar] [CrossRef]
- Silva, A.M.; Lago, J.P.; Pinto, D.; Moreira, M.M.; Grosso, C.; Cruz Fernandes, V.; Delerue-Matos, C.; Rodrigues, F. Salicornia ramosissima bioactive composition and safety: Eco-friendly extractions approach (microwave-assisted extraction vs. conventional maceration). Appl. Sci. 2021, 11, 4744. [Google Scholar] [CrossRef]
- Clavel-Coibrié, E.; Sales, J.R.; Silva, A.M.; Barroca, M.J.; Sousa, I.; Raymundo, A. Sarcocornia perennis: A salt substitute in savory snacks. Foods 2021, 10, 3110. [Google Scholar] [CrossRef]
- Cho, J.Y.; Kim, J.Y.; Lee, Y.G.; Lee, H.J.; Shim, H.J.; Lee, J.H.; Kim, S.J.; Ham, K.S.; Moon, J.H. Four new dicaffeoylquinic acid derivatives from glasswort (Salicornia herbacea L.) and their antioxidative activity. Molecules 2016, 21, 1097. [Google Scholar] [CrossRef] [Green Version]
- Megdiche-Ksouri, W.; Trabelsi, N.; Mkadmini, K.; Bourgou, S.; Noumi, A.; Snoussi, M.; Barbria, R.; Tebourbi, O.; Ksouri, R. Artemisia campestris phenolic compounds have antioxidant and antimicrobial activity. Ind. Crop. Prod. 2015, 63, 104–113. [Google Scholar] [CrossRef]
- Lopes, M.; Castilho, M.C.; Sanches-Silva, A.; Freitas, A.; Barbosa, J.; Gonçalves, M.J.; Cavaleiro, C.; Ramos, F. Evaluation of the mycotoxins content of Salicornia spp.: A gourmet plant alternative to salt. Food Addit. Contam. Part B Surveill. 2020, 13, 162–170. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Chemical Agents and Related Occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100. [Google Scholar]
- EC. Commission Regulation (EU) No 165/2010 of 26 February 2010 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Aflatoxins; The European Commission: Brussels, Belgium, 2010; pp. 8–12. [Google Scholar]
- Villarino, M.; Sandín-España, P.; Melgarejo, P.; Cal, A. High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis. J. Agric. Food Chem. 2011, 59, 3205–3213. [Google Scholar] [CrossRef]
- Gauthier, L.; Bonnin-Verdal, M.-N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Atanasova-Penichon, V. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int. J. Food Microbiol. 2016, 221, 61–68. [Google Scholar] [CrossRef]
- Nesci, A.; Gsponer, N.; Etcheverry, M. Natural maize phenolic acids for control of aflatoxigenic fungi on maize. J. Food Sci. 2007, 72, 180–185. [Google Scholar] [CrossRef]
- Castano-Duque, L.; Lebar, M.D.; Carter-Wientjes, C.; Ambrogio, D.; Rajasekaran, K. Flavonoids modulate Aspergillus flavus proliferation and aflatoxin production. J. Fungi 2022, 8, 1211. [Google Scholar] [CrossRef]
- Khoury, A.A.; Khoury, A.E.; Rocher, O.; Hindieh, P.; Puel, O.; Maroun, R.G.; Atoui, A.; Bailly, J.D. Inhibition of aflatoxin B1 synthesis in Aspergillus flavus by mate (Ilex paraguariensis), rosemary (Rosmarinus officinalis) and green tea (Camellia sinensis) extracts: Relation with extract antioxidant capacity and fungal oxidative stress response modulat. Molecules 2022, 27, 8550. [Google Scholar] [CrossRef] [PubMed]
- Giorni, P.; Rastelli, S.; Fregonara, S.; Bertuzzi, T. Monitoring phenolic compounds in rice during the growing season in relation to fungal and mycotoxin contamination. Toxins 2020, 12, 341. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’—Proposal of a comprehensive definition. Toxicol. Environ. Chem. 2018, 100, 6–19. [Google Scholar] [CrossRef]
- Schlögl, S.; Diendorfer, P.; Baldermann, A.; Vollprecht, D. Use of industrial residues for heavy metals immobilization in contaminated site remediation: A brief review. Int. J. Environ. Sci. Technol. 2022, 20, 2313–2326. [Google Scholar] [CrossRef]
- Csuros, M.; Csuros, C. Environmental Sampling and Analysis for Metals; Lewis Publishers: Boca Raton, FL, USA, 2002; Volume 4. [Google Scholar]
- Duffus, J.H. ‘Heavy metals’—A meaningless term? (IUPAC technical report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Soran, M.; Sîrb, A.N.; Lung, I.; Opriş, O.; Culicov, O.; Stegarescu, A.; Nekhoroshkov, P.; Gligor, D. A multi-method approach for impact assessment of some heavy metals on Lactuca sativa L. Molecules 2023, 28, 759. [Google Scholar] [CrossRef] [PubMed]
- Jańczak-Pieniążek, M.; Cichoński, J.; Michalik, P.; Chrzanowski, G. Effect of heavy metal stress on phenolic compounds accumulation in winter wheat plants. Molecules 2023, 28, 241. [Google Scholar] [CrossRef]
- Kakade, A.; Sharma, M.; Salama, E.-S.; Zhang, P.; Zhang, L.; Xing, X.; Yue, J.; Song, Z.; Nan, L.; Yujun, S.; et al. Heavy metals (HMs) pollution in the aquatic environment: Role of probiotics and gut microbiota in HMs remediation. Environ. Res. 2022, 223, 115186. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, A.; Zaidi, A.; Ameen, F.; Ahmed, B.; Alkahtani, M.D.F.; Khan, M.S. Heavy metal induced stress on wheat: Phytotoxicity and microbiological management. RSC Adv. 2020, 10, 38379–38403. [Google Scholar] [CrossRef] [PubMed]
- Ajarem, J.S.; Hegazy, A.K.; Allam, G.A.; Allam, A.A.; Maodaa, S.N.; Mahmoud, A.M. Heavy metal accumulation, tissue injury, oxidative stress, and inflammation in dromedary camels living near petroleum industry sites in Saudi Arabia. Animals 2022, 12, 707. [Google Scholar] [CrossRef]
- Chen, X.; Bi, M.; Yang, J.; Cai, J.; Zhang, H.; Zhu, Y.; Zheng, Y.; Liu, Q.; Shi, G.; Zhang, Z. Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine. J. Hazard. Mater. 2022, 421, 126704. [Google Scholar] [CrossRef]
- Riaz, M.A.; Nisa, Z.U.; Anjum, M.S.; Butt, H.; Mehmood, A.; Riaz, A.; Akhtar, A.B.T. Assessment of metals induced histopathological and gene expression changes in different organs of non-diabetic and diabetic rats. Sci. Rep. 2020, 10, 5897. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Huang, Z.; Yang, F.; Zhu, M.; Cao, J.; Chen, J.; Lin, Y.; Guo, S.; Li, J.; Liu, Z. Cadmium disturbs epigenetic modification and induces DNA damage in mouse preimplantation embryos. Ecotoxicol. Environ. Saf. 2021, 219, 112306. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Shang, X.; Lu, Y.; Li, Y. Exposure of lead on intestinal structural integrity and the diversity of gut microbiota of common carp. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108877. [Google Scholar] [CrossRef] [PubMed]
- Hemmaphan, S.; Bordeerat, N.K. Genotoxic effects of lead and their impact on the expression of DNA repair genes. Int. J. Environ. Res. Public Health 2022, 19, 4307. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. J. Hazard. Mater. 2022, 424, 127312. [Google Scholar] [CrossRef]
- Duarte, B.; Caetano, M.; Almeida, P.R.; Vale, C.; Caçador, I. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environ. Pollut. 2010, 158, 1661–1668. [Google Scholar] [CrossRef]
- Sruthi, P.; Shackira, A.M.; Puthur, J.T. Heavy metal detoxification mechanisms in halophytes: An overview. Wetl. Ecol. Manag. 2017, 25, 129–148. [Google Scholar] [CrossRef]
- Sanjosé, I.; Navarro-Roldán, F.; Montero, Y.; Ramírez-Acosta, S.; Jiménez-Nieva, F.J.; Infante-Izquierdo, M.D.; Polo-Ávila, A.; Muñoz-Rodríguez, A.F. The bioconcentration and the translocation of heavy metals in recently consumed Salicornia ramosissima J. Woods in highly contaminated estuary marshes and its food risk. Diversity 2022, 14, 452. [Google Scholar] [CrossRef]
- Caracciolo, A.B.; Terenzi, V. Rhizosphere microbial communities and heavy metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef]
- Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef]
- Queiroz, H.M.; Ying, S.C.; Abernathy, M.; Barcellos, D.; Gabriel, F.A.; Otero, X.L.; Nóbrega, G.N.; Bernardino, A.F.; Ferreira, T.O. Manganese: The overlooked contaminant in the world largest mine tailings dam collapse. Environ. Int. 2021, 146, 106284. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, 6268. [Google Scholar] [CrossRef]
- Torres, F.; Graças, M.; Melo, M.; Tosti, A. Management of contact dermatitis due to nickel allergy: An update. Clin. Cosmet. Investig. Dermatol. 2009, 2, 39–48. [Google Scholar] [CrossRef] [Green Version]
- EC. Commission Regulation (EU) 2021/1323 of 10 August 2021 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Certain Foodstuffs; The European Commission: Brussels, Belgium, 2021; Volume 10, pp. 48–119. [Google Scholar]
- EC. Commission Regulation (EU) 2021/1317 of 9 August 2021 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstuffs; The European Commission: Brussels, Belgium, 2021; Volume 8, pp. 1–4. [Google Scholar]
- EC. Commission Regulation (EU) 2018/73 of 16 January 2018 Amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Mercury Compounds in or on Certain Products; The European Commission: Brussels, Belgium, 2018; Volume 13, pp. 8–20. [Google Scholar]
- Dujardin, B.; Sousa, R.F.; Ruiz, J.A.G. Dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population. EFSA J. 2023, 21, e07798. [Google Scholar] [CrossRef]
- Lähteenmäki-Uutela, A.; Rahikainen, M.; Camarena-Gómez, M.T.; Piiparinen, J.; Spilling, K.; Yang, B. European Union legislation on macroalgae products. Aquac. Int. 2021, 29, 487–509. [Google Scholar] [CrossRef]
- Pereira, P.; Vale, C.; Ferreira, A.M.; Pereira, E.; Pardal, M.A.; Marques, J.C. Seasonal variation of surface sediments composition in Mondego River estuary. J. Environ. Sci. Health Part A Toxic/Hazardous Subst. Environ. Eng. 2005, 40, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Couto, C.M.C.M.; Ribeiro, C. Pollution status and risk assessment of trace elements in Portuguese water, soils, sediments, and associated biota: A trend analysis from the 80s to 2021. Environ. Sci. Pollut. Res. Int. 2022, 29, 48057–48087. [Google Scholar] [CrossRef] [PubMed]
- López, A.F.; Barrón, E.G.H.; Bugallo, P.M.B. Contribution to understanding the influence of fires on the mercury cycle: Systematic review, dynamic modelling and application to sustainable hypothetical scenarios. Environ. Monit. Assess. 2022, 194, 707. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Deng, Y.; Wang, M.W.; Zhu, M.; Liu, C.; Ge, Z.J.; Xing, J.C. Risk of heavy metal contamination in three seawater-cultivated vegetables. Polish J. Environ. Stud. 2020, 29, 961–967. [Google Scholar] [CrossRef]
- Baeta, A.; Pinto, R.; Valiela, I.; Richard, P.; Niquil, N.; Marques, J.C. δ15N and δ13C in the Mondego estuary food web: Seasonal variation in producers and consumers. Mar. Environ. Res. 2009, 67, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Mendes, J.; Ruela, R.; Picado, A.; Pinheiro, J.P.; Ribeiro, A.S.; Pereira, H.; Dias, J.M. Modeling dynamic processes of Mondego estuary and Óbidos lagoon using delft3D. J. Mar. Sci. Eng. 2021, 9, 91. [Google Scholar] [CrossRef]
- Valdés, B.; Castroviejo, S. Vol. II. Platanaceae-Plumbaginaceae (partim). In Flora Iberica—Plantas Vasculares de la Península Ibérica e Islas Baleares; Castroviejo, S., Laínz, M., González, G.L., Montserrat, P., Garmendia, F.M., Paiva, J., Villar, L., Eds.; Real Jardín Botánico, C.S.I.C: Madrid, Spain, 1990; pp. 531–533. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Robalo, J.; Lopes, M.; Cardoso, O.; Sanches-Silva, A.; Ramos, F. Efficacy of whey protein film incorporated with Portuguese green tea (Camellia sinensis L.) extract for the preservation of latin-style fresh cheese. Foods 2022, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; pp. 152–178. [Google Scholar]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.K.; Lee, C.Y. Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008, 106, 929–936. [Google Scholar] [CrossRef]
- EC. Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs; The European Commission: Brussels, Belgium, 2006; Volume 70, pp. 12–34. [Google Scholar]
- Correia, A.; Silva, A.M.; Moreira, M.M.; Salazar, M.; Švarc-Gajić, J.; Brezo-Borjan, T.; Cádiz-Gurrea, M.L.; Carretero, A.S.; Loschi, F.; Dall’Acqua, S.; et al. Salicornia ramosissima: A new green cosmetic ingredient with promising skin effects. Antioxidants 2022, 11, 2449. [Google Scholar] [CrossRef] [PubMed]
- Stanković, M.S.; Petrović, M.; Godjevac, D.; Stevanović, Z.D. Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? J. Arid Environ. 2015, 120, 26–32. [Google Scholar] [CrossRef]
- Rahmani, R.; Arbi, K.E.; Aydi, S.S.; Hzami, A.; Tlahig, S.; Najar, R.; Aydi, S.; Debouba, M. Biochemical composition and biological activities of Salicornia europaea L. from southern Tunisia. J. Food Meas. Charact. 2022, 16, 4833–4846. [Google Scholar] [CrossRef]
- Díaz, F.J.; Benes, S.E.; Grattan, S.R. Field performance of halophytic species under irrigation with saline drainage water in the San Joaquin Valley of California. Agric. Water Manag. 2013, 118, 59–69. [Google Scholar] [CrossRef]
Parameter | Content | |
---|---|---|
S. ramosissima | S. perennis alpini | |
Moisture | 89.7 ± 0.1 a | 87.8 ± 0.0 b |
Crude protein | 6.61 ± 0.33 a | 4.28 ± 0.72 b |
Lipids | 1.32 ± 0.14 a | 1.52 ± 0.08 a |
Crude fibre | 11.3 ± 0.3 a | 15.3 ± 0.1 b |
Ash | 39.5 ± 0.3 a | 40.4 ± 0.4 b |
Analytes | Content | |
---|---|---|
S. ramosissima | S. perennis alpini | |
Sodium (Na) | 204 ± 1 a | 177 ± 1 b |
Potassium (K) | 6.71 ± 0.14 a | 8.08 ± 0.20 b |
Magnesium (Mg) | 7.05 ± 0.12 a | 6.98 ± 0.17 b |
Phosphorous (P) | 1.60 ± 0.00 a | 1.40 ± 0.09 b |
Calcium (Ca) | 1.13 ± 0.23 a | 0.75 ± 0.00 a |
Parameter | Content | |
---|---|---|
S. ramosissima | S. perennis alpini | |
Total phenolic content (TPC) | 67.1 ± 1.7 a | 38.2 ± 1.5 b |
Total flavonoid content (TFC) | 186 ± 3 a | 99.3 ± 0.8 b |
# | tr (min) | λmax (nm) | [M]- m/z | Main Products m/z | Molecular Formula | Structural Subclass | Tentative Identification | S. ramosissima | S. perennis alpini | Confirmation/Ref. 1 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 3.14 | 325 | 343 | 191 | C14H16O10 | Hydroxybenzoic acids | 3-Galloylquinic acid | ✓ | - | [34,35] |
2 | 4.0 | 293 | 153 | 109, 108 | C7H14O7 | Hydroxybenzoic acids | Protocatechuic acid | ✓ | ✓ | [11,35], Std 2 |
3 | 5.67 | 325 | 353 | 191, 179 | C16H18O9 | Hydroxycinnamic acids | Neochlorogenic acid | ✓ | ✓ | [11,34,35] |
4 | 8.94 | 325 | 179 | 134, 135 | C9H8O4 | Hydroxycinnamic acids | Caffeic acid | ✓ | ✓ | [11,13,14,36], Std 2 |
5 | 9.65 | 325 | 353 | 191.2, 179.0, 93.20 | C16H18O9 | Hydroxycinnamic acids | Chlorogenic acid | ✓ | ✓ | [11,13,14], Std 2 |
6 | 9.93 | 330 | 355 | 193 | C16H20O9 | Hydroxycinnamic acids glycosides | Ferulic acid-O-hexoside | ✓ | ✓ | [35,37] |
7 | 10.04 | 325 | 337 | 173 | C16H18O8 | Hydroxycinnamic acids | 5-Coumaroylquinic acid derivate | ✓ | ✓ | [34,35] |
8 | 11.66 | 330 | 385 | 223 | C17H22O10 | Hydroxycinnamic acids glycosides | Sinapic acid-O-hexoside | ✓ | ✓ | [37] |
9 | 12.43 | 325 | 337 | 173 | C16H18O8 | Hydroxycinnamic acids | 4-Coumaroylquinic acid derivate | ✓ | - | [34,35] |
10 | 12.51 | 310 | 163 | 119, 93 | C9H8O3 | Hydroxycinnamic acids | p-Coumaric acid | ✓ | ✓ | [11,13,14,35,36], Std 2 |
11 | 12.70 | 325 | 343 | 191 | C14H16O10 | Hydroxybenzoic acids | 3-Galloylquinic acid | - | ✓ | [34,35] |
12 | 14.61 | 325 | 193 | 134 | C10H10O4 | Hydroxycinnamic acids | Ferulic acid | ✓ | ✓ | [11,13,14,36], Std 2 |
13 | 20.87 | 356 | 771 | 300 | C33H40O21 | Flavonol glycosides | Quercetin-3-O-glucosylrutinoside | ✓ | - | [34] |
14 | 21.23 | 356 | 463 | 300, 271 | C21H20O12 | Flavonol glycosides | Isoquercitrin | ✓ | ✓ | [13,34] |
15 | 21.30 | 356 | 609 | 300, 271 | C27H30O16 | Flavonol glycosides | Rutin | ✓ | ✓ | [11,13,35,38], Std 2 |
16 | 21.70 | 350 | 433 | 301, 271 | C21H22O10 | Flavonol glycosides | Naringenin-7-O-glucoside | ✓ | ✓ | [11] |
17 | 21.92 | 365 | 317 | 151, 179 | C15H10O8 | Flavonols | Myricetin | ✓ | ✓ | [13,14,35], Std 2 |
18 | 22.29 | 356 | 447 | 285 | C21H20O11 | Flavonol glycosides | Luteolin-7-O-glucoside | ✓ | ✓ | [11] |
19 | 22.30 | 528 | 579 | 271 | C27H32O14 | Flavanone glycosides | Narirutin | ✓ | - | [35] |
20 | 22.31 | 356 | 593 | 285 | C27H30O15 | Flavonol glycosides | Kaempferol-3-O-rutinoside | ✓ | ✓ | [34] |
21 | 22.48 | 350 | 477 | 301, 300 | C21H20O11 | Flavonol glycosides | Quercitrin | ✓ | ✓ | [37] |
22 | 22.87 | 356 | 447 | 285 | C21H20O11 | Flavonol glycosides | Kaempferol-3-O-glucoside | ✓ | - | [34] |
23 | 22.90 | 350 | 431 | 269, 151 | C21H20O10 | Flavone glycosides | Apigenin-7-glucoside | ✓ | ✓ | [13,38] |
24 | 23.13 | 295 | 271 | 151, 119 | C15H12O5 | Flavanones | Naringenin | ✓ | ✓ | [13], Std 2 |
25 | 23.34 | 360 | - | 88, 70 | C15H10O7 | Flavonols | Quercetin | ✓ | ✓ | [11,13,14,36], Std 2 |
26 | 23.81 | 350 | 285 | 151, 133, 132 | C15H10O6 | Flavones | Luteolin | ✓ | ✓ | [13,38], Std 2 |
27 | 24.49 | 367 | 285 | 185, 151, 93 | C15H10O6 | Flavonols | Kaempferol | ✓ | ✓ | [13,14,38], Std 2 |
28 | 24.72 | 360 | 269 | 151, 149, 117 | C15H10O5 | Flavones | Apigenin | ✓ | ✓ | [13,36], Std 2 |
29 | 25.21 | 278 | 577 | 289 | C30H26O12 | Flavanols | Procyanidin B-type | ✓ | ✓ | [35] |
30 | 26.60 | 278 | 577 | 407, 289 | C30H26O12 | Flavanols | Procyanidin B-type | ✓ | - | [35] |
31 | 30.79 | 370 | 315 | 151 | C16H12O7 | Flavonols | Isorhamnetin | - | ✓ | [14] |
32 | 33.80 | 350 | 431 | 269, 151 | C21H20O10 | Flavone glycosides | Apigenin-7-glucoside | ✓ | ✓ | [13,38] |
33 | 35.09 | 528 | 579 | 271 | C27H32O14 | Flavanone glycosides | Naringin | ✓ | ✓ | [35] |
Peak # | Phenolic Compound | SRM Transition | Equation | Conc. Range (µg/mL) | r2 | LOD (µg/g Extract fw) | LOQ (µ/g Extract fw) | Content | |||
---|---|---|---|---|---|---|---|---|---|---|---|
S. ramosissima (µg/g Extract) | S. perennis alpini (µg/g Extract) | ||||||||||
fw | dw | fw | dw | ||||||||
Phenolic acids | |||||||||||
2 | Protocatechuic acid | 153 → 109 | y = 361,934.7x − 2718.23 | 0.01 − 1 | 0.9996 | 0.09 | 0.19 | 13.68 | 133.1 | 2.882 | 23.68 |
4 | Caffeic acid | 179 → 135 | y = 1,291,832x − 3938.19 | 0.01 − 1 | 0.9994 | 0.09 | 0.19 | 17.02 | 165.6 | 0.956 | 7.855 |
5 | Chlorogenic acid | 353 → 191 | y = 1,063,638x + 34221.2 | 0.01 − 1 | 0.9964 | 0.08 | 0.19 | 23.04 | 224.1 | 12.24 | 100.6 |
10 | p-Coumaric acid | 163 → 119 | y = 114,972.9x − 5424.57 | 0.05 − 1 | 0.9981 | 0.48 | 0.97 | 175.0 | 1702 | 55.57 | 456.6 |
12 | Ferulic acid | 193 → 134 | y = 13,102.51x − 3267.00 | 0.05 − 1 | 0.9927 | 0.48 | 0.97 | <LOQ | <LOQ | <LOQ | <LOQ |
Σ Phenolic acids 1 | 228.8 | 2225 | 71.65 | 588.7 | |||||||
Flavonoids | |||||||||||
15 | Rutin | 609 → 300 | y = 2,259,218x − 2927.46 | 0.001 − 1 | 0.9999 | 0.01 | 0.02 | 41.94 | 408.0 | 19.47 | 160.0 |
17 | Myricetin | 317 → 151 | y = 370,328x − 27222.2 | 0.05 − 1 | 0.9957 | 0.48 | 0.97 | 17.16 | 166.9 | 14.71 | 120.9 |
24 | Naringenin | 271 → 151 | y = 1,667,721x − 1606.87 | 0.001 − 1 | 0.9930 | 0.01 | 0.02 | 0.573 | 5.574 | 0.085 | 0.698 |
25 | Quercetin | 274 → 88 | y = 60,716.41x − 1363.65 | 0.001 − 1 | 0.9996 | 0.01 | 0.02 | 93.00 | 904.7 | 68.52 | 563.0 |
26 | Luteolin | 285 → 133 | y = 2,663,392x − 80.951 | 0.001 − 1 | 0.9997 | 0.01 | 0.02 | 1.698 | 16.52 | 0.611 | 5.021 |
27 | Kaempferol | 285 → 151 | y = 254,318.2x − 2752.38 | 0.0025 − 1 | 0.9975 | 0.025 | 0.05 | 23.44 | 228.0 | 6.303 | 51.79 |
28 | Apigenin | 269 → 117 | y = 1,006,111x − 778.086 | 0.001 − 1 | 0.9921 | 0.01 | 0.02 | <LOQ | <LOQ | <LOQ | <LOQ |
Σ Flavonoids 1 | 177.8 | 1730 | 109.7 | 901.4 | |||||||
Σ Total 2 | 406.6 | 3955 | 181.3 | 1490 |
Parameter | Content | |
---|---|---|
S. ramosissima | S. perennis alpini | |
DPPH | 30.2 ± 1 a | 11.0 ± 0.4 b |
β-carotene bleaching inhibition | 1697 ± 82 a | 1403 ± 57 b |
Parameter | Content | |
---|---|---|
S. ramosissima | S. perennis alpini | |
AFB1 | 5.21 ± 0.06 | n.d. |
AFB2 | n.d. | n.d. |
AFG1 | n.d. | n.d. |
AFG2 | n.d. | n.d. |
Total AFs | 5.21 | n.d. |
OTA | n.d. | n.d. |
Analytes | Content | |
---|---|---|
S. ramosissima | S. perennis alpini | |
Copper (Cu) | 1.11 ± 0.17 a | 1.31 ± 0.05 a |
Zinc (Zn) | 2.01 ± 0.04 a | 2.61 ± 0.03 b |
Manganese (Mn) | 6.54 ± 0.15 a | 4.63 ± 0.05 b |
Iron (Fe) | n.d.1 | n.d.1 |
Cadmium (Cd) | 0.02 ± 0.00 a | 0.01 ± 0.00 a |
Lead (Pb) | 0.01 ± 0.00 a | 0.02 ± 0.00 a |
Chromium (Cr) | 1.32 ± 0.17 a | 1.45 ± 0.14 a |
Nickel (Ni) | 0.87 ± 0.05 a | 1.75 ± 0.14 b |
Cobalt (Co) | 1.03 ± 0.03 a | 0.92 ± 0.01 b |
Mercury (Hg) | n.d.2 | 0.01 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, M.; Silva, A.S.; Séndon, R.; Barbosa-Pereira, L.; Cavaleiro, C.; Ramos, F. Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia ramosissima and Sarcocornia perennis alpini. Molecules 2023, 28, 2726. https://doi.org/10.3390/molecules28062726
Lopes M, Silva AS, Séndon R, Barbosa-Pereira L, Cavaleiro C, Ramos F. Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia ramosissima and Sarcocornia perennis alpini. Molecules. 2023; 28(6):2726. https://doi.org/10.3390/molecules28062726
Chicago/Turabian StyleLopes, Maria, Ana Sanches Silva, Raquel Séndon, Letricia Barbosa-Pereira, Carlos Cavaleiro, and Fernando Ramos. 2023. "Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia ramosissima and Sarcocornia perennis alpini" Molecules 28, no. 6: 2726. https://doi.org/10.3390/molecules28062726
APA StyleLopes, M., Silva, A. S., Séndon, R., Barbosa-Pereira, L., Cavaleiro, C., & Ramos, F. (2023). Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia ramosissima and Sarcocornia perennis alpini. Molecules, 28(6), 2726. https://doi.org/10.3390/molecules28062726