Bioactive Properties of Kakadu Plum-Blended Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Activity
2.2. Vitamin C Analysis
2.3. Phenolic Content
2.3.1. Total Phenolic Content (TPC)
2.3.2. Ellagic Acid
2.4. Bioactivities
2.4.1. Antimicrobial Activity
2.4.2. Antioxidant Properties: DPPH Free Radical Scavenging Capacity Assay
2.4.3. Antidiabetic Assay
2.5. Cytotoxicity Assessment
3. Materials and Methods
3.1. Materials
3.1.1. Chemicals and Reagents
3.1.2. Test Microorganisms
3.1.3. Samples
3.2. Water Activity
3.3. Determination of Vitamin C
3.4. Determination of Total Phenolic Content (TPC) and DPPH Free Radical Scavenging Activity
3.5. Determination of Ellagic Acid
3.6. Antimicrobial Assay
3.7. Cytotoxicity Assessment
3.8. Antidiabetic Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Khorasani, S.; Danaei, M.; Mozafari, M. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol. 2018, 79, 106–115. [Google Scholar] [CrossRef]
- Daud, M.; Jalil, J.A.; Azmi, I.M.A.G.; Ismail, S.F.; Safuan, S. ‘Unsafe’nutraceuticals products on the Internet: The need for stricter regulation in Malaysia. In Proceedings of the 2017 5th International Conference on Cyber and IT Service Management (CITSM), Denpasar, Indonesia, 8–10 August 2017; pp. 1–5. [Google Scholar]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef]
- GrandViewResearch. Food Additives Market Size, Share & Trends Analysis Report By Product (Flavors & Enhancers, Sweeteners, Enzymes, Emulsifiers), By Source (Natural, Synthetic), By Application, By Region, And Segment Forecasts; Grand View Research: San Francisco, CA, USA, 2021. [Google Scholar]
- Nutraceuticals Market Size, Share & Trends Analysis Report By Product (Dietary Supplements, Functional Food, Functional Beverages), By Region (North America, Europe, APAC, CSA, MEA), And Segment Forecasts, 2021–2030. Available online: https://www.grandviewresearch.com/industry-analysis/nutraceuticals-market# (accessed on 11 March 2023).
- Galanakis, C.M. The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.; Edgar, J.D.; Neville, C.E.; Gilchrist, S.E.; McKinley, M.C.; Patterson, C.C.; Young, I.S.; Woodside, J.V. Effect of fruit and vegetable consumption on immune function in older people: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 96, 1429–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consumer Research Supports Global Demand for Immunity Products. Available online: https://www.naturalproductsinsider.com/business-resources/consumer-research-supports-global-demand-immunity-products-white-paper (accessed on 10 March 2023).
- Sultanbawa, Y.; Sultanbawa, F. Australian Native Plants, 1st ed.; CRC Press: New York, NY, USA, 2016; Volume 17. [Google Scholar]
- Gorman, J.T.; Wurm, P.A.; Vemuri, S.; Brady, C.; Sultanbawa, Y. Kakadu Plum (Terminalia ferdinandiana) as a sustainable indigenous agribusiness. Econ. Bot. 2020, 74, 74–91. [Google Scholar] [CrossRef]
- Phan, A.D.T.; Adiamo, O.; Akter, S.; Netzel, M.E.; Cozzolino, D.; Sultanbawa, Y. Effects of drying methods and maltodextrin on vitamin C and quality of Terminalia ferdinandiana fruit powder, an emerging Australian functional food ingredient. J. Sci. Food Agric. 2021, 101, 5132–5141. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.J.; Edwards, D.; Pun, S.; Chaliha, M.; Sultanbawa, Y. Profiling ellagic acid content: The importance of form and ascorbic acid levels. Food Res. Int. 2014, 66, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.D. Acerola (Malpighia glabra L., M. punicifolia L., M. emarginata DC): Agriculture, production and nutrition. World Rev. Nutr. Diet. 2003, 91, 67–75. [Google Scholar]
- Cozzolino, D.; Phan, A.D.T.; Netzel, M.E.; Smyth, H.; Sultanbawa, Y. The use of vibrational spectroscopy to predict vitamin C in Kakadu plum powders (Terminalia ferdinandiana Exell, Combretaceae). J. Sci. Food Agric. 2021, 101, 3208–3213. [Google Scholar] [CrossRef]
- Hamza, A.H. Vitamin C; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Bobasa, E.M.; Netzel, M.E.; Kubow, S.; Chaliha, M.; Phan, A.; Sultanbawa, Y. Kakadu Plum (Terminalia ferdinandiana)—A Native Australian fruit with functional properties. Multidiscip. Digit. Publ. Inst. Proc. 2020, 36, 114. [Google Scholar]
- Akter, R.; Kwak, G.-Y.; Ahn, J.C.; Mathiyalagan, R.; Ramadhania, Z.M.; Yang, D.C.; Kang, S.C. Protective Effect and Potential Antioxidant Role of Kakadu Plum Extracts on Alcohol-Induced Oxidative Damage in HepG2 Cells. Appl. Sci. 2022, 12, 236. [Google Scholar] [CrossRef]
- Kaur, C.; Pal, R.K.; Kar, A.; Gadi, C.; Sen, S.; Kumar, P.; Chandra, R.; Jaiswal, S.; Khan, I. Characterization of Antioxidants and Hypoglycemic Potential of Pomegranate Grown in India: A Preliminary Investigation. J. Food Biochem. 2014, 38, 397–406. [Google Scholar] [CrossRef]
- Rahimi, V.B.; Askari, V.R.; Mousavi, S.H. Ellagic acid dose and time-dependently abrogates d-galactose-induced animal model of aging: Investigating the role of PPAR-γ. Life Sci. 2019, 232, 116595. [Google Scholar] [CrossRef] [PubMed]
- Sirdaarta, J.; Matthews, B.; Cock, I.E. Kakadu plum fruit extracts inhibit growth of the bacterial triggers of rheumatoid arthritis: Identification of stilbene and tannin components. J. Funct. Foods 2015, 17, 610–620. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. A critical review on polyphenols and health benefits of black soybeans. Nutrients 2017, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Antioxidant Property of Coffee Components: Assessment of Methods that Define Mechanisms of Action. Molecules 2014, 19, 19180–19208. [Google Scholar] [PubMed] [Green Version]
- Shalaby, E.A.; Shanab, S.M. Antioxidant compounds, assays of determination and mode of action. Afr. J. Pharm. Pharmacol. 2013, 7, 528–539. [Google Scholar] [CrossRef]
- Cock, I.E.; Mohanty, S. Evaluation of the antibacterial activity and toxicity of Terminalia ferdinandia fruit extracts. Pharmacogn. J. 2011, 3, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 2012, 28, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Cumby, N.; Zhong, Y.; Naczk, M.; Shahidi, F. Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem. 2008, 109, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In Water activity in foods: Fundamentals and applications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 323–355. [Google Scholar]
- Phan, A.D.T.; Damyeh, M.S.; Chaliha, M.; Akter, S.; Fyfe, S.; Netzel, M.E.; Cozzolino, D.; Sultanbawa, Y. The effect of maturity and season on health-related bioactive compounds in wild harvested fruit of Terminalia ferdinandiana (Exell). Int. J. Food Sci. Technol. 2021, 56, 6431–6442. [Google Scholar] [CrossRef]
- Nutrient Reference Values for Australia and New Zealand, Vitamin C; Australian Government National Health and Medical Research Council: Canberra, Australia, 2006.
- Baginsky, C.; Peña-Neira, Á.; Cáceres, A.; Hernández, T.; Estrella, I.; Morales, H.; Pertuzé, R. Phenolic compound composition in immature seeds of fava bean (Vicia faba L.) varieties cultivated in Chile. J. Food Compos. Anal. 2013, 31, 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Hamilton, S.; Stewart, C.; Strother, A.; Teel, R. Inhibition of liver microsomal cytochrome P450 activity and metabolism of the tobacco-specific nitrosamine NNK by capsaicin and ellagic acid. Anticancer. Res. 1993, 13, 2341–2346. [Google Scholar]
- Vattem, D.; Shetty, K. Biological functionality of ellagic acid: A review. J. Food Biochem. 2005, 29, 234–266. [Google Scholar]
- Bobasa, E.M.; Phan, A.D.T.; Netzel, M.E.; Cozzolino, D.; Sultanbawa, Y. Hydrolysable tannins in Terminalia ferdinandiana Exell fruit powder and comparison of their functional properties from different solvent extracts. Food Chem. 2021, 358, 129833. [Google Scholar] [CrossRef]
- Oliveira, J.; Reygaert, W.C. Gram Negative Bacteria; StatPearls Publishing: St. Petersburg, FL, USA, 2019. [Google Scholar]
- Chaliha, M.; Phan, A.D.T.; Cao, S.; Li, Q.; Gorman, J.; Sultanbawa, Y. Antimicrobial activity, total phenolic and ascorbic acid content of Terminalia ferdinandiana leaves at various stages of maturity. Curr. Res. Nutr. Food Sci. J. 2020, 8, 744–756. [Google Scholar]
- Zhang, J.; Phan, A.D.T.; Srivarathan, S.; Akter, S.; Sultanbawa, Y.; Cozzolino, D. Proximate composition, functional and antimicrobial properties of wild harvest Terminalia carpentariae fruit. J. Food Meas. Charact. 2021, 16, 582–589. [Google Scholar] [CrossRef]
- Mollapour, M.; Piper, P.W. The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Mol. Microbiol. 2001, 42, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Kilic, I.; Yeşiloğlu, Y.; Bayrak, Y. Spectroscopic studies on the antioxidant activity of ellagic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Chapter 2—Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 33–50. [Google Scholar] [CrossRef]
- Zeb, A. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Mol. Cell. Biochem. 2018, 448, 27–41. [Google Scholar] [CrossRef]
- Anam, K.; Widharna, R.; Kusrini, D. α-Glucosidase inhibitor activity of Terminalia species. Int. J. Pharmacol. 2009, 5, 277–280. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-M.; Jeong, Y.-K.; Wang, M.-H.; Lee, W.-Y.; Rhee, H.-I. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 2005, 21, 756–761. [Google Scholar] [CrossRef]
- Mashiane, P.; Shoko, T.; Manhivi, V.; Slabbert, R.; Sultanbawa, Y.; Sivakumar, D. A Comparison of Bioactive Metabolites, Antinutrients, and Bioactivities of African Pumpkin Leaves (Momordica balsamina L.) Cooked by Different Culinary Techniques. Molecules 2022, 27, 1901. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, X.-Z.; Wang, L.-X.; Wang, S.-H.; Ren, G. Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vigna umbellata L.) in China. Int. J. Mol. Sci. 2012, 13, 2707–2716. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Mao, K.; Li, J.; Gao, J.; Liu, X.; Sang, Y. Antioxidant and α-glucosidase inhibitory capacity of nonextractable polyphenols in Mopan persimmon. Food Sci. Nutr. 2020, 8, 5729–5737. [Google Scholar] [CrossRef]
- Ramirez, C.N.; Antczak, C.; Djaballah, H. Cell viability assessment: Toward content-rich platforms. Expert Opin. Drug Discov. 2010, 5, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Akter, S.; Addepalli, R.; Netzel, M.; Fletcher, M.; Sultanbawa, Y.; Osborne, S. Impact of polyphenol-rich extracts of Terminalia ferdinandiana fruits and seeds on viability of human intestinal and liver cells in vitro. Food Chem. Mol. Sci. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Spínola, V.; Mendes, B.; Câmara, J.S.; Castilho, P.C. An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Anal. Bioanal. Chem. 2012, 403, 1049–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Moore, J.; Yu, L. Methods for antioxidant capacity estimation of wheat and wheat-based food products. In Wheat Antioxidants; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 118–172. [Google Scholar]
- Williams, D.J.; Edwards, D.; Pun, S.; Chaliha, M.; Burren, B.; Tinggi, U.; Sultanbawa, Y. Organic acids in Kakadu plum (Terminalia ferdinandiana): The good (ellagic), the bad (oxalic) and the uncertain (ascorbic). Food Res. Int. 2016, 89, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, A.D.T.; Chaliha, M.; Sultanbawa, Y.; Netzel, M.E. Nutritional characteristics and antimicrobial activity of Australian grown feijoa (Acca sellowiana). Foods 2019, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Djenane, D.; Yangüela, J.; Montañés, L.; Djerbal, M.; Roncalés, P. Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control 2011, 22, 1046–1053. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Yin, P.; Yan, L.; Han, J.; Shi, L.; Zhou, X.; Liu, Y.; Ma, C. α-Glucosidase inhibitory activity of polyphenols from the burs of castanea mollissima blume. Molecules 2014, 19, 8373–8386. [Google Scholar] [CrossRef] [Green Version]
Samples | IC50 of α-Glucosidase (mg/mL) |
---|---|
Acarbose (positive control) | 1.11 ± 0.09 |
Kakadu plum 1 | 0.18 ± 0.001 a |
Kakadu plum 2 | 0.16 ± 0.004 a |
Kakadu plum hemp | 0.19 ± 0.015 ad |
Collagen blend | 1.43 ± 0.03 b |
Energy blend | 0.97 ± 0.002 c |
Immunity blend | 0.28 ± 0.007 d |
Gut health blend | 0.43 ± 0.008 e |
Kakadu plum 8 | 0.17 ± 0.007 a |
Blueberry | 2.15 ± 0.03 b |
Caco-2 | HepG2 | |
---|---|---|
KP 1 | 6.2 ± 1.8 a | 8.5 ± 1.3 a |
KP 2 | 13.3 ± 6.0 ab | 1.1 ± 0.006 a |
KP hemp | 23.2 ± 5.0 b | 7.8 ± 2.6 a |
Collagen blend | 23.4 ± 4.0 b | 63.5 ± 0.8 b |
Energy blend | 59.8 ± 1.3 c | 63.1 ± 58.1 b |
Immunity blend | 5.4 ± 0.1 a | 64.1 ± 7.5 b |
Gut health blend | 64.9 ± 8.0 c | 58.4 ± 1.1 b |
KP 8 | 1.8 ± 0.6 a | 2.5 ± 1.1 b |
Blueberry | 5.2 ± 4.3 a | 55.4 ± 4.5 b |
NO | Products | Abbreviation | Ingredients |
---|---|---|---|
1 | Kakadu plum | KP1 | Pure Kakadu plum powder, without seeds, and produced from 2 different processing batches. |
2 | Kakadu plum | KP2 | |
3 | Kakadu plum hemp | KPH | Kakadu plum powder (without seeds and produced at the same batch with sample 8) and hemp protein powder. |
4 | Collagen blend | CB | Kakadu plum powder (without seeds and produced at the same batch with sample 8), Faba bean protein powder, and other tropical fruits. |
5 | Energy blend | EB | Kakadu plum powder (without seeds and produced at the same batch with sample 8), Spirulina, River mint, Faba bean powder, and other tropical fruits. |
6 | Kaiyu Superfoods immunity | KPI | Kakadu plum powder (without seeds and produced at the same batch with sample 8), Quandong, Spirulina, and other tropical fruits and vegetables. |
7 | Kaiyu Superfoods gut health | KPG | Kakadu plum powder (without seeds and produced at the same batch with sample 8) and other tropical fruits and vegetables. |
8 | Kakadu plum | KP8 | Pure Kakadu plum powder, without seeds, and produced at different batch with sample 1 and 2. |
9 | Blueberry | BB | Commercial blueberry powder purchased from matcha leaf superfoods, Australia. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Phan, A.D.T.; Akter, S.; Bobasa, E.M.; Seididamyeh, M.; Sivakumar, D.; Sultanbawa, Y. Bioactive Properties of Kakadu Plum-Blended Products. Molecules 2023, 28, 2828. https://doi.org/10.3390/molecules28062828
Zhou Y, Phan ADT, Akter S, Bobasa EM, Seididamyeh M, Sivakumar D, Sultanbawa Y. Bioactive Properties of Kakadu Plum-Blended Products. Molecules. 2023; 28(6):2828. https://doi.org/10.3390/molecules28062828
Chicago/Turabian StyleZhou, Yuntao, Anh Dao Thi Phan, Saleha Akter, Eshetu Mulisa Bobasa, Maral Seididamyeh, Dharini Sivakumar, and Yasmina Sultanbawa. 2023. "Bioactive Properties of Kakadu Plum-Blended Products" Molecules 28, no. 6: 2828. https://doi.org/10.3390/molecules28062828
APA StyleZhou, Y., Phan, A. D. T., Akter, S., Bobasa, E. M., Seididamyeh, M., Sivakumar, D., & Sultanbawa, Y. (2023). Bioactive Properties of Kakadu Plum-Blended Products. Molecules, 28(6), 2828. https://doi.org/10.3390/molecules28062828