Aromatic Character and Relative Stability of Pyrazoloporphyrin Tautomers and Related Protonated Species: Insights into How Pyrazole Changes the Properties of Carbaporphyrinoid Systems
Abstract
:1. Introduction
2. Results
2.1. Aromatic and Nonaromatic Tautomers of Pyrazoloporphyrins
2.2. Mono- and Diprotonated Pyrazoloporphyrins
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lash, T.D. Carbaporphyrinoid Systems. Chem. Rev. 2017, 117, 2313–2446. [Google Scholar] [CrossRef] [PubMed]
- Lash, T.D. Heteroporphyrins and Carbaporphyrins. In Fundamentals of Porphyrin Chemistry: A 21st Century Approach; Brothers, P.J., Senge, M.O., Eds.; Wiley: Hoboken, NJ, USA, 2022; Volume 1, pp. 385–451. [Google Scholar]
- Toganoh, M.; Furuta, H. Creation from Confusion to Fusion in the Porphyrin World—The Last Three Decades of N-Confused Porphyrinoid Chemistry. Chem. Rev. 2022, 122, 8313–8437. [Google Scholar] [CrossRef] [PubMed]
- Furuta, H.; Asano, T.; Ogawa, T. N-Confused Porphyrin: A New Isomer of Tetraphenylporphyrin. J. Am. Chem. Soc. 1994, 116, 767–768. [Google Scholar] [CrossRef]
- Chmielewski, P.J.; Latos-Grażyński, L.; Rachlewicz, K.; Glowiak, T. Tetra-p-tolylporphyrin with an Inverted Pyrrole Ring: A Novel Isomer of Porphyrin. Angew. Chem. Int. Ed. Engl. 1994, 33, 779–781. [Google Scholar] [CrossRef]
- Geier, G.R., III; Haynes, D.M.; Lindsey, J.S. An Efficient One-Flask Synthesis of N-Confused Tetraphenylporphyrin. Org. Lett. 1999, 1, 1455–1458. [Google Scholar] [CrossRef]
- Lash, T.D.; Hayes, M.J. Carbaporphyrins. Angew. Chem. Int. Ed. Engl. 1997, 36, 840–842. [Google Scholar] [CrossRef]
- Li, D.; Lash, T.D. Synthesis and Reactivity of Carbachlorins and Carbaporphyrins. J. Org. Chem. 2014, 79, 7112–7121. [Google Scholar] [CrossRef]
- Garbicz, M.; Latos-Grażyński, L. A meso-Tetraaryl-21-carbaporphyrin: Incorporation of a Cyclopentadiene Unit into a Porphyrin Architecture. Angew. Chem. Int. Ed. 2019, 58, 6089–6093. [Google Scholar] [CrossRef]
- Lash, T.D.; Chaney, S.T. Azuliporphyrin, a Case of Borderline Porphyrinoid Aromaticity. Angew. Chem. Int. Ed. Engl. 1997, 36, 839–840. [Google Scholar] [CrossRef]
- Lash, T.D. Out of the Blue! Azuliporphyrins and Related Carbaporphyrinoid Systems. Acc. Chem. Res. 2016, 49, 471–482. [Google Scholar] [CrossRef]
- Lash, T.D. Oxybenziporphyrin, an Aromatic Semiquinone Porphyrin Analog with Pathways for 18π-Electron Delocalization. Angew. Chem. Int. Ed. Engl. 1995, 34, 2533–2535. [Google Scholar] [CrossRef]
- Lash, T.D.; Chaney, S.T.; Richter, D.T. Conjugated Macrocycles Related to the Porphyrins. Part 12. Oxybenzi- and Oxypyriporphyrins: Aromaticity and Conjugation in Highly Modified Porphyrinoid Structures. J. Org. Chem. 1998, 63, 9076–9088. [Google Scholar] [CrossRef]
- Lash, T.D. Benziporphyrins, a Unique Platform for Exploring the Aromatic Characteristics of Porphyrinoid Systems. Org. Biomol. Chem. 2015, 13, 7846–7878. [Google Scholar] [CrossRef] [PubMed]
- Lash, T.D.; Chaney, S.T. Conjugated Macrocycles Related to the Porphyrins. Part 7. Tropiporphyrin: Tropylium versus Porphyrinoid Aromaticity. Tetrahedron Lett. 1996, 37, 8825–8828. [Google Scholar] [CrossRef]
- Bergman, K.M.; Ferrence, G.M.; Lash, T.D. Tropiporphyrins, Cycloheptatrienyl Analogues of the Porphyrins: Synthesis, Spectroscopy, Chemistry and Structural Characterization of a Silver(III) Derivative. J. Org. Chem. 2004, 69, 7888–7897. [Google Scholar] [CrossRef] [PubMed]
- Lash, T.D. Carbaporphyrinoids: Taking the Heterocycle Out of Nature’s [18]Annulene. Synlett 2000, 2000, 279–295. [Google Scholar]
- Lash, T.D. Recent Advances on the Synthesis and Chemistry of Carbaporphyrins and Related Porphyrinoid Systems. Eur. J. Org. Chem. 2007, 5461–5481. [Google Scholar] [CrossRef]
- Lash, T.D. Metal Complexes of Carbaporphyrinoid Systems. Chem. Asian J. 2014, 9, 682–705. [Google Scholar] [CrossRef]
- Lash, T.D. Organometallic Chemistry within the Structured Environment Provided by the Macrocyclic Cores of Carbaporphyrins and Related Systems. Molecules 2023, 28, 1496. [Google Scholar] [CrossRef]
- Thuita, D.W.; Brückner, C. Metals Complexes of Porphyrinoids Containing Nonpyrrolic Heterocycles. Chem. Rev. 2022, 122, 7990–8052. [Google Scholar] [CrossRef]
- Toganoh, M.; Furuta, H. Handbook of Porphyrin Science—With Applications to Chemistry, Physics, Material Science, Engineering, Biology and Medicine; Kadish, K.M., Smith, K.M., Guilard, R., Eds.; World Scientific Publishing: Singapore, 2010; Volume 2, pp. 103–192. [Google Scholar]
- Furuta, H.; Ishizuka, T.; Osuka, A.; Dejima, H.; Nakagawa, H.; Ishikawa, Y. NH Tautomerism of N-Confused Porphyrin. J. Am. Chem. Soc. 2001, 123, 6207–6208. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Wondimagegn, T.; Nilsen, H.J. Molecular Structures, Tautomerism, and Carbon Nucleophilicity of Free-Base Inverted Porphyrins and Carbaporphyrins: A Density Functional Theory Study. J. Phys. Chem. B 1998, 102, 10459–10467. [Google Scholar] [CrossRef]
- Szterenberg, L.; Latos-Grażyński, L. Structure and Stability of 2-Aza-21-carbaporphyrin Tautomers Prearranged for Coordination. Inorg. Chem. 1997, 36, 6287–6291. [Google Scholar] [CrossRef]
- Furuta, H.; Maeda, H.; Osuka, A. Stability and Structure of N-Confused Porphyrins. J. Org. Chem. 2000, 65, 4222–4226. [Google Scholar] [CrossRef]
- Furuta, H.; Maeda, H.; Osuka, A. Theoretical Study of Stability, Structures, and Aromaticity of Multiply N-Confused Porphyrins. J. Org. Chem. 2001, 66, 8563–8572. [Google Scholar] [CrossRef] [PubMed]
- Lash, T.D.; Young, A.M.; Von Ruden, A.L.; Ferrence, G.M. Adding to the Confusion! Synthesis and Metalation of Pyrazole Analogues of the Porphyrins. Chem. Commun. 2008, 44, 6309–6311. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.; Von Ruden, A.L.; Lash, T.D. Pyrazole Analogues of the Porphyrins and Oxophlorins. Org. Biomol. Chem. 2011, 9, 6293–6305. [Google Scholar] [CrossRef]
- Liu, B.Y.; Brückner, C.; Dolphin, D. A meso-Unsubstituted N-Confused Porphyrin Prepared by Rational Synthesis. Chem. Commun. 1996, 32, 2141–2142. [Google Scholar] [CrossRef]
- Lash, T.D.; Richter, D.T.; Shiner, C.M. Conjugated Macrocycles Related to the Porphyrins. Part 16. Synthesis of Hexa- and Heptaalkyl Substituted Inverted or N-Confused Porphyrins by the “3 + 1” Methodology. J. Org. Chem. 1999, 64, 7973. [Google Scholar] [CrossRef]
- Lash, T.D.; Von Ruden, A.L. Synthesis and Reactivity of N-methyl and N-phenyl meso-Unsubstituted N-Confused Porphyrins. J. Org. Chem. 2008, 73, 9417–9425. [Google Scholar] [CrossRef]
- Lash, T.D. Porphyrin Synthesis by the “3 + 1” Approach: New Applications for an Old Methodology. Chem. Eur. J. 1996, 2, 1197–1200. [Google Scholar] [CrossRef]
- Lash, T.D. What’s in a Name? The MacDonald Condensation. J. Porphyr. Phthalocyanines 2016, 20, 855–888. [Google Scholar] [CrossRef]
- Lash, T.D.; Hayes, M.J.; Spence, J.D.; Muckey, M.A.; Ferrence, G.M.; Szczepura, L.F. Conjugated Macrocycles Related to the Porphyrins. Part 21. Synthesis, Spectroscopy, Electrochemistry and Structural Characterization of Carbaporphyrins. J. Org. Chem. 2002, 67, 4860–4874. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; LeGoff, E. Unpublished work cited in Sessler, J.L.; Weghorn, S. Expanded, Contracted & Isomeric Porphyrins. Pergamon: New York, NY, USA, 1997; pp. 364–366. [Google Scholar]
- Katiaouni, S.; Dechert, S.; Brückner, C.; Meyer, F. A Versatile Building Block for Pyrazole-Pyrrole Hybrid Macrocycles. Chem. Commun. 2007, 43, 951–953. [Google Scholar] [CrossRef]
- Katiaouni, S.; Dechert, S.; Briñas, R.P.; Brückner, C.; Meyer, F. Siamese-Twin Porphyrin: A Pyrazole-Based Expanded Porphyrin Providing a Bimetallic Cavity. Angew. Chem. Int. Ed. 2011, 50, 1420–1424. [Google Scholar]
- Dorazio, S.J.; Vogel, A.; Dechert, S.; Nevonen, D.E.; Nemykin, V.N.; Brückner, C.; Meyer, F. Siamese-Twin Porphyrin Goes Platinum: Group 10 Momnometallic, Homobimetallic, and Heterobimetallic Complexes. Inorg. Chem. 2020, 59, 7290–7305. [Google Scholar] [CrossRef]
- Ishida, M.; Fujimoto, H.; Morimoto, T.; Mori, S.; Togonoh, M.; Shimizu, S.; Furuta, H. Supramolecular Dimeric Structures of Pyrazole-Containing meso-Oxo Carbaphlorin Analogues. Supramol. Chem. 2017, 29, 8–16. [Google Scholar] [CrossRef]
- Morimoto, T.; Taniguchi, S.; Osuka, A.; Furuta, H. N-Confused Porphine. Eur. J. Org. Chem. 2005, 2005, 3887–3890. [Google Scholar] [CrossRef]
- Wu, J.I.; Fernańdez, I.; Schleyer, P.v.R. Descriptionof Aromaticity in Porphyrinoids. J. Am. Chem. Soc. 2013, 135, 315–321. [Google Scholar] [CrossRef]
- Ghosh, A. First-Principles Quantum Chemical Studies of Porphyrins. Acc. Chem. Res. 1998, 31, 189–198. [Google Scholar] [CrossRef]
- Ghosh, A.; Larsen, S.; Conradie, J.; Foroutan-Nejad, C. Local versus Global Aromaticity in Azuliporphyrin and Benziporphyrin Derivatives. Org. Biomol. Chem. 2018, 16, 7964–7970. [Google Scholar] [CrossRef] [PubMed]
- Nakagami, Y.; Sekine, R.; Aihara, J.-i. The Origin of Global and Macrocyclic Aromaticity in Porphyrinoids. Org. Biomol. Chem. 2012, 10, 5219–5229. [Google Scholar] [CrossRef] [PubMed]
- Aihara, J.-i.; Nakagami, Y.; Sekine, R.; Makino, M. Validity and Limitations of the Bridged Annulene Model for Porphyrins. J. Phys. Chem. A 2012, 116, 11718–11730. [Google Scholar] [CrossRef]
- Valiev, R.R.; Fleigl, H.; Sundholm, D. Predicting the Degree of Aromaticity of Novel Carbaporphyrinoids. Phys. Chem. Chem. Phys. 2015, 17, 14215–14222. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.R.; Fliegl, H.; Sundholm, D. Aromatic Pathways in Carbathiaporphyrins. J. Phys. Chem. A 2015, 119, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.; Geerlings, P.; De Proft, F. Exploring the Structure-Aromaticity Relationship in Hückel and Möbius N-Fused Pentaphyrins Using DFT. Phys. Chem. Chem. Phys. 2014, 16, 14396–14407. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.; Geerlings, P.; De Proft, F. Topology Switching in [32]Heptaphyrins Controlled by Solvent, Protonation, and meso Substituents. Chem. Eur. J. 2013, 19, 1617–1628. [Google Scholar] [CrossRef]
- AbuSalim, D.I.; Lash, T.D. Relative Stability and Diatropic Character of Carbaporphyrin, Dicarbaporphyrin, Tricarbaporphyrin and Quatyrin Tautomers. J. Org. Chem. 2013, 78, 11535–11548. [Google Scholar] [CrossRef]
- AbuSalim, D.I.; Lash, T.D. Aromatic Character and Stability of Neo-Confused Porphyrin Tautomers and Related Compounds. Org. Biomol. Chem. 2013, 11, 8306–8323. [Google Scholar] [CrossRef]
- Grabowski, E.Y.; AbuSalim, D.I.; Lash, T.D. Naphtho [2,3-b]carbaporphyrins. J. Org. Chem. 2018, 83, 11825–11838. [Google Scholar] [CrossRef]
- Lash, T.D.; AbuSalim, D.I.; Ferrence, G.M. Telluracarbaporphyrins and Related Palladium(II) Complex: Evidence for Hypervalent Interactions. Inorg. Chem. 2021, 60, 9833–9847. [Google Scholar] [CrossRef] [PubMed]
- Noboa, M.A.; AbuSalim, D.I.; Lash, T.D. Azulichlorins and Benzocarbachlorins Derived Therefrom. J. Org. Chem. 2019, 84, 11649–11664. [Google Scholar] [CrossRef] [PubMed]
- AbuSalim, D.I.; Ferrence, G.M.; Lash, T.D. Synthesis of an adj-Dicarbaporphyrin and the Formation of an Unprecedented Tripalladium Sandwich Complex. J. Am. Chem. Soc. 2014, 136, 6763–6772. [Google Scholar] [CrossRef] [PubMed]
- Lash, T.D.; AbuSalim, D.I.; Ferrence, G.M. adj-Dicarbachlorin, the First Example of a Free Base Carbaporphyrinoid System with an Internal Methylene Unit. Chem. Commun. 2015, 51, 15952–15955. [Google Scholar] [CrossRef]
- Jain, P.; AbuSalim, D.I.; Lash, T.D. adj-Dicarbaporphyrinoid Systems: Synthesis, Spectroscopic Characterization, and Reactivity of 23-Carbabenziporphyrins. J. Org. Chem. 2019, 84, 10237–10256. [Google Scholar] [CrossRef]
- AbuSalim, D.I.; Lash, T.D. Relative Stability of Benziporphyrin and Naphthiporphyrin Tautomers and the Emergence of Macrocyclic Diatropicity. Org. Biomol. Chem. 2014, 12, 8719–8736. [Google Scholar] [CrossRef]
- Gao, R.; AbuSalim, D.I.; Lash, T.D. Pyreniporphyrins, Porphyrin Analogues that Incorporate a Polycyclic Aromatic Hydrocarbon Subunit within the Macrocyclic Framework. J. Org. Chem. 2017, 82, 6680–6688. [Google Scholar] [CrossRef]
- AbuSalim, D.I.; Lash, T.D. In Pursuit of Novel Porphyrin Isomers. Aromatic Character and Relative Stability of Conjugated Tetrapyrroles with Two Neo-Confused Rings or with Mixed Neo- Confused and N-Confused Subunits. J. Phys. Chem. A 2015, 119, 11440–11453. [Google Scholar] [CrossRef]
- AbuSalim, D.I.; Lash, T.D. Tropylium and Porphyrinoid Character in Carbaporphyrinoid Systems. Relative Stability and Aromatic Characteristics of Azuliporphyrin and Tropiporphyrin Tautomers, Protonated Species, and Related Structures. J. Phys. Chem. A 2019, 123, 230–246. [Google Scholar] [CrossRef]
- Lash, T.D.; Colby, D.A.; El-Beck, J.A.; AbuSalim, D.I.; Ferrence, G.M. Preparation, Structural Characterization, Assessment of Potential Antiaromaticity and Metalation of 21-Oxyazuliporphyrins. Inorg. Chem. 2015, 54, 9174–9187. [Google Scholar] [CrossRef]
- Cramer, E.K.; AbuSalim, D.I.; Lash, T.D. Oxyquinoliziniporphyrins: Introduction of a Heterocyclic Dimension to Carbaporphyrinoid Systems. Org. Lett. 2022, 24, 5402–5406. [Google Scholar] [CrossRef] [PubMed]
- Lash, T.D.; Stateman, L.M.; AbuSalim, D.I. Synthesis of Azulitriphyrins [1.2.1] and Related Benzocarbatriphyrins. J. Org. Chem. 2019, 84, 14733–14744. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sahoo, D.K.; Sethi, S.K.; Jena, S.; Biswal, H.S. Nature and Strength of the Inner-Core H···H Interactions in Porphyrinoids. ChemPhysChem 2017, 18, 3625–3633. [Google Scholar] [CrossRef] [PubMed]
- Toganoh, M.; Furuta, H. Theoretical Study on Conformation and Electronic State of Hückel-Aromatic Multiply N-Confused [26]Hexaphyrins. J. Org. Chem. 2010, 75, 8213–8223. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.; Geerlings, P.; de Proft, F. Viability of Mobius Topologies in [26]- and [28]Hexaphyrins. Chem. Eur. J. 2012, 18, 10916–10928. [Google Scholar] [CrossRef]
- Toganoh, M.; Furuta, H. Theoretical Study on the Conformation and Aromaticity of Regular and Singly N-Confused [28]Hexaphyrins. J. Org. Chem. 2013, 78, 9317–9327. [Google Scholar] [CrossRef]
- Lash, T.D. Origin of Aromatic Character in Porphyrinoid Systems. J. Porphyr. Phthalocyanines 2011, 15, 1093–1115. [Google Scholar] [CrossRef]
- Schleyer, P.v.R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N.J.R. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. [Google Scholar] [CrossRef]
- Fallah-Bagher-Shaidaei, H.; Wannere, C.S.; Corminboeuf, C.; Puchta, R.; Schleyer, P.v.R. Which NICS Aromaticity Index for Planar π Rings Is Best? Org. Lett. 2006, 8, 863–866. [Google Scholar] [CrossRef]
- Corminboeuf, C.; Heine, T.; Seifert, G.; Schleyer, P.v.R.; Weber, J. Induced Magnetic Fields in Aromatic [n]-Annulenes Interpretation of NICS Tensor Components. Phys. Chem. Chem. Phys. 2004, 6, 273–276. [Google Scholar] [CrossRef]
- Mills, N.S.; Llagostera, K.B. Summation of Nucleus Independent Chemical Shifts as a Measure of Aromaticity. J. Org. Chem. 2007, 72, 9163–9169. [Google Scholar] [CrossRef] [PubMed]
- Sola, M.; Feixas, F.; Jimenéz-Halla, J.O.C.; Matito, E.; Poate, J. A Critical Assessment of the Performance of Magnetic and Electronic Indices of Aromaticity. Symmetry 2010, 2, 1156–1179. [Google Scholar] [CrossRef]
- Geuenich, D.; Hess, K.; Köhler, F.; Herges, R. Anisotropy of Induced Current Density (ACID), a General Method to Quantify and Visualize Electronic Delocalization. Chem. Rev. 2005, 105, 3758–3772. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision, C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
PzP-22,24-H | PzP-2,23-H | PzP-22,23-H | PzP-2,22-H | PzP-2,24-H | PzP-21,22-H | PzP-21,23-H | |
---|---|---|---|---|---|---|---|
ΔG298 (kcal/mol) ΔE (kcal/mol) | 0.00 | −0.25 | 6.20 | 7.24 | 6.42 | 16.21 | 9.17 |
0.00 | 0.37 | 6.67 | 7.88 | 7.08 | 18.32 | 11.27 | |
NICS(0) NICS(01)zz | −13.05 | −1.76 | −11.88 | −2.49 | −2.20 | −11.96 | −11.08 |
−30.62 | −2.88 | −28.46 | −5.85 | −4.87 | −29.02 | −27.24 | |
NICS(a) NICS(a1)zz | +1.26 | −8.96 | +03.59 | −9.87 | −9.69 | −15.12 | −13.57 |
+2.12 | −19.84 | +04.64 | −23.46 | −22.70 | −49.64 | −46.92 | |
NICS(b) NICS(b1)zz | −11.73 | −0.04 | −2.83 | +0.65 | −4.05 | +1.24 | −0.76 |
−31.37 | −5.45 | −13.35 | −6.40 | −10.74 | −5.94 | −10.11 | |
NICS(c) NICS(c1)zz | −2.03 | −3.97 | −10.56 | +1.02 | +0.40 | −2.24 | −12.94 |
−11.73 | −10.70 | −25.72 | −5.05 | −6.39 | −13.27 | −33.60 | |
NICS(d) NICS(d1)zz | −11.72 | −0.82 | −13.19 | −4.33 | −0.43 | −12.70 | −0.76 |
−31.34 | −7.07 | −37.48 | −11.71 | −8.75 | −33.32 | −10.11 |
PzP-2,20-H | PzP-2,15-H | PzP-2,10-H | PzP-2,5-H | PzP-5,22-H | |
---|---|---|---|---|---|
ΔG298 (kcal/mol) ΔE (kcal/mol) | 28.14 | 27.38 | 27.56 | 28.43 | 27.27 |
32.15 | 31.49 | 31.67 | 32.76 | 30.13 | |
NICS(0) NICS(01)zz | +0.72 | +1.09 | +1.09 | +0.53 | −0.55 |
+5.25 | +5.76 | +5.72 | +4.52 | +1.87 | |
NICS(a) NICS(a1)zz | −10.05 | −9.11 | −9.01 | −9.72 | +1.94 |
−24.53 | −22.74 | −22.69 | −24.66 | −7.33 | |
NICS(b) NICS(b1)zz | +1.50 | +0.34 | −0.48 | −1.01 | −1.04 |
−4.15 | −5.95 | −7.19 | −8.46 | −9.17 | |
NICS(c) NICS(c1)zz | −0.06 | +0.97 | +1.41 | +0.50 | −3.85 |
−7.02 | −5.31 | −4.36 | −5.85 | −15.13 | |
NICS(d) NICS(d1)zz | −1.73 | −1.18 | −0.36 | +2.40 | −9.23 |
−10.05 | −8.76 | −7.55 | −2.36 | −23.78 | |
PzP-5,23-H | PzP-5,24-H | PzP-10,22-H | PzP-10,23-H | PzP-10,24-H | |
ΔG298 (kcal/mol) ΔE (kcal/mol) | 19.93 | 23.23 | 24.78 | 21.06 | 22.96 |
22.28 | 25.75 | 28.03 | 24.21 | 25.85 | |
NICS(0) NICS(01)zz | −0.42 | +0.16 | −0.08 | +0.36 | −0.09 |
+0.64 | +2.89 | +0.74 | +1.84 | +1.92 | |
NICS(a) NICS(a1)zz | +3.14 | +1.24 | −0.06 | +2.34 | +1.14 |
−4.64 | −8.70 | −11.70 | −7.05 | −8.67 | |
NICS(b) NICS(b1)zz | −2.24 | −9.41 | −1.89 | −3.85 | −9.65 |
−11.55 | −22.39 | −11.35 | −15.25 | −22.94 | |
NICS(c) NICS(c1)zz | −9.64 | −1.76 | −1.15 | −9.31 | −0.72 |
−23.17 | −10.12 | −9.94 | −21.91 | −8.50 | |
NICS(d) NICS(d1)zz | −0.47 | +01.05 | −9.71 | −1.63 | −0.55 |
−8.40 | −5.19 | −23.77 | −11.44 | −7.54 |
Molecule | ab | bc | cd | da | Average |
---|---|---|---|---|---|
PzP-22,24-H | 13.43 | −1.41 | 1.39 | −13.41 | 7.41 |
PzP-22,23-H | −10.36 | −0.04 | −6.48 | 16.13 | 8.25 |
PzP-2,23-H | 9.94 | 0.95 | −1.54 | −9.73 | 5.54 |
PzP-2,22-H | −7.75 | −1.53 | −0.67 | 10.15 | 5.03 |
PzP-2,24-H | 10.93 | −0.08 | −2.37 | −8.09 | 5.37 |
PzP-2,20-H | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PzP-2,15-H | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
PzP-2,10-H | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
PzP-2,5-H | −0.01 | 0.01 | −0.01 | 0.13 | 0.04 |
PzP-5,22-H | −12.70 | 1.67 | −4.71 | 20.63 | 9.93 |
PzP-5,23-H | 0.03 | 0.00 | −0.01 | −0.03 | 0.02 |
PzP-5,24-H | 11.87 | −1.58 | −2.74 | −10.12 | 6.58 |
PzP-10,22-H | −7.46 | 0.16 | −2.48 | 8.85 | 4.74 |
PzP-10,23-H | −10.59 | −3.18 | 3.77 | 12.83 | 7.59 |
PzP-10,24-H | −9.69 | 1.95 | 0.87 | 8.90 | 5.35 |
PzP-21,22-H | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PzP-21,23-H | 0.00 | 0.01 | −0.01 | −0.01 | 0.01 |
[PzP-22,23,24-H]+ | 19.03 | −13.81 | 13.83 | −19.05 | 16.43 |
[PzP-2,22,24-H]+ | −18.70 | 2.12 | −1.69 | 18.15 | 10.17 |
[PzP-2,22,23-H]+ | 15.98 | −0.81 | 7.48 | −20.99 | 11.31 |
[PzP-2,22,24-H]+ | 21.07 | −7.64 | 0.32 | −15.37 | 11.10 |
[PzP-21,22,24-H]+ | 0.02 | −0.02 | 0.19 | −0.21 | 0.11 |
[PzP-21,22,23-H]+ | −1.79 | −2.69 | 10.82 | −8.06 | 5.84 |
[PzP-2,21,22-H]+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
[PzP-2,21,23-H]+ | 0.01 | −0.02 | 0.03 | −0.02 | 0.02 |
[PzP-2,21,24-H]+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
[PzP-2,22,23,24-H]2+ | −23.25 | 15.19 | −14.96 | 22.85 | 19.06 |
[PzP-2,21,22,24-H]2+ | −0.01 | 0.01 | −0.01 | 0.01 | 0.01 |
[PzP-2,21,23,24-H]2+ | −7.10 | 12.00 | −4.20 | −0.93 | 6.06 |
[PzP-2,21,22,23-H]2+ | 1.56 | 3.13 | −11.82 | 6.83 | 5.84 |
[PzP-2,22,24-H]+ | [PzP-22,23,24-H]+ | [PzP-2,22,23-H]+ | [PzP-2,23,24-H]+ | [PzP-21,22,24-H]+ | |
---|---|---|---|---|---|
ΔG298 (kcal/mol) ΔE (kcal/mol) | 0.00 | 16.70 | 3.46 | 4.07 | −19.01 |
0.00 | 16.97 | 3.65 | 4.29 | 20.89 | |
NICS(0) NICS(01)zz | −4.50 | −12.54 | −2.72 | −2.99 | −15.01 |
−8.55 | −29.17 | −4.52 | −6.91 | −36.42 | |
NICS(a) NICS(a1)zz | −11.38 | +3.39 | −9.79 | −9.40 | −19.92 |
−19.15 | +6.46 | −18.49 | −20.79 | −60.83 | |
NICS(b) NICS(b1)zz | −5.09 | −12.81 | −0.22 | −5.64 | −11.30 |
−14.15 | −39.27 | −5.89 | −13.45 | −31.17 | |
NICS(c) NICS(c1)zz | −2.43 | −12.02 | −4.43 | −4.99 | −0.13 |
−0.95 | −23.71 | −11.56 | −14.65 | −13.29 | |
NICS(d) NICS(d1)zz | −5.97 | −12.80 | −6.15 | −1.30 | −11.30 |
−16.03 | −39.26 | −17.63 | −10.77 | −31.16 | |
[PzP-21,22,23-H]+ | [PzP-2,21,22-H]+ | [PzP-2,21,23-H]+ | [PzP-2,21,24-H]+ | ||
ΔG298 (kcal/mol) ΔE(kcal/mol) | 23.94 | 23.96 | 14.90 | 22.71 | |
25.84 | 26.52 | 17.29 | 24.87 | ||
NICS(0) NICS(01)zz | −12.55 | −12.40 | −10.92 | −8.67 | |
−29.99 | −30.19 | −26.83 | −19.98 | ||
NICS(a) NICS(a1)zz | −16.02 | −21.54 | −19.10 | −15.79 | |
−51.77 | −52.96 | −47.98 | −39.29 | ||
NICS(b) NICS(b1)zz | +1.65 | +6.16 | +4.60 | −6.04 | |
+0.93 | +5.20 | +2.01 | −17.53 | ||
NICS(c) NICS(c1)zz | −12.60 | +3.49 | −7.56 | +0.90 | |
−35.25 | −0.98 | −22.10 | −6.01 | ||
NICS(d) NICS(d1)zz | −13.27 | −8.50 | +1.51 | +2.61 | |
−25.94 | −24.18 | −4.54 | −1.77 |
[PzP-2,22,23,24-H]2+ | [PzP-2,21,22,24-H]2+ | [PzP-2,21,23,24-H]2+ | [PzP-2,21,22,23-H]2+ | |
---|---|---|---|---|
ΔG298 (kcal/mol) ΔE (kcal/mol) | 0.00 | 13.22 | 16.53 | 16.04 |
0.00 | 15.13 | 18.53 | 18.16 | |
NICS(0) NICS(01)zz | −4.14 | −11.63 | −10.59 | −12.24 |
−7.49 | −27.10 | −24.93 | −29.07 | |
NICS(a) NICS(a1)zz | −9.29 | −20.24 | −18.67 | −21.04 |
−16.86 | −49.56 | −46.46 | −51.64 | |
NICS(b) NICS(b1)zz | −6.32 | −6.31 | −7.68 | +6.36 |
−20.75 | −19.11 | −14.35 | +6.24 | |
NICS(c) NICS(c1)zz | −4.96 | +2.65 | −8.50 | −7.72 |
−10.04 | −2.31 | −27.00 | −25.27 | |
NICS(d) NICS(d1)zz | −7.20 | −7.85 | +2.19 | −9.67 |
−22.55 | −22.77 | −2.23 | −18.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AbuSalim, D.I.; Lash, T.D. Aromatic Character and Relative Stability of Pyrazoloporphyrin Tautomers and Related Protonated Species: Insights into How Pyrazole Changes the Properties of Carbaporphyrinoid Systems. Molecules 2023, 28, 2854. https://doi.org/10.3390/molecules28062854
AbuSalim DI, Lash TD. Aromatic Character and Relative Stability of Pyrazoloporphyrin Tautomers and Related Protonated Species: Insights into How Pyrazole Changes the Properties of Carbaporphyrinoid Systems. Molecules. 2023; 28(6):2854. https://doi.org/10.3390/molecules28062854
Chicago/Turabian StyleAbuSalim, Deyaa I., and Timothy D. Lash. 2023. "Aromatic Character and Relative Stability of Pyrazoloporphyrin Tautomers and Related Protonated Species: Insights into How Pyrazole Changes the Properties of Carbaporphyrinoid Systems" Molecules 28, no. 6: 2854. https://doi.org/10.3390/molecules28062854
APA StyleAbuSalim, D. I., & Lash, T. D. (2023). Aromatic Character and Relative Stability of Pyrazoloporphyrin Tautomers and Related Protonated Species: Insights into How Pyrazole Changes the Properties of Carbaporphyrinoid Systems. Molecules, 28(6), 2854. https://doi.org/10.3390/molecules28062854