Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Laccase-Producing Strain Vibrio sp. LA
2.2. Analysis of L01 Gene Using Bioinformatics Methods
2.3. Recombinant Expression of L01 in Yarrowia lipolytica
2.4. Effects of Temperature and pH on Activity of L01
2.5. L01 Activity with the Existence of Various Metal Ions and Some Compounds
2.6. Decolorization of Synthetic Dyes by L01
3. Materials and Methods
3.1. Materials, Strains, and Media
3.2. Screening Laccase-Producing Strains at a Low Temperature
3.3. Bioinformatics Analysis of L01
3.4. Recombinant Expression of L01 in Yeast Host and Purification of the Recombinant Enzyme
3.5. Impacts of Temperatures and Different pH on Activity and Stability of L01
3.6. L01 Activity with the Existence of Various Metal Ions and Some Compounds
3.7. Decolorization of Synthetic Dyes by L01
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morsi, R.; Bilal, M.; Iqbal, H.M.N.; Ashraf, S.S. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci. Total Environ. 2020, 714, 136572. [Google Scholar] [CrossRef] [PubMed]
- Senthivelan, T.; Kanagaraj, J.; Panda, R.C. Recent trends in fungal laccase for various industrial applications: A eco-friendly approach: A review. Biotechnol. Bioprocess Eng. 2016, 21, 19–38. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, P.; Singh, A.K.; Kumar, V.; Sonawane, V.C.; Markandeya; Bharagava, R.N.; Raj, A. Decolourisation of textile dye by laccase: Process evaluation and assessment of its degradation bioproducts. Bioresour. Technol. 2021, 340, 125591. [Google Scholar] [CrossRef]
- Sousa, A.C.; Martins, L.O.; Robalo, M.P. Laccases: Versatile Biocatalysts for the Synthesis of Heterocyclic Cores. Molecules 2021, 26, 3719. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Fu, J.; Wang, Q.; Silva, C.; Cavaco-Paulo, A. Laccase: A green catalyst for the biosynthesis of poly-phenols. Crit. Rev. Biotechnol. 2018, 38, 294–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.D.; Tiwari, A.; Anisha, G.S.; Chen, C.W.; Singh, A.; Haldar, D.; Patel, A.K.; Singhania, R.R. Laccase: A potential biocatalyst for pollutant degradation. Environ. Pollut. 2023, 319, 120999. [Google Scholar] [CrossRef]
- Moiseenko, K.V.; Savinova, O.S.; Vasina, D.V.; Kononikhin, A.S.; Tyazhelova, T.V.; Fedorova, T.V. Laccase isoenzymes of Trametes hirsute LE-BIN072: Degradation of industrial dyes and secretion under the different induction conditions. Appl. Biochem. Microbiol. 2018, 54, 834–841. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Goradia, B.; Saxena, A. Bacterial laccase: Recent update on production, properties and industrial applications. 3 Biotech 2017, 7, 323. [Google Scholar] [CrossRef]
- Li, H.; Meng, F.; Duan, W.; Lin, Y.; Zheng, Y. Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicol. Environ. Saf. 2019, 184, 109658. [Google Scholar] [CrossRef]
- Molina-Guijarro, J.M.; Pérez, J.; Muñoz-Dorado, J.; Guillén, F.; Moya, R.; Hernández, M.; Arias, M.E. Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int. Microbiol. 2009, 12, 13–21. [Google Scholar]
- Li, Y.; Zuo, W.F.; Li, Y.D.; Wang, X.G. Cloning of multicopper oxidase gene from Ochrobactrum sp. 531 and characterization of its alkaline laccase activity towards phenolic substrates. Adv. Biol. Chem. 2012, 2, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Aung, T.; Jiang, H.; Chen, C.C.; Liu, G.L.; Hu, Z.; Chi, Z.M.; Chi, Z. Production, Gene Cloning, and Overexpression of a Laccase in the Marine-Derived Yeast Aureobasidium melanogenum Strain 11-1 and Characterization of the Recombinant Laccase. Mar. Biotechnol. 2019, 21, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.S.; Durão, P.; Fillat, A.; Lindley, P.F.; Martins, L.O.; Bento, I. Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: Characterization of a metallo-oxidase. Metallomics 2012, 4, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Lu, L.; Feng, F.J. Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris. Electron. J. Biotechnol. 2017, 28, 7–13. [Google Scholar] [CrossRef]
- Wang, S.S.; Ning, Y.J.; Wang, S.N.; Zhang, J.; Zhang, G.Q.; Chen, Q.J. Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. Int. J. Biol. Macromol. 2017, 95, 920–927. [Google Scholar] [CrossRef]
- Campos, P.A.; Levin, L.N.; Wirth, S.A. Heterologous production, characterization and dye decolorization ability of a novel thermostable laccase isoenzyme from Trametes trogii bafc 463. Process Biochem. 2016, 51, 895–903. [Google Scholar] [CrossRef]
- Miyamoto, T.; Okano, S.; Kasai, N. Inactivation of Escherichia coli endotoxin by soft hydrothermal processing. Appl. Environ. Microbiol. 2009, 75, 5058–5063. [Google Scholar] [CrossRef] [Green Version]
- Madzak, C. Yarrowia lipolytica: Recent achievements in heterologous protein expression and pathway engineering. Appl. Microbiol. Biotechnol. 2015, 99, 4559–4577. [Google Scholar] [CrossRef]
- Li, S.Y.; Wang, Z.P.; Wang, L.N.; Peng, J.X.; Wang, Y.N.; Han, Y.T.; Zhao, S.F. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica. Bioresour. Technol. 2019, 281, 84–89. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, B.; Huang, B.C.; Wang, F.B.; Zhang, Y.Q.; Zhao, S.G.; Li, M.; Wang, H.Y.; Yu, X.J.; Liu, X.Y.; et al. Production, Biosynthesis, and Commercial Applications of Fatty Acids from Oleaginous Fungi. Front. Nutr. 2022, 9, 873657. [Google Scholar] [CrossRef]
- Antosova, Z.; Sychrova, H. Yeast hosts for the production of recombinant laccases: A review. Mol. Biotechnol. 2016, 58, 93–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Deng, W.; Yang, Y. Characterization of a Novel Laccase LAC-Yang1 from White-Rot Fungus Pleurotus ostreatus Strain Yang1 with a Strong Ability to Degrade and Detoxify Chlorophenols. Molecules 2021, 26, 473. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Shahverdi, A.R.; Faramarzi, M.A. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour. Technol. 2017, 230, 67–75. [Google Scholar] [CrossRef]
- Neifar, M.; Chouchane, H.; Mahjoubi, M.; Jaouani, A.; Cherif, A. Pseudomonas extremorientalis BU118: A new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech 2016, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.L.; Zhao, M.; Lu, L.; Wei, X.D.; Li, T.L. Characterization of spore laccase from Bacillus subtilis wd23 and its use in dye decolorization. Afr. J. Biotehnol. 2011, 10, 2186–2192. [Google Scholar]
- Singh, G.; Bhalla, A.; Capalash, N.; Sharma, P. Characterization of immobilized Laccase from γ-proteobacterium JB: Approach towards the development of biosensor for the detection of phenolic compounds. Indian J. Sci. Technol. 2010, 3, 48–53. [Google Scholar] [CrossRef]
- Mcmahon, A.M.; Doyle, E.M.; Brooks, S.; O’ Connor, K.E. Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium pseudomonas putida f6. Enzym. Microb. Technol. 2007, 40, 1435–1441. [Google Scholar] [CrossRef]
- Jia, Y.; Huang, Q.; Zhu, L.; Pan, C. Characterization of a Recombinant Laccase B from Trametes hirsuta MX2 and Its Application for Decolorization of Dyes. Molecules 2022, 27, 1581. [Google Scholar] [CrossRef]
- Yin, Q.; Zhou, G.; Peng, C.; Zhang, Y.; Kues, U.; Liu, J.; Xiao, Y.; Fang, Z. The first fungal laccases with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization. AMB Express 2019, 9, 151. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Cao, M.; Li, B.; Ji, X.-F.; Zhang, X.-Y.; Zhang, Y.-Q.; Wang, H.-Y. Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase. Mar. Drugs 2020, 18, 189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wang, Z.P.; Sheng, J.; Zheng, Y.; Ji, X.F.; Zhou, H.X.; Liu, X.Y.; Chi, Z.M. High and efficient isomaltulose production using an engineered Yarrowia lipolytica strain. Bioresour. Technol. 2018, 265, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.J.; Wang, S.S.; Chen, Q.J.; Ling, Z.R.; Wang, S.N.; Wang, W.P.; Zhang, G.Q.; Zhu, M.J. An extracellular yellow laccase with potent dye decolorizing ability from the fungus Leucoagaricus naucinus LAC-04. Int. J. Biol. Macromol. 2016, 93 Pt A, 837–842. [Google Scholar] [CrossRef]
Source | Optimal pH/ Temperature (°C) | pH Range for Stable Protein |
---|---|---|
This study | 8.0/35 | 4.5–10.0 |
Aureobasidium melanogenum [12] | 3.2/40 | 2.8–3.6 |
Pleurotus ostreatus [22] | 3.2/50 | 9.0–11.0 |
Aquisalibacillus elongatus [23] | 8.0/40 | 5.0–10.0 |
Pseudomonas extremorientalis [24] | 8.0/40–50 | 7.0–10.0 |
Bacillus subtilis [25] | 6.8/60 | 5.0–7.0 |
γ-Proteobacterium [26] | 6.5/55 | 4.0–10.0 |
Pseudomonas putida [27] | 30/7.0 | 5.0–9.0 |
Dyes | L01 | Commercial Laccase |
---|---|---|
Methylene Blue | 23.6 ± 2.3 | 15.3 ± 0.2 |
Malachite Green | 15.2 ± 1.2 | 35.0 ± 2.1 |
Eriochrome Black T | 62.3 ± 3.1 | 54.6 ± 1.2 |
Methyl Orange | 32.1 ± 1.3 | 23.2 ± 0.8 |
Crystal Violet | 15.2 ± 1.1 | 31.5 ± 1.4 |
Safranine 0 | 10.2 ± 0.4 | 15.3 ± 0.9 |
Bromophenol Blue | 46.3 ± 2.2 | 29.0 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Deng, J.-L.; Wang, Z.-G.; Chen, X.-Y.; Wang, S.-J.; Wang, Y.-C. Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability. Molecules 2023, 28, 3037. https://doi.org/10.3390/molecules28073037
Jiang J, Deng J-L, Wang Z-G, Chen X-Y, Wang S-J, Wang Y-C. Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability. Molecules. 2023; 28(7):3037. https://doi.org/10.3390/molecules28073037
Chicago/Turabian StyleJiang, Jing, Jing-Ling Deng, Zhi-Gang Wang, Xiao-Yu Chen, Shu-Jie Wang, and Yong-Chuang Wang. 2023. "Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability" Molecules 28, no. 7: 3037. https://doi.org/10.3390/molecules28073037
APA StyleJiang, J., Deng, J.-L., Wang, Z.-G., Chen, X.-Y., Wang, S.-J., & Wang, Y.-C. (2023). Characterization of a New Laccase from Vibrio sp. with pH-stability, Salt-tolerance, and Decolorization Ability. Molecules, 28(7), 3037. https://doi.org/10.3390/molecules28073037