Critical Analysis of Association Constants between Calixarenes and Nitroaromatic Compounds Obtained by Fluorescence. Implications for Explosives Sensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Detection of Nitroaromatic Explosives
2.1.1. UV-Vis Absorption and Fluorescence Studies
2.1.2. NMR Studies
2.2. Computational Studies
2.2.1. Semiempirical Calculations
2.2.2. QM Calculations
2.2.3. MD Simulations
3. Materials and Methods
3.1. UV-Vis Absorption and Fluorescence Studies
3.2. 1H NMR Studies
3.3. Computational Details
3.3.1. QM/MM Calculations
3.3.2. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019–8061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martelo, L.M.; Marques, L.F.; Burrows, H.D.; Berberan-Santos, M.N. Explosive detection: From sensing to response. In Fluorescence in Industry; Pedras, B., Ed.; Springer Series on Fluorescence; Springer: Cham, Switzerland, 2019; Volume 18. [Google Scholar]
- Moore, D.S. Recent advances in trace explosives detection instrumentation. Sens. Imaging. 2007, 8, 9–38. [Google Scholar] [CrossRef]
- Meaney, M.S.; McGuffin, V.L. Luminescence-based methods for sensing and detection of explosives. Anal. Bioanal. Chem. 2008, 391, 2557–2576. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, T.; Nabeel, F.; Rizwan, K.; Bilal, M.; Hussain, T. Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: A review. Trends Anal. Chem. 2020, 129, 115958. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Revisiting fluorescent calixarenes: From molecular sensors to smart materials. Chem. Rev. 2019, 119, 9657–9721. [Google Scholar] [CrossRef]
- Desai, V.; Panchal, M.; Dey, S.; Panjwani, F.; Jain, V.K. Recent advancements for the recognition of nitroaromatic explosives using calixarene based fluorescent probes. J. Fluoresc. 2022, 32, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Gutsche, C.D. Calixarenes, An Introduction; Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, UK, 2008. [Google Scholar]
- Neri, P.; Sessler, J.L.; Wang, M.-X. (Eds.) Calixarenes and Beyond; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Lee, Y.H.; Liu, H.; Lee, J.Y.; Kim, S.H.; Kim, S.K.; Sessler, J.L.; Kim, Y.; Kim, J.S. Dipyrenylcalix[4]arene—A fluorescence-based chemosensor for trinitroaromatic explosives. Chem. Eur. J. 2010, 16, 5895–5901. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Zhu, X.; Fang, F.; Miao, F.; Tian, D.; Li, H. Sensitive fluorescence sensor for nitroaniline isomers based on calix[4]arene bearing naphthyl groups. Tetrahedron 2012, 68, 5579–5582. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, L.; Sun, Y.; Miao, F.; Bi, J.; Tan, S.; Tian, D.; Li, H. Synthesis of a novel fluorescent anthryl calix[4]arene as picrid acid sensor. Tetrahedron 2013, 69, 9886–9889. [Google Scholar] [CrossRef]
- Cao, X.; Luo, L.; Zhang, F.; Miao, F.; Tian, D.; Li, H. Synthesis of a deep cavity calix[4]arene by fourfold Sonogashira cross-coupling reaction and selective fluorescent recognition toward p-nitrophenol. Tetrahedron Lett. 2014, 55, 2029–2032. [Google Scholar] [CrossRef]
- Boonkitpatarakul, K.; Yodta, Y.; Niamnont, N.; Sukwattanasinitt, M. Fluorescent phenylethynylene calix[4]arenes for sensing TNT in aqueous media and vapor phase. RSC Adv. 2015, 5, 33306–33311. [Google Scholar] [CrossRef]
- Bandela, A.K.; Bandaru, S.; Rao, C.P. A fluorescent 1,3-diaminonaphthalimide conjugate of calix[4]arene for sensitive and selective detection of trinitrophenol: Spectroscopy, microscopy, and computational studies, and its applicability using cellulose strips. Chem. Eur. J. 2015, 21, 13364–13374. [Google Scholar] [CrossRef] [PubMed]
- Dinda, S.K.; Hussain, M.A.; Upadhyay, A.; Rao, C.P. Supramolecular sensing of 2,4,6-trinitrophenol by a tetrapyrenyl conjugate of calix[4]arene: Applicability in solution, in solid state, and on the strips of cellulose and silica gel and the image processing by a cellular phone. ACS Omega 2019, 4, 17060–17071. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.V.; Costa, A.I.; Teixeira, C.M. A solid-state fluorescence sensor for nitroaromatics and nitroanilines based on a conjugated calix[4]arene polymer. J. Fluoresc. 2020, 30, 41–50. [Google Scholar] [CrossRef]
- Barata, P.; Prata, J.V. Fluorescent calix[4]arene-carbazole-containing polymers as sensors for nitroaromatic explosives. Chemosensors 2020, 8, 128. [Google Scholar] [CrossRef]
- Miranda, A.S.; Martelo, L.M.; Fedorov, A.A.; Berberan-Santos, M.N.; Marcos, P.M. Fluorescence properties of p-tert-butyldihomooxacalix[4]arene derivatives and the effect of anion complexation. New J. Chem. 2017, 41, 5967–5973. [Google Scholar] [CrossRef]
- Miranda, A.S.; Marcos, P.M.; Ascenso, J.R.; Berberan-Santos, M.N.; Schurhammer, R.; Hickey, N.; Geremia, S. Dihomooxacalix[4]arene-based fluorescent receptors for anion and organic ion pair recognition. Molecules 2020, 25, 4708. [Google Scholar] [CrossRef]
- Miranda, A.S.; Marcos, P.M.; Ascenso, J.R.; Berberan-Santos, M.N.; Menezes, F. Anion binding by fluorescent ureido-hexahomotrioxacalix[3]arene receptors: An NMR, absorption and emission spectroscopic study. Molecules 2022, 27, 3247. [Google Scholar] [CrossRef]
- Cottet, K.; Marcos, P.M.; Cragg, P.J. Fifty years of oxacalix[3]arenes: A review. Beilstein J. Org. Chem. 2012, 8, 201–226. [Google Scholar] [CrossRef]
- Marcos, P.M. Functionalization and properties of homooxacalixarenes. In Calixarenes and Beyond; Neri, P., Sessler, J.L., Wang, M.-X., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 445–466. [Google Scholar]
- Wu, C.; Zhao, J.-L.; Jiang, X.-K.; Ni, X.-L.; Zeng, X.; Redshaw, C.; Yamato, T. Click-modified hexahomotrioxacalix[3]arenes as fluorometric and colorimetric dual-modal chemosensors for 2,4,6-trinitrophenol. Anal. Chim. Acta 2016, 936, 216–221. [Google Scholar] [CrossRef]
- Sarova, G.; Berberan-Santos, M.N. Stable charge-transfer complexes versus contact complexes. Application to the interaction of fullerenes with aromatic hydrocarbons. J. Phys. Chem. B 2004, 108, 17261. [Google Scholar]
- Spartan 20 software, Version 1.1.3; Wavefunction Inc.: Irvine, CA, USA.
- Sheehan, R.; Cragg, P.J. Supramolecular chemistry in silico. Supramol. Chem. 2008, 20, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, M.R.; Vincent, J.C.; Ede, J.A.; Gass, I.A.; Cragg, P.J. Experimental and computational study of the inclusion complexes of β-cyclodextrin with the chemical warfare agent soman (GD) and commonly used simulants. RSC Adv. 2017, 7, 38069–38076. [Google Scholar] [CrossRef] [Green Version]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Menezes, F.; Fedorov, A.; Baleizão, C.; Valeur, B.; Berberan-Santos, M.N. Methods for the analysis of complex fluorescence decays: Sum of Becquerel functions versus sum of exponentials. Methods Appl. Fluoresc. 2013, 1, 015002. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Rev. D.01. Wallingford, CT, USA. 2016. Available online: https://gaussian.com (accessed on 2 March 2016).
- Dapprich, S.; Komáromi, I.; Byun, K.S.; Morokuma, K.; Frisch, M.J. A New ONIOM implementation in Gaussian 98. Part 1. The calculation of energies, gradients and vibrational frequencies and electric field derivatives. J. Mol. Struct. THEOCHEM 1999, 461–462, 1–21. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular orbital methods. IX. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724. [Google Scholar] [CrossRef]
- Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard III, W.A.; Skiff, W.M. UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Becke, A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, E.; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K.; et al. AMBER 18. University of California: San Francisco, CA, USA, 2019. [Google Scholar]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Bayly, C.I.; Cieplak, P.; Cornell, W.D.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Fox, T.; Kollman, P.A. Application of the RESP methodology in the parametrization of organic solvents. J. Phys. Chem. B 1998, 102, 8070–8079. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Briggs, J.M. Monte Carlo simulations of liquid acetonitrile with a three-site model. Mol. Phys. 1988, 63, 547–558. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer simulation of liquids. Clarendon Press: Oxford, UK, 1987. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
Solvent | NT | DNT | TNT | TNP | NB | DNB | |
---|---|---|---|---|---|---|---|
1 | CH2Cl2 | <0.1 | <0.1 | <0.1 | 0.5 | <0.1 | <0.1 |
MeCN | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | |
2 | CH2Cl2 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
/ns (%) | /ns (%) | /ns (%) | /ns | |
---|---|---|---|---|
1 * | 0.35 (6) | 2.6 (59) | 9.3 (35) | 4.8 |
1 + NT | 0.33 (6) | 2.5 (58) | 8.6 (36) | 4.6 |
1 + DNT | 0.37 (6) | 2.6 (59) | 9.1 (35) | 4.7 |
1 + TNT | 0.39 (6) | 2.7 (60) | 9.4 (34) | 4.8 |
1 + TNP | 0.33 (6) | 2.5 (57) | 8.7 (37) | 4.6 |
1 + NB | 0.35 (6) | 2.6 (58) | 9.0 (36) | 4.7 |
1 + DNB | 0.35 (6) | 2.6 (58) | 8.8 (36) | 4.7 |
/ns (%) | /ns (%) | /ns (%) | /ns | |
---|---|---|---|---|
3 * | 0.26 (10) | 2.2 (12) | 11.2 (78) | 9.0 |
3 + 4 equiv. TNP | 0.25 (10) | 2.0 (12) | 10.9 (78) | 8.7 |
3 + 10 equiv. TNP | 0.24 (10) | 2.1 (12) | 10.8 (77) | 8.6 |
1 | ||
---|---|---|
M | P | |
NT | 9.2 | 3.3 |
DNT | −0.4 | 3.3 |
TNT | 2.1 | 1.7 |
TNP | −1.7 | −13.0 |
NB | 12.6 | 8.8 |
DNB | 9.6 | 2.5 |
TNP | DNB | NT | ||
---|---|---|---|---|
MeCN | E | −110 ± 75 | −29 ± 35 | −11 ± 15 |
−123 ± 52 | −31 ± 31 | −13 ± 16 | ||
−123 ± 52 | −22 ± 26 | −12 ± 16 | ||
N | 0.54/0.34/0.82 ± 0.68 (24–35) | 0.30/0.26/0.30 ± 0.52 (22–35) | 0.21/0.18/0.13 ± 0.42 (14–15) | |
0.74/0.41/0.50 ± 0.58 (20–34) | 0.32/0.23/0.44 ± 0.47 (20–35) | 0.17/0.16/0.17 ± 0.43 (14–15) | ||
0.30/0.37/0.97 ± 0.53 (24–28) | 0.24/0.27/0.17 ± 0.51 (25–30) | 0.19/0.17/0.17 ± 0.41 (12–15) | ||
CH2Cl2 | E | −246 ± 97 | −86 ± 50 | −17 ± 20 |
−336 ± 60 | −59 ± 39 | −18 ± 19 | ||
−247 ± 71 | −93 ± 61 | −35 ± 29 | ||
N | 1.98/1.53/1.38 ± 0.68 (50–90) | 0.58/0.33/0.83 ± 0.50 (21–37) | 0.27/0.21/0.22 ± 0.42 (12–15) | |
1.30/1.69/1.79 ± 0.60 (50–110) | 0.33/0.51/0.23 ± 0.52 (15–30) | 0.20/0.19/0.26 ± 0.40 (14–16) | ||
1.39/1.10/1.56 ± 0.55 (40–85) | 0.43/0.51/0.54 ± 0.45 (28–40) | 0.32/0.21/0.27 ± 0.42 (14–16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, A.S.; Marcos, P.M.; Ascenso, J.R.; Berberan-Santos, M.N.; Cragg, P.J.; Schurhammer, R.; Gourlaouen, C. Critical Analysis of Association Constants between Calixarenes and Nitroaromatic Compounds Obtained by Fluorescence. Implications for Explosives Sensing. Molecules 2023, 28, 3052. https://doi.org/10.3390/molecules28073052
Miranda AS, Marcos PM, Ascenso JR, Berberan-Santos MN, Cragg PJ, Schurhammer R, Gourlaouen C. Critical Analysis of Association Constants between Calixarenes and Nitroaromatic Compounds Obtained by Fluorescence. Implications for Explosives Sensing. Molecules. 2023; 28(7):3052. https://doi.org/10.3390/molecules28073052
Chicago/Turabian StyleMiranda, Alexandre S., Paula M. Marcos, José R. Ascenso, Mário N. Berberan-Santos, Peter J. Cragg, Rachel Schurhammer, and Christophe Gourlaouen. 2023. "Critical Analysis of Association Constants between Calixarenes and Nitroaromatic Compounds Obtained by Fluorescence. Implications for Explosives Sensing" Molecules 28, no. 7: 3052. https://doi.org/10.3390/molecules28073052
APA StyleMiranda, A. S., Marcos, P. M., Ascenso, J. R., Berberan-Santos, M. N., Cragg, P. J., Schurhammer, R., & Gourlaouen, C. (2023). Critical Analysis of Association Constants between Calixarenes and Nitroaromatic Compounds Obtained by Fluorescence. Implications for Explosives Sensing. Molecules, 28(7), 3052. https://doi.org/10.3390/molecules28073052