Effect of Different Accumulative Temperate Zones in Heilongjiang on Glycine Soja Metabolites as Analyzed by Non-Target Metabolomics
Abstract
:1. Introduction
2. Results
2.1. The Main Nutritional Components
2.2. The Amino Acid Composition
2.3. Gas Chromatography-Time of Flight Mass Spectrometry
2.4. OPLS-DA Result
2.5. Mining and Identification of Differential Metabolites
2.6. Cluster Analysis of the Differential Metabolites
2.7. Metabolite Pathway
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. A Breakdown of the Division of the Heilongjiang Temperate Zone
4.3. Determination of Basic Nutrients
4.4. Analysis of Amino Acid Composition of Wild Soybean Protein Isolates
4.5. Metabolite Extraction
4.6. Computer Detection
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability Statement
References
- Wang, Y.H.; Zhang, X.J.; Fan, S.J. Genetic diversity of wild soybean populations in Dongying, China, by simple sequence repeat analysis. Genet. Mol. Res. 2015, 14, 11613–11623. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Qin, R.; Li, H.; Du, Q.; Li, X.; Yang, H.; Kong, F.; Liu, B.; Yu, D.; Wang, H. Genome-wide association studies reveal novel loci for herbivore resistance in wild soybean (Glycine soja). Int. J. Mol. Sci. 2022, 14, 8016. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, X.; Fan, J. Salt stress induces physiological and photosynthetic changes in glycine max. Plant Sci. J. 2022, 40, 829–838. [Google Scholar]
- Guo, J.; Liu, Y.; Wang, Y. Population structure of the wild soybean (Glycine soja) in China: Implications from microsatellite analyses. Ann. Bot. 2012, 110, 777–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yue, L. A review on the utilization of wild soybean resources. Exp. Study 2022, 11, 15–18. [Google Scholar]
- Yang, F.; Tian, B.; Chen, J. Impact of climate change on rice production in Heilongjiang and countermeasures. Agric. Meteorol. 2016, 33, 148. [Google Scholar]
- Zhao, S.; Xu, X.; Wei, D.; Lin, X.; Qiu, S.; Ciampitti, I.; He, P. Soybean yield, nutrient uptake and stoichiometry under different climate regions of northeast China. Sci. Rep. 2020, 10, 8431. [Google Scholar] [CrossRef]
- Zhang, Q.; Hong, J.; Zhang, T.; Tian, X.; Geng, Y.; Chen, W.; Zhai, Y.; Liu, W.; Shen, X.; Bai, Y. Environmental footprints of soybean production in China. Environ. Dev. Sustain. 2022, 22, 1–19. [Google Scholar]
- Wang, X.; Komatsu, S. Improvement of soybean products through the response mechanism analysis using proteomic technique. Adv. Food Nutr. Res. 2017, 82, 117–148. [Google Scholar]
- Xu, J.; Guo, T.; Wang, Z. Analysis on quality breeding of common soybean varieties approved by Heilongjiang. Seed Ind. China 2022, 8, 11–16. [Google Scholar]
- Liu, Y.; Du, H.; Li, P. Pan-genome of wild and cultivated soybeans. Cell 2020, 182, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.M.; Xu, X.; Liu, X. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 2010, 42, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Yendrek, C.R.; Skoneczka, J.A.; Long, S.P. Accelerating yield potential in soybean: Potential targets for biotechnological improvement. Plant Cell Environ. 2012, 35, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Rao, J.; Shi, J.; Hu, C.; Cheng, F.; Wilson, Z.A.; Zhang, D.; Quan, S. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. J. Integr. Plant Biol. 2014, 56, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.; Kopka, J.; Sung, D.Y. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J. 2007, 50, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Ding, M.; Tian, C. Determination of nutritional components in Flammulina velutipes. Anal. Test. 2018, 21, 127–131. [Google Scholar]
- Lugan, R.; Niogret, M.F.; Leport, L. Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J. 2010, 64, 215–229. [Google Scholar] [CrossRef]
- Cao, M.; Li, Q.; Zhang, L. Spatio-temporal variation of accumulated temperature in Heilongjiang and reclassification of accumulated temperature zone. Chin. J. Agrometeorol. 2014, 35, 492–496. [Google Scholar]
- Wang, X.; Li, Y.; Wang, X.; Li, X.; Dong, S. Physiology and metabonomics reveal differences in drought resistance among soybean varieties. Bot. Stud. 2022, 63, 8. [Google Scholar] [CrossRef]
- Gu, E.J.; Kim, D.W.; Jang, G.J.; Song, S.H.; Lee, J.I.; Lee, S.B.; Kim, B.M.; Cho, Y.; Lee, H.J.; Kim, H.J. Mass-based metabolomic analysis of soybean sprouts during germination. Food Chem. 2017, 217, 311–319. [Google Scholar] [CrossRef]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, W.B.; Broadhurst, D.; Begley, P. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef] [PubMed]
Accumulated Temperature Zone | Nutritional Components | |||||
---|---|---|---|---|---|---|
Dry Matter (DM) | Crude Protein (CP) | Crude Fat (EE) | Crude Fiber (CF) | Crude Ash (CA) | Nitrogen Free Extract (NFE) | |
First accumulated temperature zone | 87.55 ± 1.02 a | 41.95 ± 1.11 b | 19.03 ± 0.42 a | 4.1 ± 0.05 a | 4.1 ± 0.08 a | 18.37 ± 0.44 a |
Second accumulated temperature zone | 87.59 ± 1.13 a | 43.27 ± 1.23 b | 19.11 ± 0.21 a | 3.8 ± 0.07 b | 3.9 ± 0.07 b | 17.51 ± 0.67 b |
Third accumulated temperature zone | 87.62 ± 0.87 a | 45.65 ± 0.79 b | 16.56 ± 0.47 b | 4.2 ± 0.06 a | 3.8 ± 0.06 b | 17.41 ± 0.32 b |
Fourth accumulated temperature zone | 87.49 ± 0.56 a | 45.04 ± 0.94 b | 17.95 ± 0.29 b | 3.7 ± 0.08 b | 3.9 ± 0.07 b | 16.90 ± 0.17 b |
Fifth accumulated temperature zone | 87.29 ± 0.93 a | 46.15 ± 0.69 a | 16.56 ± 0.33 b | 3.8 ± 0.07 b | 4.1 ± 0.08 a | 16.68 ± 0.28 b |
Sixth accumulated temperature zone | 87.66 ± 0.79 a | 46.65 ± 0.78 a | 16.17 ± 0.28 b | 3.6 ± 0.08 b | 4.1 ± 0.05 a | 17.14 ± 0.39 b |
Accumulated Temperature Zone | Amino Acid Content (g/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Leucine (Leu) | Phenylalanine (Phe) | Valine (Val) | Threonine (Thr) | Isoleucine (Ile) | Tyrosine (Tyr) | Lysine (Lys) | Cysteine (Cys) | Methionine (Met) | |
First accumulated temperature zone | 0.285 ± 0.07 b | 0.275 ± 0.13 a | 0.232 ± 0.06 b | 0.187 ± 0.03 b | 0.165 ± 0.08 b | 0.138 ± 0.09 a | 0.121 ± 0.08 b | 0.072 ± 0.12 a | 0.018 ± 0.02 b |
Second accumulated temperature zone | 0.333 ± 0.13 a | 0.264 ± 0.04 b | 0.245 ± 0.07 b | 0.176 ± 0.07 b | 0.173 ± 0.03 a | 0.109 ± 0.08 b | 0.114 ± 0.07 b | 0.052 ± 0.07 b | 0.017 ± 0.02 b |
Third accumulated temperature zone | 0.295 ± 0.14 b | 0.231 ± 0.03 b | 0.254 ± 0.04 a | 0.168 ± 0.07 b | 0.166 ± 0.12 b | 0.117 ± 0.03 b | 0.098 ± 0.06 b | 0.047 ± 0.04 b | 0.026 ± 0.05 a |
Fourth accumulated temperature zone | 0.272 ± 0.09 b | 0.284 ± 0.15 a | 0.242 ± 0.08 b | 0.169 ± 0.09 b | 0.179 ± 0.07 a | 0.101 ± 0.05 b | 0.091 ± 0.03 b | 0.067 ± 0.07 a | 0.015 ± 0.03 b |
Fifth accumulated temperature zone | 0.368 ± 0.14 a | 0.258 ± 0.06 b | 0.231 ± 0.05 b | 0.206 ± 0.02 a | 0.177 ± 0.06 a | 0.120 ± 0.04 b | 0.119 ± 0.11 b | 0.059 ± 0.09 b | 0.036 ± 0.03 a |
Sixth accumulated temperature zone | 0.389 ± 0.15 a | 0.285 ± 0.17 a | 0.253 ± 0.07 a | 0.235 ± 0.03 a | 0.165 ± 0.07 b | 0.122 ± 0.02 b | 0.168 ± 0.17 a | 0.047 ± 0.08 b | 0.018 ± 0.01 b |
Serial Number | Metabolites | Matching Degree | Retention Time | Mass–Nucleus Ratio | Multiple | LOG_Fold Change |
---|---|---|---|---|---|---|
1 | Threonine | 615 | 24.9858, 0 | 191 | 4.034738444 | 2.012475152 |
2 | Lysine | 513 | 16.1544, 0 | 158 | 2.74526287 | 1.456944299 |
3 | Galactinol | 845 | 26.3387, 0 | 204 | 1.69245982 | 0.759121584 |
4 | Fructose | 941 | 17.6132, 0 | 103 | 1.551154488 | 0.633342379 |
5 | Lactose | 701 | 24.5229, 0 | 204 | 1.536435894 | 0.619587573 |
6 | Threonic acid | 879 | 14.056, 0 | 73 | 1.516431011 | 0.600679865 |
7 | Elaidic acid | 848 | 20.8699, 0 | 117 | 1.508722588 | 0.593327558 |
8 | L-Malic acid | 905 | 13.1961, 0 | 73 | 1.415874215 | 0.501693104 |
9 | Tyrosine | 529 | 17.745, 0 | 179 | 1.403227472 | 0.488748898 |
10 | Epicatechin | 852 | 25.8145, 0 | 179 | 1.337082019 | 0.419087966 |
11 | Gluconic lactone | 835 | 17.6669,0 | 129 | 1.32308485 | 0.403905586 |
12 | Glucose | 944 | 17.779, 0 | 160 | 1.316534485 | 0.396745312 |
13 | Isocitric acid | 523 | 16.9813, 0 | 71 | 1.31555597 | 0.395672629 |
14 | Pyruvic acid | 735 | 7.24774, 0 | 174 | 1.292478361 | 0.370140127 |
15 | Linolenic acid | 800 | 20.8693, 0 | 93 | 1.289148146 | 0.366418065 |
16 | Erythrose | 625 | 12.4653, 0 | 201 | 1.289070817 | 0.366331523 |
17 | Mannose | 716 | 17.7116, 0 | 160 | 1.283416172 | 0.359989067 |
18 | (+)-catechin | 770 | 25.943, 0 | 368 | 1.273170136 | 0.348425222 |
19 | Arachidic acid | 696 | 22.7363, 0 | 117 | 1.248480747 | 0.320173573 |
20 | Myristic Acid | 721 | 17.3481, 0 | 117 | 1.235081798 | 0.304606593 |
21 | Gentiobiose | 761 | 25.6645, 0 | 159 | 1.216287179 | 0.282483905 |
22 | Caprylic acid | 565 | 10.2849, 0 | 117 | 1.203475382 | 0.26720663 |
23 | Linoleic acid methyl ester | 693 | 19.7872, 0 | 67 | 1.172126408 | 0.229128166 |
24 | Pantothenic acid | 595 | 18.7426, 0 | 103 | 1.15867036 | 0.212470181 |
25 | Allose | 510 | 14.9788, 0 | 73 | 1.139934375 | 0.188950772 |
26 | Glucose-1-phosphate | 834 | 16.4356, 0 | 217 | 1.124644616 | 0.169469187 |
27 | 3,4-Dihydroxybenzoic acid | 691 | 17.0211, 0 | 193 | 1.078014942 | 0.108377175 |
28 | Palmitic acid | 921 | 19.3057, 0 | 117 | 1.077804088 | 0.108094964 |
29 | 24,25-D | 732 | 29.5233, 0 | 129 | 1.077594124 | 0.107813889 |
30 | Methyl Phosphate | 744 | 9.03833, 0 | 241 | 1.071372809 | 0.099460587 |
31 | Lactobionic Acid | 727 | 25.1029, 0 | 103 | 1.06437028 | 0.090000132 |
32 | Oxalic acid | 744 | 8.37214, 0 | 147 | 1.038639949 | 0.054695622 |
33 | Succinic acid | 915 | 10.9433, 0 | 147 | 1.033169414 | 0.047076839 |
34 | Phenylalanine | 758 | 14.0302, 0 | 120 | 1.033121867 | 0.047010444 |
35 | Heptadecanoic acid | 588 | 20.2102, 0 | 117 | 1.031510429 | 0.044758407 |
36 | Canavanine degradation product | 653 | 9.68057, 0 | 73 | 1.030270126 | 0.043022646 |
37 | D-erythro-Sphingosine | 712 | 22.5749, 0 | 204 | 1.020578213 | 0.029386749 |
38 | Stearic acid | 923 | 21.0941, 0 | 117 | 1.013022356 | 0.018666013 |
39 | Purine riboside | 627 | 22.1152, 0 | 204 | 1.01128078 | 0.016183614 |
40 | Glycolic acid | 858 | 7.60929, 0 | 147 | 1.006643287 | 0.009552542 |
41 | Xylose | 668 | 15.1727, 0 | 58 | 0.99408329 | −0.008561361 |
42 | Citric acid | 899 | 16.9872, 0 | 273 | 0.990982466 | −0.013068564 |
43 | Levoglucosan | 815 | 15.7427, 0 | 73 | 0.971380984 | −0.041890851 |
44 | Adipamide | 591 | 15.4249, 0 | 73 | 0.969640249 | −0.04447851 |
45 | Lactic acid | 896 | 7.383, 0 | 147 | 0.920221145 | −0.119947487 |
46 | Conduritol b epoxide | 822 | 18.366, 0 | 217 | 0.915967034 | −0.126632419 |
47 | Galactinol | 877 | 26.6601, 0 | 204 | 0.913701213 | −0.130205624 |
48 | 4-Hydroxypyridine | 548 | 8.78174, 0 | 152 | 0.90329289 | −0.146734242 |
49 | Fructose 2,6-biphosphate degradation product | 658 | 20.77, 0 | 227 | 0.89848769 | −0.154429357 |
50 | Phosphate | 883 | 10.3555, 0 | 314 | 0.884975422 | −0.176290707 |
51 | Zymosterol | 782 | 28.7493, 0 | 129 | 0.880459836 | −0.183670901 |
52 | Cycloleucine | 619 | 11.6332, 0 | 156 | 0.867422618 | −0.205193034 |
53 | 3-Hydroxypyridine | 690 | 8.54185, 0 | 152 | 0.864681507 | −0.209759261 |
54 | Shikimic acid | 711 | 16.8845, 0 | 204 | 0.863287648 | −0.212086749 |
55 | 2-Hydroxypyridine | 899 | 7.11652, 0 | 152 | 0.856290872 | −0.223827149 |
56 | Dioctyl phthalate | 718 | 23.5127, 0 | 149 | 0.85394986 | −0.227776731 |
57 | Melezitose | 672 | 30.6607, 0 | 73 | 0.849834227 | −0.234746645 |
58 | Neohesperidin | 631 | 23.0325, 0 | 73 | 0.84795516 | −0.237940118 |
59 | Alpha-ketoglutaric acid | 552 | 14.2693, 0 | 73 | 0.839053084 | −0.253166007 |
60 | 3-Hydroxypropionic acid | 517 | 8.52757, 0 | 147 | 0.836665188 | −0.257277687 |
61 | Xylitol | 773 | 15.6522, 0 | 103 | 0.811904201 | −0.300618584 |
62 | 6-Phosphogluconic acid | 656 | 22.4725, 0 | 318 | 0.807649498 | −0.308198764 |
63 | D-(glycerol 1-phosphate) | 808 | 16.3675, 0 | 299 | 0.789007599 | −0.341888899 |
64 | Sorbitol | 875 | 18.1171, 0 | 205 | 0.78056824 | −0.357403332 |
65 | Ethanolamine | 885 | 10.294, 0 | 174 | 0.76322936 | −0.389811424 |
66 | Cytidine-monophosphate degradation product | 681 | 22.7974, 0 | 217 | 0.753914289 | −0.407527578 |
67 | N-Acetyl-beta-D-Mannosamine | 587 | 19.8309, 0 | 73 | 0.751812419 | −0.411555347 |
68 | Oxoproline | 913 | 13.6434, 0 | 156 | 0.749449211 | −0.416097382 |
69 | Tagatose | 558 | 17.1171, 0 | 159 | 0.738433894 | −0.437459322 |
70 | Glycine | 815 | 10.8362, 0 | 174 | 0.712376746 | −0.489287672 |
71 | Galactonic acid | 680 | 18.754, 0 | 73 | 0.708858446 | −0.496430535 |
72 | Melibiose | 772 | 26.0418, 0 | 103 | 0.708279326 | −0.497609663 |
73 | Threitol | 735 | 13.3288, 0 | 73 | 0.706837158 | −0.500550212 |
74 | O-Phosphorylethanolamine | 648 | 16.6066, 0 | 174 | 0.692607292 | −0.529890519 |
75 | Sucrose | 773 | 24.218, 0 | 236 | 0.685175164 | −0.545455237 |
76 | Beta-Alanine | 831 | 12.4519, 0 | 174 | 0.609113861 | −0.715216161 |
77 | L-Allothreonine | 796 | 11.879, 0 | 117 | 0.597106079 | −0.743940839 |
78 | Proline | 559 | 10.7269, 0 | 142 | 0.592954073 | −0.75400773 |
79 | 4-Aminobutyric acid | 898 | 13.7383, 0 | 174 | 0.565448419 | −0.822532668 |
80 | Myo-inositol | 914 | 19.6744, 0 | 217 | 0.509369384 | −0.973215848 |
81 | Alanine | 923 | 7.98757, 0 | 116 | 0.503439525 | −0.990109607 |
82 | Aminomalonic acid | 595 | 12.9704, 0 | 73 | 0.403634735 | −1.308877763 |
83 | Aspartic acid | 895 | 13.5985, 0 | 232 | 0.388960505 | −1.362304422 |
84 | Isoleucine | 768 | 10.6534, 0 | 158 | 0.370717731 | −1.431606975 |
85 | 2-Monoolein | 610 | 24.8258, 0 | 103 | 0.23096137 | −2.114276523 |
86 | Hydrocortisone | 574 | 26.703, 0 | 96 | 0.000106275 | −13.19990792 |
87 | Carbamoyl-aspartic acid | 595 | 16.7499, 0 | 257 | 0.000010876 | −16.49729395 |
Serial Number | Pathway |
---|---|
1 | Glycine, serine, and threonine metabolism |
2 | Lysine biosynthesis |
3 | beta-Alanine metabolism |
4 | Alanine, aspartate, and glutamate metabolism |
5 | alpha-Linolenic acid metabolism |
6 | Valine, leucine, and isoleucine biosynthesis |
7 | Cysteine and methionine metabolism |
8 | Valine, leucine, and isoleucine degradation |
9 | Arginine and proline metabolism |
10 | Cyanoamino acid metabolism |
11 | Aminoacyl-tRNA biosynthesis |
12 | Methane metabolism |
13 | Vitamin B6 metabolism |
14 | Nicotinate and nicotinamide metabolism |
15 | Nitrogen metabolism |
16 | Pentose phosphate pathway |
17 | Carbon fixation in photosynthetic organisms |
18 | Glutathione metabolism |
19 | Biosynthesis of unsaturated fatty acids |
20 | Glucosinolate biosynthesis |
Number of Differential Metabolites Involved in a Metabolic Pathway | Name of Differential Metabolites |
---|---|
Four and above (13) | Isoleucine, leucine, threonine, glutamine, valine, aspartic acid, lysine, serine, alanine, glycine, carbon dioxide, pyruvate, glutamic acid |
Three (13) | Cysteine, methionine, D-glyceraldehyde 3-phosphate, D-ribose 5-phosphate, spermidine 3-methyl-2-oxopentanoic acid, alpha-ketoisovaleric acid, 2-oxo-valeric acid, 4-methyl ester, L-aspartyl-4-phosphate, high threonine, tetrahydrofolate, 2-ketobutyrate, tryptophan |
Two (23) | 3-phosphate-D-glyceride, 5,10-methylene-THF, L-aspartic acid-semialdehyde, L-leucyl-tRNA, L-isoleucyl-tRNA, L-Valyl-tRNA, asparagine, phenylalanine, arginine, proline, D-glyceraldehyde 3-phosphate, dihydroxyacetone, heptapheptaphosphate, D-glyceraldehyde 3-phosphate, D-ribose 5-phosphate, D-erythritose 4-phosphate, (S)-1-pyrrolidin-5-carboxylate, fumarate, γ-aminobutyrate, aarbamate phosphate, α-linolenic acid, 2-oxo-4-methylthiobutyrate, S-adenosylmethionine amine |
Accumulated Temperature Zone | Active Accumulated Temperature | Area |
---|---|---|
First accumulated temperature zone | Above 2700 °C | Qiqihar city, Fularki district, Ang’angxi district, King Star town, Tailai county, Dorbod Mongol Autonomous county, Harbin city, Bin county, Acheng district, Shuangcheng district, Hulan district, Daqing city, Datong district, Zhaoyuan county, Zhaodong city, Zhaozhou county, Dongning city, Sanchakou town. |
Second accumulated temperature zone | 2500–2700 °C | Longjiang county, Gannan county, Beidahuang Shuanghe, Fuyu county, Fulu town, Longanqiao town, Lindian county, Dawn village, Daqing city, Mudanjiang city, Hailin city, Ning’an city, Langone, Bayan county, Mulan county, Wuchang city, Fangzheng county, Yilan county, Suihua city, Qinggang county, Wangkui county, Lanxi country, Jiamusi city, Huanan county, Boli county, Tangyuan county, Huachuan county, Jixi city, Jidong county, Mishan city, Beidahuang 857, Beidahuang 857, Beidahuang Xingkaihu, Jixian county, Fujin city, Beidahuang Youyi, Beidahuang Hongxinglong, Baoqing county, Beidahuang 291. |
Third accumulated temperature zone | 2300–2500 °C | Nehe city, Yi’an county, Keshan county, Baiquan county, Mingshui county, Suiling county, Qing’an county, Beidahuang Liuhe, Shuangyashan city, Beidahuang 853, Beidahuang 852, Qitaihe city, Linkou county, Muling city, Yanshou county, Shangzhi city, Tonghe county, Hegang city, Beidahuang Baoquanling, Jixi Lishu district, Hulin city, Beidahuang Qingfeng, Tongjiang city, Beidahuang Jiansanjiang, Beidahuang Daxing. |
Fourth accumulated temperature zone | 2100–2300 °C | Nenjiang city, Beidahuang Jiusan, Beidahuang Heshan, Beidahuang Lantau peak, Beidahuang Hongwuyue, Beidahuang Rongjun, Beidahuang Zhaoguang, Beidahuang Hailun, Beidahuang Honggunang, Bei’an city, Kedong county, Hailun city, Tieli city, Wudalianchi city, Yabuli forestry bureau, Weihe Forestry Bureau, Yichun city, Beidahuang Qinglongshan, Beidahuang Qianjin, Beidahuang Chuangye, Beidahuang Hongqiling, Beidahuang Shengli village, Heihe city, Xunke county, Jiayin county, Changsheng, Beidahuang 855, East red town, Beidahuang Yunshan, Luobei county, Raohe county. |
Fifth accumulated temperature zone | 1900–2100 °C | Beidahuang Jianbian, Beidahuang Nenbei, Beidahuang Shanhe, Beidahuang Qixingpao, Beidahuang Mount erlong, Zhanhe forestry bureau, Beidahuang Hongxi, Huma county, Sunwu county, Beidahuang Qindeli, Beidahuang Qianfeng, Beidahuang 859, Fuyuan county, Yichun city, Malin forest farm, Sifangshan forest farm, Suifenhe city. |
Sixth accumulated temperature zone | Below 1900 °C | Daling forest farm, Zhanbei forest farm, Chenqing town, Beidahuang Longmen, Beidahuang Changshuihe, Greater higgnan mountains. |
Project | Parameter |
---|---|
Sample volume | 1 μL |
Front inlet mode | Splitless Mode |
Front inlet septum purge flow | 3 mL/min |
Carrier gas | Helium |
Column | DB-5MS (30 m × 250 μm × 0.25 μm) |
Column flow | 1 mL/min |
Oven temperature ramp | 50 °C held for 1 min, raised to 310 °C at a rate of 10 °C/min, held for 8 min |
Front injection temperature | 280 °C |
Transfer line temperature | 280 °C |
Ion source temperature | 250 °C |
Electron energy | −70 eV |
Mass range | m/z: 50–500 |
Acquisition rate | 12.5 spectra per second |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, G.; Mu, L.; Wang, Y. Effect of Different Accumulative Temperate Zones in Heilongjiang on Glycine Soja Metabolites as Analyzed by Non-Target Metabolomics. Molecules 2023, 28, 3296. https://doi.org/10.3390/molecules28083296
Bao G, Mu L, Wang Y. Effect of Different Accumulative Temperate Zones in Heilongjiang on Glycine Soja Metabolites as Analyzed by Non-Target Metabolomics. Molecules. 2023; 28(8):3296. https://doi.org/10.3390/molecules28083296
Chicago/Turabian StyleBao, Guofeng, Liqiang Mu, and Ying Wang. 2023. "Effect of Different Accumulative Temperate Zones in Heilongjiang on Glycine Soja Metabolites as Analyzed by Non-Target Metabolomics" Molecules 28, no. 8: 3296. https://doi.org/10.3390/molecules28083296
APA StyleBao, G., Mu, L., & Wang, Y. (2023). Effect of Different Accumulative Temperate Zones in Heilongjiang on Glycine Soja Metabolites as Analyzed by Non-Target Metabolomics. Molecules, 28(8), 3296. https://doi.org/10.3390/molecules28083296