In Vitro Efficacy of Terpenes from Essential Oils against Sarcoptes scabiei
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Sarcoptes scabiei Mites and Compounds
3.2. In Vitro Evaluation of Miticidal Activity
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arlian, L.G.; Morgan, M.S. A Review of Sarcoptes Scabiei: Past, Present and Future. Parasites Vectors 2017, 10, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernigaud, C.; Fischer, K.; Chosidow, O. The Management of Scabies in the 21st Century: Past, Advances and Potentials. Acta Dermato Venereologica 2020, 100, adv00112. [Google Scholar] [CrossRef] [PubMed]
- Richards, R.N. Scabies: Diagnostic and Therapeutic Update. J. Cutan. Med. Surg. 2020, 25, 95–101. [Google Scholar] [CrossRef]
- Lynar, S.; Currie, B.; Baird, R. Scabies and Mortality. Lancet Infect. Dis. 2017, 17, 1234. [Google Scholar] [CrossRef] [Green Version]
- Engelman, D.; Marks, M.; Steer, A.C.; Beshah, A.; Biswas, G.; Chosidow, O.; Coffeng, L.E.; Lardizabal Dofitas, B.; Enbiale, W.; Fallah, M.; et al. A Framework for Scabies Control. PLoS Negl. Trop. Dis. 2021, 15, e0009661. [Google Scholar] [CrossRef]
- Du, Y.-H.; Li, J.-L.; Jia, R.-Y.; Yin, Z.-Q.; Li, X.-T.; Lv, C.; Ye, G.; Zhang, L.; Zhang, Y.-Q. Acaricidal Activity of Four Fractions and Octadecanoic Acid-Tetrahydrofuran-3,4-Diyl Ester Isolated from Chloroform Extracts of Neem (Azadirachta indica) Oil against Sarcoptes scabiei var. Cuniculi Larvae in Vitro. Vet. Parasitol. 2009, 163, 175–178. [Google Scholar] [CrossRef]
- Absil, G.; Lebas, E.; Libon, F.; el Hayderi, L.; Dezfoulian, B.; Nikkels, A.F. Scabies and Therapeutic Resistance: Current Knowledge and Future Perspectives. JEADV Clin. Pract. 2022, 1, 157–164. [Google Scholar] [CrossRef]
- Bernigaud, C.; Fernando, D.D.; Lu, H.; Taylor, S.; Hartel, G.; Guillot, J.; Chosidow, O.; Fischer, K. In Vitro Ovicidal Activity of Current and Under-Development Scabicides: Which Treatments Kill Scabies Eggs? Br. J. Dermatol. 2020, 182, 511–513. [Google Scholar] [CrossRef]
- Bernigaud, C.; Samarawickrama, G.R.; Jones, M.K.; Gasser, R.B.; Fischer, K. The Challenge of Developing a Single-Dose Treatment for Scabies. Trends Parasitol. 2019, 35, 931–943. [Google Scholar] [CrossRef]
- Akram, M.; Riaz, M.; Noreen, S.; Shariati, M.A.; Shaheen, G.; Akhter, N.; Parveen, F.; Akhtar, N.; Zafar, S.; Owais Ghauri, A.; et al. Therapeutic Potential of Medicinal Plants for the Management of Scabies. Dermatol. Ther. 2020, 33, e13186. [Google Scholar] [CrossRef] [Green Version]
- Shiven, A.; Alam, A.; Kapoor, D.N. Natural and Synthetic Agents for the Treatment of Sarcoptes Scabiei: A Review. Ann. Parasitol. 2020, 66, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liao, F.; Weng, J.; Mo, Q.; Xu, R.; Zhang, Y.; Ren, Z.; Zhong, Z.; Zuo, Z.; Peng, G.; et al. Composition and Acaricidal Activity of Essential Oil from Elsholtzia Densa Benth against Sarcoptes Scabiei Mites in Vitro. Vet. Med. 2019, 64, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Nardoni, S.; Mancianti, F. Essential Oils against Sarcoptes Scabiei. Molecules 2022, 27, 9067. [Google Scholar] [CrossRef]
- Walton, S.F.; McKinnon, M.; Pizzutto, S.; Dougall, A.; Williams, E.; Currie, B.J. Acaricidal Activity of Melaleuca Alternifolia (Tea Tree) Oil: In Vitro Sensitivity of Sarcoptes scabiei Var Hominis to Terpinen-4-Ol. Arch. Dermatol. 2004, 140, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, B.; Bernigaud, C.; Fischer, K.; Guillot, J.; Fang, F. Lemongrass (Cymbopogon Citratus) Oil: A Promising Miticidal and Ovicidal Agent against Sarcoptes Scabiei. PLoS Negl. Trop. Dis. 2020, 14, e0008225. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Candy, K.; Melloul, E.; Bernigaud, C.; Chai, L.; Darmon, C.; Durand, R.; Botterel, F.; Chosidow, O.; Izri, A.; et al. In Vitro Activity of Ten Essential Oils against Sarcoptes scabiei. Parasites Vectors 2016, 9, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasay, C.; Mounsey, K.; Stevenson, G.; Davis, R.; Arlian, L.; Morgan, M.; Vyszenski-Moher, D.; Andrews, K.; McCarthy, J. Acaricidal Activity of Eugenol Based Compounds against Scabies Mites. PLoS ONE 2010, 5, e12079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andriantsoanirina, V.; Guillot, J.; Ratsimbason, M.; Mekhloufi, G.; Randriamialinoro, F.; Ranarivelo, L.; Ariey, F.; Durand, R. In Vitro Efficacy of Essential Oils against Sarcoptes Scabiei. Sci. Rep. 2022, 12, 7176. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical Insecticides: For Richer, for Poorer. Pest. Manag. Sci. 2008, 64, 8–11. [Google Scholar] [CrossRef]
- Fang, F.; Li, M.; Jiang, Z.; Lu, X.; Guillot, J.; Si, H. Comparing Acaricidal and Ovicidal Activity of Five Terpenes from Essential Oils against Psoroptes cuniculi. Parasitol. Res. 2020, 119, 4219–4223. [Google Scholar] [CrossRef]
- Perrucci, S.; Macchioni, G.; Cioni, P.L.; Flamini, G.; Morelli, I. Structure/Activity Relationship of Some Natural Monoterpenes as Acaricides against Psoroptes cuniculi. J. Nat. Prod. 1995, 58, 1261–1264. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; van Mol, W.; Vanhecke, M.; Duchateau, L.; Claerebout, E. Acaricidal Activity of Plant-Derived Essential Oil Components against Psoroptes Ovis in Vitro and in Vivo. Parasites Vectors 2019, 12, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The Bioactivity and Toxicological Actions of Carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318. [Google Scholar] [CrossRef]
- Nong, X.; Fang, C.L.; Wang, J.H.; Gu, X.B.; Yang, D.Y.; Liu, T.F.; Fu, Y.; Zhang, R.H.; Zheng, W.P.; Peng, X.R. Acaricidal Activity of Extract from Eupatorium Adenophorum against the Psoroptes cuniculi and Sarcoptes scabiei in Vitro. Vet. Parasitol. 2012, 187, 345–349. [Google Scholar] [CrossRef]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Wang, Y.; Zhou, X.; Guo, X.; Dong, S.; Wang, D.; Zhang, J.; Pan, H.; Zhang, Y.; Miao, X. Acaricidal Activity of Oregano Oil and Its Major Component, Carvacrol, Thymol and p-Cymene against Psoroptes Cuniculi in Vitro and in Vivo. Vet. Parasitol. 2016, 226, 93–96. [Google Scholar] [CrossRef]
- Mączka, W.; Wińska, K.; Grabarczyk, M. One Hundred Faces of Geraniol. Molecules 2020, 25, 3303. [Google Scholar] [CrossRef]
- Khallaayoune, K.; Biron, J.M.; Chaoui, A.; Duvallet, G. Efficacy of 1% Geraniol (Fulltec) as a Tick Repellent. Parasite-J. Soc. Fr. Parasitol. 2009, 16, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Audino, P.; Picollo, M.I.; Gallardo, A.; Toloza, A.; Vassena, C.; Mougabure-Cueto, G. Comparative Toxicity of Oxygenated Monoterpenoids in Experimental Hydroalcoholic Lotions to Permethrin-Resistant Adult Head Lice. Arch. Dermatol. Res. 2011, 303, 361–366. [Google Scholar] [CrossRef]
- Sparagano, O.; Khallaayoune, K.; Duvallet, G.; Nayak, S.; George, D. Comparing Terpenes from Plant Essential Oils as Pesticides for the Poultry Red Mite (Dermanyssus Gallinae). Transbound. Emerg. Dis. 2013, 60, 150–153. [Google Scholar] [CrossRef]
- Lim, E.G.; Roh, H.S.; Coudron, T.A.; Park, C.G. Temperature-Dependent Fumigant Activity of Essential Oils against Twospotted Spider Mite (Acari: Tetranychidae). J. Econ. Entomol. 2011, 104, 414–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrucci, S.; Cioni, P.L.; Cascella, A.; Macchioni, F. Therapeutic Efficacy of Linalool for the Topical Treatment of Parasitic Otitis Caused by Psoroptes cuniculi in the Rabbit and in the Goat. Med. Vet. Entomol. 1997, 11, 300–302. [Google Scholar] [CrossRef]
- Anderson, J.A.; Coats, J.R. Acetylcholinesterase Inhibition by Nootkatone and Carvacrol in Arthropods. Pestic. Biochem. Physiol. 2012, 102, 124–128. [Google Scholar] [CrossRef] [Green Version]
- López, M.D.; Pascual-Villalobos, M.J. Mode of Inhibition of Acetylcholinesterase by Monoterpenoids and Implications for Pest Control. Ind. Crops Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Waliwitiya, R.; Belton, P.; Nicholson, R.A.; Lowenberger, C.A. Effects of the Essential Oil Constituent Thymol and Other Neuroactive Chemicals on Flight Motor Activity and Wing Beat Frequency in the Blowfly Phaenicia Sericata. Pest Manag. Sci. 2010, 66, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Enan, E.E. Molecular and Pharmacological Analysis of an Octopamine Receptor from American Cockroach and Fruit Fly in Response to Plant Essential Oils. Arch. Insect Biochem. Physiol. 2005, 59, 161–171. [Google Scholar] [CrossRef]
- Gaire, S.; Scharf, M.E.; Gondhalekar, A.D. Toxicity and Neurophysiological Impacts of Plant Essential Oil Components on Bed Bugs (Cimicidae: Hemiptera). Sci. Rep. 2019, 9, 3961. [Google Scholar] [CrossRef] [Green Version]
- Scalerandi, E.; Flores, G.A.; Palacio, M.; Defagó, M.T.; Carpinella, M.C.; Valladares, G.; Bertoni, A.; Palacios, S.M. Understanding Synergistic Toxicity of Terpenes as Insecticides: Contribution of Metabolic Detoxification in Musca Domestica. Front. Plant Sci. 2018, 9, 1579. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, S.; Yin, Z.; Bernigaud, C.; Guillot, J.; Fang, F. Activity of Terpenes Derived from Essential Oils against Sarcoptes scabiei Eggs. Parasites Vectors 2021, 14, 600. [Google Scholar] [CrossRef]
Compound | LT50 (95%FL *) | ||
---|---|---|---|
5% | 1% | 0.5% | |
Terpinen-4-ol | 18.63 min (18.86–20.91) | 6.07 h (5.31–6.82) | 22.25 h (19.40–26.54) |
Citral | 11.97 min (10.49–13.21) | 3.87 h (3.37–4.33) | 6.11 h (5.32–6.83) |
Linalool | 26.29 min (23.44–28.73) | 8.84 h (6.84–11.12) | 39.94 h (28.17–111.09) |
Eugenol | 2.06 min # | 6.41 min (4.29–7.87) | 56.28 min (50.74–62.53) |
Geraniol | 3.73 min # | 24.83 min (17.54–30.68) | 1.75 h (1.02–2.22) |
Carvacrol | 1.03 min # | 3.45 min # | 6.74 min # |
Compound | LC50 (%) | 95%CI | LC90 (%) | 95%CI |
---|---|---|---|---|
Carvacrol | 0.24 | 0.23–0.25 | 0.33 | 0.20–0.37 |
Eugenol | 0.79 | 0.76–0.81 | 0.99 | 0.93–1.11 |
Geraniol | 0.91 | 0.87–0.95 | 1.26 | 1.16–1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Feng, S.; Huang, S.; Guillot, J.; Fang, F. In Vitro Efficacy of Terpenes from Essential Oils against Sarcoptes scabiei. Molecules 2023, 28, 3361. https://doi.org/10.3390/molecules28083361
Li M, Feng S, Huang S, Guillot J, Fang F. In Vitro Efficacy of Terpenes from Essential Oils against Sarcoptes scabiei. Molecules. 2023; 28(8):3361. https://doi.org/10.3390/molecules28083361
Chicago/Turabian StyleLi, Meilin, Shenrui Feng, Siyi Huang, Jacques Guillot, and Fang Fang. 2023. "In Vitro Efficacy of Terpenes from Essential Oils against Sarcoptes scabiei" Molecules 28, no. 8: 3361. https://doi.org/10.3390/molecules28083361
APA StyleLi, M., Feng, S., Huang, S., Guillot, J., & Fang, F. (2023). In Vitro Efficacy of Terpenes from Essential Oils against Sarcoptes scabiei. Molecules, 28(8), 3361. https://doi.org/10.3390/molecules28083361