Infrared Spectra of Small Radicals for Exoplanetary Spectroscopy: OH, NH, CN and CH: The State of Current Knowledge
Abstract
:1. Introduction
- The shock wave and high energy plasma of impacting extraterrestrial bodies go into an early planetary atmosphere,
- Electric discharges of lightning in heavy clouds of dust, vapors and other aerosols are from impact, volcanic activity and evaporation in the early atmosphere,
- The ionization and fragmentation of stable molecules are present in planetary atmospheres due to the strong X-ray and UV radiation from the parent star.
2. Instrumentation of the Spectral Measurements
Time Resolution
3. OH Radical
3.1. Theoretical Background
3.2. Experimental Results
3.3. Comparison with Solar Spectra
3.4. Theoretical Comparison Using a Non-LTE Model
4. NH Radical
4.1. Theoretical Background
4.2. Experimental Results
4.3. Theoretical Comparison with a Non-LTE Model
5. CN Radical
5.1. Theoretical Background
5.2. Experimental Results
6. CH Radical
6.1. Theoretical Background
6.2. Experimental Results
6.3. Comparison with the Solar Spectra
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuckerman, B. Recognition of the First Observational Evidence of an Extrasolar Planetary System. In Proceedings of the 19th European Workshop on White Dwarfs, Montreal, QC, Canada, 11–15 August 2014. [Google Scholar]
- Campbell, B.; Walker, G.A.; Yang, S. A search for substellar companions to solar-type stars. Astrophys. J. 1988, 331, 902–921. [Google Scholar] [CrossRef]
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [Google Scholar] [CrossRef]
- Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Heske, A.; Leconte, J.; Micela, G.; Ollivier, M.; Pilbratt, G.; Puig, L.; et al. A chemical survey of exoplanets with ARIEL. Exp. Astron. 2018, 46, 135–209. [Google Scholar] [CrossRef] [Green Version]
- Guilluy, G.; Sozzetti, A.; Giacobbe, P.; Bonomo, A.S.; Micela, G. On the synergy between Ariel and ground-based high-resolution spectroscopy. Exp. Astron. 2022, 53, 655–677. [Google Scholar] [CrossRef]
- Ryder, G. Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J. Geophys. Res. Planets 2002, 107, 6–1–6-13. [Google Scholar] [CrossRef]
- Genda, H.; Brasser, R.; Mojzsis, S.J. The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett. 2017, 480, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Bottke, W.F.; Vokrouhlický, D.; Marchi, S.; Swindle, T.; Scott, E.R.D.; Weirich, J.R.; Levison, H. Dating the Moon-forming impact event with asteroidal meteorites. Science 2015, 348, 321–323. [Google Scholar] [CrossRef] [Green Version]
- Budde, G.; Burkhardt, C.; Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 2019, 3, 736–741. [Google Scholar] [CrossRef]
- Nesvorný, D.; Roig, F.; Bottke, W.F. Modeling the historical flux of planetary impactors. Astron. J. 2017, 153, 103. [Google Scholar] [CrossRef]
- Chyba, C.; Sagan, C. Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules—An Inventory for the Origin of Life. Nature 1992, 355, 125–132. [Google Scholar] [CrossRef]
- Koeberl, C. The record of impact processes on the early Earth: A review of the first 2.5 billion years. Geol. Soc. Am. Spec. Pap. 2006, 405, 1–22. [Google Scholar]
- Lunine, J.I. Physical conditions on the early Earth. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1721–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwahara, H.; Sugita, S. The molecular composition of impact-generated atmospheres on terrestrial planets during the post-accretion stage. Icarus 2015, 257, 290–301. [Google Scholar] [CrossRef]
- Babankova, D.; Civiš, S.; Juha, L.; Bittner, M.; Cihelka, J.; Pfeifer, M.; Skála, J.; Bartnik, A.; Fiedorowicz, H.; Mikolajczyk, J.; et al. Optical and X-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures. J. Phys. Chem. A 2006, 110, 12113–12120. [Google Scholar] [CrossRef]
- Ferus, M.; Pietrucci, F.; Saitta, A.M.; Knížek, A.; Kubelik, P.; Ivanek, O.; Shestivská, V.; Civiš, S. Formation of nucleobases in a Miller–Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA 2017, 114, 4306–4311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferus, M.; Nesvorný, D.; Šponer, J.E.; Kubelík, P.; Michalčíková, R.; Shestivská, V.; Šponer, J.; Civiš, S. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA 2015, 112, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Ferus, M.; Nesvorný, D.; Šponer, J.; Kubelík, P.; Michalčíková, R.; Shestivská, V.; Šponer, J.E.; Civiš, S. High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation. J. Phys. Chem. 2014, 118, 719–736. [Google Scholar] [CrossRef]
- Ferus, M.; Civis, S.; Mládek, A.; Šponer, J.; Juha, L.; Šponer, J.E. On the Road from Formamide Ices to Nucleobases: IR-Spectroscopic Observation of a Direct Reaction between Cyano Radicals and Formamide in a High-Energy Impact Event. J. Am. Chem. Soc. 2012, 134, 20788–20796. [Google Scholar] [CrossRef] [PubMed]
- Civiš, S.; Szabla, R.; Szyja, B.M.B.M.; Smykowski, D.; Ivanek, O.; Knízek, A.; Kubelík, P.; Šponer, J.E.; Ferus, M.; Šponer, J.E.; et al. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth. Sci. Rep. 2016, 6, 23199. [Google Scholar] [CrossRef] [Green Version]
- Civis, S.; Juha, L.; Babankova, D.; Cvacka, J.; Frank, O.; Jehlicka, J.; Kralikova, B.; Krasa, J.; Kubat, P.; Muck, A.; et al. Amino acid formation induced by high-power laser in CO2/CO-N-2-H2O gas mixtures. Chem. Phys. Lett. 2004, 386, 169–173. [Google Scholar] [CrossRef]
- Ferus, M.; Kubelík, P.; Knížek, A.; Pastorek, A.; Sutherland, J.; Civiš, S. High Energy Radical Chemistry Formation of HCN-rich Atmospheres on early Earth. Sci. Rep. 2017, 7, 6275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Civiš, S.; Knížek, A.; Ivanek, O.; Kubelík, P.; Zukalová, M.; Kavan, L.; Ferus, M. The origin of methane and biomolecules from a CO 2 cycle on terrestrial planets. Nat. Astron. 2017, 1, 721. [Google Scholar] [CrossRef]
- Strom, R.G.; Schaber, G.G.; Dawson, D.D. The global resurfacing of Venus. J. Geophys. Res. Planets 1994, 99, 10899–10926. [Google Scholar] [CrossRef]
- Marchi, S.; Chapman, C.R.; Fassett, C.I.; Head, J.W.; Bottke, W.F.; Strom, R.G. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 2013, 499, 59. [Google Scholar] [CrossRef] [PubMed]
- Erickson, T.M.; Kirkland, C.L.; Timms, N.E.; Cavosie, A.J.; Davison, T.M. Precise radiometric age establishes Yarrabubba, Western Australia, as Earth’s oldest recognised meteorite impact structure. Nat. Commun. 2020, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Schlichting, H.E.; Warren, P.H.; Yin, Q.-Z. The last stages of terrestrial planet formation: Dynamical friction and the late veneer. Astrophys. J. 2012, 752, 8. [Google Scholar] [CrossRef] [Green Version]
- Abramov, O.; Mojzsis, S.J. Thermal effects of impact bombardments on Noachian Mars. Earth Planet Sci. Lett. 2016, 442, 108–120. [Google Scholar] [CrossRef]
- Grimm, R.E.; Solomon, S.C. Reports of Planetary Geology and Geophysics Program—1987; NASA office of space science and applications: Washington, DC, USA, 1988.
- Sprague, A.; Warell, J.; Cremonese, G.; Langevin, Y.; Helbert, J.; Wurz, P.; Veselovsky, I.; Orsini, S.; Milillo, A. Mercury; Balogh, A., Ksanfomality, L., von Steiger, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Brasser, R.; Mojzsis, S.J.; Werner, S.C.; Matsumura, S.; Ida, S. Late veneer and late accretion to the terrestrial planets. Earth Planet Sci. Lett. 2016, 455, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, C.A.; Wyatt, M.C.; Morbidelli, A.; Nesvorný, D. Evolution of the Earth’s atmosphere during Late Veneer accretion. Mon. Not. R. Astron. Soc. 2020, 499, 5334–5362. [Google Scholar] [CrossRef]
- Hashimoto, G.L.; Abe, Y.; Sugita, S. The chemical composition of the early terrestrial atmosphere: Formation of a reducing atmosphere from CI-like material. J. Geophys. Res. 2007, 112, E05010. [Google Scholar] [CrossRef] [Green Version]
- Brucato, J.R.; Baratta, G.A.; Strazzulla, G. An infrared study of pure and ion irradiated frozen formamide. Astron. Astrophys. 2006, 455, 395–399. [Google Scholar] [CrossRef]
- Khare, B.N.; Sagan, C.; Thomson, W.R.; Arakawa, E.T.; Meisse, C.; Tuminello, P.S. Optical Properties of Poly-HCN and their Astronomical Applications. Can. J. Chem. 1994, 72, 678–694. [Google Scholar] [CrossRef] [Green Version]
- Chyba, C.F.; Thomas, P.J.; Brookshaw, L.; Sagan, C. Cometary Delivery of Organic Molecules to the Early Earth. Science 1990, 249, 366–373. [Google Scholar] [CrossRef]
- Schaefer, L.; Fegley, B. Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 2007, 186, 462–483. [Google Scholar] [CrossRef] [Green Version]
- Hazen, R.M.; Sverjensky, D.A. Mineral Surfaces, Geochemical Complexities, and the Origins of Life. Cold Spring Harb. Perspect. Biol. 2010, 2, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenniskens, P.; Wilson, M.A.; Packan, D.; Laux, C.O.; Krüger, C.H.; Boyd, I.D.; Popova, O.P.; Fonda, M. Meteors: A Delivery Mechanism of Organic Matter to the Early Earth. Leonid Storm Res. 1998, 82, 57–70. [Google Scholar]
- Zahnle, K.; Mac Low, M.M.; Lodders, K.; Fegley, B., Jr. Sulfur chemistry in the wake of comet Shoemaker-Levy 9. Geophys. Res. Lett. 1995, 22, 1593–1596. [Google Scholar] [CrossRef] [Green Version]
- Ferus, M.; Pietrucci, F.; Saitta, A.M.; Ivanek, O.; Knizek, A.; Kubelik, P.; Krus, M.; Juha, L.; Dudzak, R.; Dostál, J.; et al. Prebiotic synthesis initiated in formaldehyde by laser plasma simulating high-velocity impacts. A&A 2019, 626, A52. [Google Scholar]
- Rimmer, P.B.B.; Ferus, M.; Waldmann, I.P.P.; Knížek, A.; Kalvaitis, D.; Ivanek, O.; Kubelík, P.; Yurchenko, S.N.N.; Burian, T.; Dostál, J.; et al. Identifiable Acetylene Features Predicted for Young Earth-like Exoplanets with Reducing Atmospheres Undergoing Heavy Bombardment. Astrophys. J. 2019, 888, 21. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.D. An efficient lightning energy-source on the early Earth. Orig. Life Evol. Biosph. 1992, 22, 277–285. [Google Scholar] [CrossRef]
- Chyba, C.; Sagan, C. Electrical Energy Sources for Organic Synthesis on the Early Earth. Orig. Life Evol. Biosph. 1991, 21, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.P.; Cleaves, H.J.; Dworkin, J.P.; Glavin, D.P.; Lazcano, A.; Bada, J.L. The Miller volcanic spark discharge experiment. Science 2008, 322, 404. [Google Scholar] [CrossRef] [Green Version]
- Ferus, M.; Laitl, V.; Knizek, A.; Kubelík, P.; Sponer, J.; Kára, J.; Lefloch, B.; Cassone, G.; Civiš, S. HNCO-based synthesis of formamide in planetary atmospheres. Astron. Astrophys. 2018, 616, A150. [Google Scholar] [CrossRef]
- Yuasa, S.; Flory, D.; Basile, B.; Oró, J. Abiotic Synthesis of Purines and other heterocyclic compounds by the action of electrical Discharges. J. Mol. Evol. 1984, 21, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Schlesinger, G. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds. Adv. Space Res. 1983, 3, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; et al. The Jupiter system through the eyes of Voyager 1. Science 1979, 204, 951–972. [Google Scholar] [CrossRef]
- Borucki, W.J.; Magalhães, J.A. Analysis of Voyager 2 images of Jovian lightning. Icarus 1992, 96, 1–14. [Google Scholar] [CrossRef]
- Little, B.; Anger, C.D.; Ingersoll, A.P.; Vasavada, A.R.; Senske, D.A.; Breneman, H.H.; Borucki, W.J.; Galileo SSI Team. Galileo images of lightning on Jupiter. Icarus 1999, 142, 306–323. [Google Scholar] [CrossRef]
- Dyudina, U.A.; Del Genio, A.D.; Ingersoll, A.P.; Porco, C.C.; West, R.A.; Vasavada, A.R.; Barbara, J.M. Lightning on Jupiter observed in the Hα line by the Cassini imaging science subsystem. Icarus 2004, 172, 24–36. [Google Scholar] [CrossRef]
- Baines, K.H.; Simon-Miller, A.A.; Orton, G.S.; Weaver, H.A.; Lunsford, A.; Momary, T.W.; Spencer, J.; Cheng, A.F.; Reuter, D.C.; Jennings, D.E.; et al. Polar lightning and decadal-scale cloud variability on Jupiter. Science 2007, 318, 226–229. [Google Scholar] [CrossRef] [Green Version]
- Gurnett, D.A.; Shaw, R.R.; Anderson, R.R.; Kurth, W.S.; Scarf, F.L. Whistlers observed by Voyager 1: Detection of lightning on Jupiter. Geophys. Res. Lett. 1979, 6, 511–514. [Google Scholar] [CrossRef]
- Akalin, F.; Gurnett, D.A.; Averkamp, T.F.; Persoon, A.M.; Santolik, O.; Kurth, W.S.; Hospodarsky, G.B. First whistler observed in the magnetosphere of Saturn. Geophys. Res. Lett. 2006, 33, L20107. [Google Scholar] [CrossRef]
- Zarka, P.; Pedersen, B.M. Radio detection of Uranian lightning by Voyager 2. Nature 1986, 323, 605–608. [Google Scholar] [CrossRef]
- Gurnett, D.A.; Kurth, W.S.; Cairns, I.H.; Granroth, L.J. Whistlers in Neptune’s magnetosphere: Evidence of atmospheric lightning. J. Geophys. Res. Space Phys. 1990, 95, 20967–20976. [Google Scholar] [CrossRef]
- Kammer, J.A.; Shemansky, D.E.; Zhang, X.; Yung, Y.L. Composition of Titan’s upper atmosphere from Cassini UVIS EUV stellar occultations. Planet. Space Sci. 2013, 88, 86–92. [Google Scholar] [CrossRef]
- Fischer, G.; Tokano, T.; Macher, W.; Lammer, H.; Rucker, H.O. Energy dissipation of possible Titan lightning strokes. Planet. Space Sci. 2004, 52, 447–458. [Google Scholar] [CrossRef]
- Ali, A.; Sittler, E.C., Jr.; Chornay, D.; Rowe, B.R.; Puzzarini, C. Organic chemistry in Titan’s upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space. Planet. Space Sci. 2015, 109, 46–63. [Google Scholar] [CrossRef]
- Fischer, G.; Gurnett, D.A. The search for Titan lightning radio emissions. Geophys. Res. Lett. 2011, 38, L08206. [Google Scholar] [CrossRef]
- Lorenz, R.D. Lightning detection on Venus: A critical review. Prog. Earth Planet. Sci. 2018, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Arnone, E.; Bór, J.; Chanrion, O.; Barta, V.; Dietrich, S.; Enell, C.-F.; Farges, T.; Füllekrug, M.; Kero, A.; Labanti, R.; et al. Climatology of transient luminous events and lightning observed above Europe and the Mediterranean Sea. Surv. Geophys. 2020, 41, 167–199. [Google Scholar] [CrossRef] [Green Version]
- Giles, R.S.; Greathouse, T.K.; Bonfond, B.; Gladstone, G.R.; Kammer, J.A.; Hue, V.; Grodent, D.C.; Gérard, J.-C.; Versteeg, M.H.; Wong, M.H.; et al. Possible Transient Luminous Events observed in Jupiter’s upper atmosphere. J. Geophys. Res. Planets 2020, 125, e2020JE006659. [Google Scholar] [CrossRef]
- Dubrovin, D.; Nijdam, S.; Van Veldhuizen, E.M.; Ebert, U.; Yair, Y.; Price, C. Sprite discharges on Venus and Jupiter-like planets: A laboratory investigation. J. Geophys. Res. Space Phys. 2010, 115, A00E34. [Google Scholar] [CrossRef] [Green Version]
- Riousset, J.A.; Nag, A.; Palotai, C. Scaling of conventional breakdown threshold: Impact for predictions of lightning and TLEs on Earth, Venus, Mars. Icarus 2020, 338, 113506. [Google Scholar] [CrossRef]
- Melnik, O.; Parrot, M. Electrostatic discharge in Martian dust storms. J. Geophys. Res. Space Phys. 1998, 103, 29107–29117. [Google Scholar] [CrossRef]
- Hodosan, G.; Rimmer, P.; Helling, C. Lightning as a possible source of the radio emission on HAT-P-11b. Mon. Not. R. Astron. Soc. 2016, 461, stw977. [Google Scholar] [CrossRef]
- Baines, K.H.; Delitsky, M.L.; Momary, T.W.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D. Storm clouds on Saturn: Lightning-induced chemistry and associated materials consistent with Cassini/VIMS spectra. Planet. Space Sci. 2009, 57, 1650–1658. [Google Scholar] [CrossRef]
- Segura, A.; Navarro-González, R. Experimental simulation of early martian volcanic lightning. Adv. Space Res. 2001, 27, 201–206. [Google Scholar] [CrossRef]
- Borucki, W.J.; McKay, C.P.; Jebens, D.; Lakkaraju, H.S.; Vanajakshi, C.T. Spectral Irradiance Measurements of Simulated Lightning in Planetary Atmospheres. Icarus 1996, 123, 336–344. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, R.; Villagran-Muniz, M.; Sobral, H.; Molina, L.T.; Molina, M.J.; Navarro-González, R.; Villagrán-Muniz, M.; Sobral, H.; Molina, L.T.; Molina, M.J. The physical mechanism of nitric oxide formation in simulated lightning. Geophys. Res. Lett. 2001, 28, 3867–3870. [Google Scholar] [CrossRef]
- Schumann, U.; Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 2007, 7, 3823–3907. [Google Scholar] [CrossRef] [Green Version]
- Sobral, H.; Villagran-Muniz, M.; Navarro-Gonzalez, R.; Camps, E. Experimental simulation of a double return-stroke lightning flash by lasers. Geophys. Res. Lett. 2002, 29, 1. [Google Scholar] [CrossRef]
- Smyshlyaev, S.P.; Mareev, E.A.; Galin, V.Y. Simulation of the impact of thunderstorm activity on atmospheric gas composition. Izv. Atmos. Ocean. Phys. 2010, 46, 451–467. [Google Scholar] [CrossRef]
- Delitsky, M.L.; Baines, K.H. Storms on Venus: Lightning-induced chemistry and predicted products. Planet. Space Sci. 2015, 113–114, 184–192. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, R.; McKay, C.P.; Mvondo, D.N. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 2001, 412, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Segura, A.; Navarro-Gonzalez, R. Nitrogen fixation on early Mars by volcanic lightning and other sources. Geophys. Res. Lett. 2005, 32, L05203. [Google Scholar] [CrossRef]
- Navarro-González, R.; Navarro, K.F.; Coll, P.; McKay, C.P.; Stern, J.C.; Sutter, B.; Archer Jr, P.D.; Buch, A.; Cabane, M.; Conrad, P.G.; et al. Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater during the Hesperian: Insights from the Mars Science Laboratory. J. Geophys. Res. Planets 2019, 124, 94–113. [Google Scholar] [CrossRef] [Green Version]
- BoruckiI, W.J.; Giver, L.P.; McKay, C.P.; Scattergood, T.; Parris, J.E. Lightning production of hydrocarbons and hcn on titan—Laboratory measurements. Icarus 1988, 76, 125–134. [Google Scholar] [CrossRef]
- NavarroGonzalez, R.; Ramirez, S.I. Corona discharge of Titan’s troposphere. In Lifes Sciences: Complex Organics in Space; Pergamon Press Ltd.: Oxford, UK, 1997. [Google Scholar]
- Plankensteiner, K.; Reiner, H.; Rode, B.M.; Mikoviny, T.; Wisthaler, A.; Hansel, A.; Maerk, T.D.; Fischer, G.; Lammer, H.; Rucker, H.O. Discharge experiments simulating chemical evolution on the surface of Titan. Icarus 2007, 187, 616–619. [Google Scholar] [CrossRef]
- Hoerst, S.M.; Yelle RV, V.; Buch, A.; Carrasco, N.; Cernogora, G.; Dutuit, O.; Quirico, E.; Sciamma-O’Brien, E.; Smith, M.A.; Somogyi, A.; et al. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment. Astrobiology 2012, 12, 809–817. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Gaillard, F.; Scaillet, B. A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet Sci. Lett. 2014, 393, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Mojzsis, S.J.; Arrhenius, G.; McKeegan, K.D.; Harrison, T.M.; Nutman, A.P.; Friend, C.R. Evidence for life on Earth before 3800 million years ago. Nature 1996, 384, 55–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, E.A.; Boehnke, P.; Harrison, T.M.; Mao, W.L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA 2015, 112, 14518–14521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitta, A.M.; Saija, F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA 2014, 111, 13768–13773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodosán, G.; Helling, C.; Asensio-Torres, R.; Vorgul, I.; Rimmer, P.B. Lightning climatology of exoplanets and brown dwarfs guided by Solar system data. Mon. Not. R. Astron. Soc. 2016, 461, 3927–3947. [Google Scholar] [CrossRef] [Green Version]
- Ardaseva, A.; Rimmer, P.B.; Waldmann, I.; Rocchetto, M.; Yurchenko, S.N.; Helling, C.; Tennyson, J. Lightning chemistry on Earth-like exoplanets. Mon. Not. R. Astron. Soc. 2017, 470, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Ferus, M. Time-Resolved FT Spectroscopy. Unpublished Diploma Thesis, 2013. [Google Scholar]
- Carlone, C.; Dalby, F.W. Spectrum of the hydroxyl radical. Can. J. Phys. 1969, 47, 1945–1957. [Google Scholar] [CrossRef] [Green Version]
- Watson, W.W. The Emission Spectrum of Water-Vapor. Astrophys. J. 1924, 60, 145. [Google Scholar] [CrossRef]
- Meinel, I.A.B. OH Emission Bands in the Spectrum of the Night Sky. Astrophys. J. 1950, 111, 555. [Google Scholar] [CrossRef]
- Frey, H.U.; Mende, S.B.; Arens, J.F.; McCullough, P.R.; Swenson, G.R. Atmospheric gravity wave signatures in the infrared hydroxyl OH airglow. Geophys. Res. Lett. 2000, 27, 41–44. [Google Scholar] [CrossRef]
- Abrams, M.C.; Davis, S.P.; Rao, M.L.P.; Rolf, J.E.; Brault, J.W. High-resolution Fourier transform spectroscopy of the Meinel system of OH. Astrophys. J. Suppl. Ser. 1994, 93, 351. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, X.; Guo, H.; Xie, D. Insights into the Formation of Hydroxyl Radicals with Nonthermal Vibrational Excitation in the Meinel Airglow. J. Phys. Chem. Lett. 2021, 12, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Engleman, R. Accurate wavenumbers of the A2Σ → X2Π (0, 0) and (1, 0) bands of OH and OD. J. Quant. Spectrosc. Radiat. Transf. 1972, 12, 1347–1350. [Google Scholar] [CrossRef]
- Crosley, D.R.; Lengel, R.K. Relative transition probabilities and the electronic transition moment in the A-X system of OH. J. Quant. Spectrosc. Radiat. Transf. 1975, 15, 579–591. [Google Scholar] [CrossRef]
- Maillard, J.P.; Chauville, J.; Mantz, A.W. High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 μm. J. Mol. Spectrosc. 1976, 63, 120–141. [Google Scholar] [CrossRef]
- Sappey, A.D.; Copeland, R.A. Laser Double-Resonance Study of OH (X2Π, v = 12). J. Mol. Spectrosc. 1990, 143, 160–168. [Google Scholar] [CrossRef]
- Copeland, R.A.; Jeffries, J.B.; Crosley, D.R. The OH A2Σ + −X2Πi (4,2) band: Line positions and linewidths. J. Mol. Spectrosc. 1990, 143, 183–185. [Google Scholar] [CrossRef]
- Stark, G.; Brault, J.W.; Abrams, M.C. Fourier-transform spectra of the A2Σ+ − X2Π Δv = 0 bands of OH and OD. J. Opt. Soc. Am. B 1994, 11, 3. [Google Scholar] [CrossRef]
- German, K.R. Direct measurement of the radiative lifetimes of the A2∑+ (V′ = 0) states of OH and OD. J. Chem. Phys. 1975, 62, 2584–2587. [Google Scholar] [CrossRef]
- Bauschlicher, C.W.; Langhoff, S.R. Theoretical determination of the radiative lifetime of the A2Σ+ state of OH. J. Chem. Phys. 1987, 87, 4665–4672. [Google Scholar] [CrossRef]
- Coxon, J.A. Optimum molecular constants and term values for the X2Π(ν ≤ 5) and A2Σ+ (ν ≤ 3) states of OH. Can. J. Phys. 1980, 58, 933–949. [Google Scholar] [CrossRef]
- Coxon, J.A.; Foster, S.C. Rotational analysis of hydroxyl vibration–rotation emission bands: Molecular constants for OH X2Π, 6 ≤ ν ≤ 10. Can. J. Phys. 1982, 60, 41–48. [Google Scholar] [CrossRef]
- Coxon, J.A.; Sappey, A.D.; Copeland, R.A. Molecular constants and term values for the hydroxyl radical, OH: The X2Π (v = 8, 12), A2Σ+ (v = 4–9), B2Σ+ (v = 0, 1), and C2Σ+ (v = 0, 1) states. J. Mol. Spectrosc. 1991, 145, 41–55. [Google Scholar] [CrossRef]
- Bernath, P.F.; Colin, R. Revised molecular constants and term values for the X2Π and B2Σ+ states of OH. J. Mol. Spectrosc. 2009, 257, 20–23. [Google Scholar] [CrossRef]
- Goldman, A.; Schoenfeld, W.G.; Goorvitch, D.; Chackerian, C.; Dothe, H.; Mélen, F.; Abrams, M.C.; Selby, J.E. Updated line parameters for OH X2II-X2II (v″, v′) transitions. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 453–469. [Google Scholar] [CrossRef]
- Billoux, T.; Cressault, Y.; Gleizes, A. Tables of radiative transition probabilities for the main diatomic molecular systems of OH, CH, CH+, CO and CO+ occurring in CO-H2 syngas-type plasma. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 434–444. [Google Scholar] [CrossRef]
- Brooke JS, A.; Bernath, P.F.; Western, C.M.; Sneden, C.; Afşar, M.; Li, G.; Gordon, I.E. Line strengths of rovibrational and rotational transitions in the X2Π ground state of OH. J. Quant. Spectrosc. Radiat. Transf. 2016, 168, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, M.; Bernath, P.F.; Hodges, J.; Masseron, T. A new line list for the A2Σ+ − X2Π electronic transition of OH. J. Quant. Spectrosc. Radiat. Transf. 2018, 217, 416–424. [Google Scholar] [CrossRef]
- Goldman, A.; Murcray, D.G.; Lambert, D.L.; Dominy, J.F. The pure rotation spectrum of the hydroxyl radical and the solar oxygen abundance. Mon. Not. R. Astron. Soc. 1983, 203, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Grevesse, N.; Sauval, A.J.; van Dishoeck, E.F. An analysis of vibration-rotation lines of OH in the solar infrared spectrum. Astron. Astrophys. 1984, 141, 10–16. [Google Scholar]
- Mélen, F.; Sauval, A.J.; Grevesse, N.; Farmer, C.B.; Servais, C.; Delbouille, L.; Roland, G. A new analysis of the OH radical spectrum from solar infrared observations. J. Mol. Spectrosc. 1995, 174, 490–509. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Allende Prieto, C.; Kiselman, D. Line formation in solar granulation. Astron. Astrophys. 2004, 417, 751–768. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Gromov, S.; Pozzer, A.; Taraborrelli, D. Global tropospheric hydroxyl distribution, budget and reactivity. Atmos. Chem. Phys. 2016, 16, 12477–12493. [Google Scholar] [CrossRef] [Green Version]
- Gamache, R.R.; Vispoel, B.; Rey, M.; Tyuterev, V.; Barbe, A.; Nikitin, A.; Polyansky, O.L.; Tennyson, J.; Yurchenko, S.N.; Csaszar, A.G.; et al. Partition sums for non-local thermodynamic equilibrium conditions for nine molecules of importance in planetary atmospheres. Icarus 2022, 378, 114947. [Google Scholar] [CrossRef]
- Martin-Drumel, M.A.; Pirali, O.; Balcon, D.; Brechignac, P.; Roy, P.; Vervloet, M. High resolution far-infrared Fourier transform spectroscopy of radicals at the AILES beamline of SOLEIL synchrotron facility. Rev. Sci. Instrum. 2011, 82, 113106. [Google Scholar] [CrossRef]
- Noll, S.; Winkler, H.; Goussev, O.; Proxauf, B. OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines. Atmos. Chem. Phys. 2020, 20, 5269–5292. [Google Scholar] [CrossRef]
- Melendez, J.; Barbuy, B. Keck NIRSPEC Infrared OH Lines: Oxygen Abundances in Metal-poor Stars down to [Fe/H] = −2.9. Astrophys. J. 2002, 575, 474–483. [Google Scholar] [CrossRef]
- Piccioni, G.; Drossart, P.; Zasova, L.; Migliorini, A.; Gérard, J.C.; Mills, F.P.; Shakun, A.; García Muñoz, A.; Ignatiev, N.; Grassi, D.; et al. First detection of hydroxyl in the atmosphere of Venus. Astron. Astrophys. 2008, 483, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Nugroho, S.K.; Kawahara, H.; Gibson, N.P.; de Mooij, E.J.W.; Hirano, T.; Kotani, T.; Kawashima, Y.; Masuda, K.; Brogi, M.; Birkby, J.L.; et al. First Detection of Hydroxyl Radical Emission from an Exoplanet Atmosphere: High-dispersion Characterization of WASP-33b Using Subaru/IRD. Astrophys. J. Lett. 2021, 910, L9. [Google Scholar] [CrossRef]
- Hase, F.; Wallace, L.; McLeod, S.D.; Harrison, J.J.; Bernath, P.F. The ACE-FTS atlas of the infrared solar spectrum. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 521–528. [Google Scholar] [CrossRef]
- Fernando, A.M.; Bernath, P.F.; Hodges, J.N.; Masseron, T. A new linelist for the A3Π–X3Σ− transition of the NH free radical. J. Quant. Spectrosc. Radiat. Transf. 2018, 217, 29–34. [Google Scholar] [CrossRef]
- Eder, J.M. Beiträge zur Spectralanalyse. Denksch. Wien. Akad. 1893, 60, 1–12. [Google Scholar]
- Fowler, A.; Gregory, C.C. The Ultra-Violet Band of Ammonia, and Its Occurrence in the Solar Spectrum. Philos. Trans. R. Soc. 1919, 218, 351–372. [Google Scholar]
- Funke, G.W. Das Absorptionsspektrum des NH. Z. Phys. 1936, 101, 104–112. [Google Scholar] [CrossRef]
- Dixon, R.N. THE 0–0 AND 1–0 BANDS OF THE A (3 Π i) – X (3 Σ −) SYSTEM OF NH. Can. J. Phys. 1959, 37, 1171–1186. [Google Scholar] [CrossRef]
- Mantei, K.A.; Bair, E.J. Reactions of nitrogen-hydrogen radicals. III. Formation and disappearance of NH radicals in the photolysis of ammonia. J. Chem. Phys. 1968, 49, 3248–3256. [Google Scholar] [CrossRef]
- Hansen, I.; Hoinghaus, K.; Zetzsch, C.; Stuhl, F. Detection of NH (X p3Σ−) by resonance fluorescence in the pulsed vacuum uv photolysis of NH3 and its application to reactions of NH radicals. Chem. Phys. Lett. 1976, 42, 370–372. [Google Scholar] [CrossRef]
- Brazier, C.R.; Ram, R.S.; Bernath, P.F. Fourier transform spectroscopy of the A3Π-X3Σ- transition of NH. J. Mol. Spectrosc. 1986, 120, 381–402. [Google Scholar] [CrossRef]
- Clement, S.G.; Ashfold MN, R.; Western, C.M.; Johnson, R.D.; Hudgens, J.W. Triplet excited states of the NH(ND) radical revealed via two photon resonant multiphoton ionization spectroscopy. J. Chem. Phys. 1992, 96, 5538–5540. [Google Scholar] [CrossRef]
- Ram, R.S.; Bernath, P.F.; Hinkle, K.H. Infrared emission spectroscopy of NH: Comparison of a cryogenic echelle spectrograph with a Fourier transform spectrometer. J. Chem. Phys. 1999, 110, 5557–5563. [Google Scholar] [CrossRef] [Green Version]
- Swings, P.; Elvey, C.T.; Babcock, H.W. The Spectrum of Comet Cunningham, 1940C. Astrophys. J. 1941, 94, 320. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.D.; Gruenwald, R.B. The photodissociation lifetimes of the NH radical in comets. Astron. Astrophys. 1987, 178, 277–282. [Google Scholar]
- Sneden, C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 1973, 184, 839. [Google Scholar] [CrossRef]
- Lambert, D.L.; Brown, J.A.; Hinkle, K.H.; Johnson, H.R. Carbon, nitrogen, and oxygen abundances in Betelgeuse. Astrophys. J. 1984, 284, 223. [Google Scholar] [CrossRef]
- Smith, V.V.; Lambert, D.L. The chemical composition of red giants. II—Helium burning and the s-process in the MS and S stars. Astrophys. J. 1986, 311, 843. [Google Scholar] [CrossRef]
- Aoki, W.; Tsuji, T. High resolution infrared spectroscopy of CN and NH lines: Nitrogen abundance in oxygen-rich giants through K to late M. Astron. Astrophys. 1997, 328, 175–186. [Google Scholar]
- Meyer, D.M.; Roth, K.C. Discovery of interstellar NH. Astrophys. J. 1991, 376, L49. [Google Scholar] [CrossRef]
- Crawford, I.A.; Williams, D.A. Detection of interstellar NH towards ζ Ophiuchi by means of ultra-high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 1997, 291, L53–L56. [Google Scholar] [CrossRef] [Green Version]
- Weselak, T.; Galazutdinov, G.A.; Beletsky, Y.; Krełowski, J. Interstellar NH molecule in translucent sightlines. Mon. Not. R. Astron. Soc. 2009, 400, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Spite, M.; Cayrel, R.; Plez, B.; Hill, V.; Spite, F.; Depagne, E.; François, P.; Bonifacio, P.; Barbuy, B.; Beers, T.; et al. First stars VI—Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements. Astron. Astrophys. 2005, 430, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Claxton, T.A. Ab initio UHF calculations. Part 3.—NH radicals. Trans. Faraday Soc. 1970, 66, 1540–1543. [Google Scholar] [CrossRef]
- Das, G.; Wahl, A.C.; Stevens, W.J. Ab initio study of the NH radical. J. Chem. Phys. 1974, 61, 433–434. [Google Scholar] [CrossRef]
- Ram, R.S.; Bernath, P.F. Revised molecular constants and term values for the X3Σ− and A3Π states of NH. J. Mol. Spectrosc. 2010, 260, 115–119. [Google Scholar] [CrossRef]
- Brooke, J.S.A.; Bernath, P.F.; Western, C.M.; van Hemert, M.C.; Groenenboom, G.C. Line strengths of rovibrational and rotational transitions within the X3Σ− ground state of NH. J. Chem. Phys. 2014, 141, 054310. Available online: http://bernath.uwaterloo.ca/publicationfiles/2014/Brooke-groundstateNH.pdf (accessed on 8 March 2023). [CrossRef] [PubMed] [Green Version]
- Brooke, J.S.A.; Bernath, P.F.; Western, C.M. Note: Improved line strengths of rovibrational and rotational transitions within the X3Σ− ground state of NH. J. Chem. Phys. 2015, 143, 026101. Available online: https://research-information.bris.ac.uk/ws/portalfiles/portal/42663333/final.pdf (accessed on 8 March 2023). [CrossRef] [PubMed] [Green Version]
- van de Meerakker, S.Y.T.; Jongma, R.T.; Bethlem, H.L.; Meijer, G. Accumulating NH radicals in a magnetic trap. Phys. Rev. A 2001, 64, 4. [Google Scholar] [CrossRef] [Green Version]
- Van De Meerakker, S.Y.T.; Labazan, I.; Hoekstra, S.; Küpper, J.; Meijer, G. Production and deceleration of a pulsed beam of metastable NH (a 1Δ) radicals. J. Phys. B At. Mol. Opt. Phys. 2006, 39, S1077. [Google Scholar] [CrossRef] [Green Version]
- Plomp, V.; Gao, Z.; Cremers, T.; van de Meerakker, S.Y. Multistage Zeeman deceleration of NH X3Σ− radicals. Phys. Rev. A 2019, 99, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Pastorek, A.; Clark, V.H.J.; Yurchenko, S.N.; Civis, S. Time-resolved fourier transform infrared emission spectroscopy of NH radical in the X-3 Sigma(−) ground state. J. Quant. Spectrosc. Radiat. Transf. 2022, 291, 108332. [Google Scholar] [CrossRef]
- Farmer, C.B.; Norton, R.H. A high-resolution atlas of the infrared spectrum of the sun and the earth atmosphere from space. A compilation of ATMOS spectra of the region from 650 to 4800 cm−1 (2.3 to 16 microns). NASA Ref. Publ. 1989, 1224, 2. [Google Scholar]
- Geller, M.; Sauval, A.J.; Grevesse, N.; Farmer, C.B.; Norton, R.H. First identification of pure rotation lines of NH in the infrared solar spectrum. Astron. Astrophys. 1991, 249, 550–552. [Google Scholar]
- Bernath, P.F. MoLLIST: Molecular Line Lists, Intensities and Spectra. J. Quant. Spectrosc. Radiat. Transf. 2020, 240, 106687. [Google Scholar] [CrossRef]
- Wang, Y.; Tennyson, J.; Yurchenko, S.N. Empirical line lists in the ExoMol database. Atoms 2020, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Jeilani, Y.A.; Nguyen, H.T.; Cardelino, B.H.; Nguyen, M.T. Free radical pathways for the prebiotic formation of xanthine and isoguanine from formamide. Chem. Phys. Lett. 2014, 598, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Huber, K.P.; Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules; National Research Council of Canada, Litton Educational Publishing: New York, NY, USA, 1979. [Google Scholar]
- Horka, V.; Civis, S.; Spirko, V.; Kawaguchi, K. The infrared spectrum of CN in its ground electronic state. Collect. Czechoslov. Chem. Commun. 2004, 69, 73–89. [Google Scholar] [CrossRef]
- Civis, S.; Sedivcova-Uhlikova, T.; Kubelik, P.; Kawaguchi, K. Time-resolved Fourier transform emission spectroscopy of A(2)Pi-X-2 Sigma(+) infrared transition of the CN radical. J. Mol. Spectrosc. 2008, 250, 20–26. [Google Scholar] [CrossRef]
- Ferus, M.; Knizek, A.; Sponer, J.; Sponer, J.; Civis, S. Radical Synthesis of Nucleic Bases from Formamide in Impact Plasma. Chem. Listy 2015, 109, 406–414. [Google Scholar]
- Ferus, M.; Knizek, A.; Civiš, S. Meteorite-catalyzed synthesis of nucleosides and other prebiotic compounds. Proc. Natl. Acad. Sci. USA 2015, 112, 7109–7110. [Google Scholar] [CrossRef] [Green Version]
- Rios, A.C. Impact synthesis of the RNA bases. Proc. Natl. Acad. Sci. USA 2015, 112, 643–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costes, M.; Naulin, C.; Dorthe, G. The Dissociation Energy Release of the CN Radical Determined from the CN Internal Energy Release of the C + NO- = CN + O Reaction. Astron. Astrophys. 1990, 232, 270–276. [Google Scholar]
- Schaefer, H.F. Electronic Structures and Potential Energy Curves for the Low-Lying States of the CN Radical. J. Chem. Phys. 1971, 54, 2573. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, F.A. Extension of the violet CN band system to include the CN tail bands. Phys. Rev. 1928, 31, 539–558. [Google Scholar] [CrossRef]
- Thiele, T.N. On the Law of Spectral Series. Astrophys. J. 1897, 6, 65. [Google Scholar] [CrossRef]
- Treffers, R.R. Observations of the fundamental rotation-vibration band of CN. Astrophys. J. 1975, 196, 883. [Google Scholar] [CrossRef]
- Cerny, D.; Bacis, R.; Guelachvili, G.; Roux, F. Extensive analysis of the red system of the CN molecule with a high-resolution Fourier Spectrometer. J. Mol. Spectrosc. 1978, 73, 154–167. [Google Scholar] [CrossRef]
- Davies, P.B.; Hamilton, P.A. The infrared laser spectrum of the CN radical in its ground state. J. Chem. Phys. 1982, 76, 2127–2128. [Google Scholar] [CrossRef]
- Skatrud, D.D.; De Lucia, F.C.; Blake, G.A.; Sastry, K.V. The millimeter and submillimeter spectrum of CN in its first four vibrational states. J. Mol. Spectrosc. 1983, 99, 35–46. [Google Scholar] [CrossRef]
- Bogey, M.; Demuynck, C.; Destombes, J.L. The millimeter wave spectrum of 13CN in the excited vibrational states v ≤ 9. Chem. Phys. 1986, 102, 141–146. [Google Scholar] [CrossRef]
- Ito, H.; Kuchitsu, K.; Yamamoto, S.; Saito, S. Microwave spectroscopy of the ν = 3–10 levels of CN (X2Σ+). Chem. Phys. Lett. 1991, 186, 539–546. [Google Scholar] [CrossRef]
- Prasad, C.V.; Bernath, P.F.; Frum, C.; Engleman, R. Fourier transform jet emission spectroscopy of the B2Σ+-X2Σ+ transition of CN. J. Mol. Spectrosc. 1992, 151, 459–473. [Google Scholar] [CrossRef]
- Rehfuss, B.D.; Suh, M.H.; Miller, T.A.; Bondybey, V.E. Fourier transform UV, visible, and infrared spectra of supersonically cooled CN radical. J. Mol. Spectrosc. 1992, 151, 437–458. [Google Scholar] [CrossRef]
- Wurfel, B.E.; Schallmoser, G.; Lask, G.M.; Agreiter, J.; Thoma, A.; Schlachta, R.; Bondybey, V.E. Infrared fluorescence and absorption studies of CN: Spectra and relaxation in solid rare gases. Chem. Phys. 1993, 174, 255–265. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, C.; Liu, H.; Gao, H.; Guo, Y.; Liu, X.; Lin, J. Near-infrared spectrum of the A2Πi-X2Σ+ (2, 0) band of CN studied by concentration modulation laser spectroscopy. J. Mol. Spectrosc. 2001, 205, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Chao-Xiong, X.; Ling, W.; Jin-Jun, L.; Sheng-Hai, W.; Chuan-Xi, D.; Yang-Qin, C.; Yu-Yan, L. Band (5, 0) in the Red System A 2 I—X2+ of CN Studied by Optical Heterodyne Magnetic Rotation Enhanced Concentration Modulation Spectroscopy. Chin. Phys. Lett. 2002, 19, 1277–1279. [Google Scholar] [CrossRef]
- Hempel, F.; Röpcke, J.; Pipa, A.; Davies, P.B. Infrared laser spectroscopy of the CN free radical in a methane-nitrogen-hydrogen plasma. Mol. Phys. 2003, 101, 589–594. [Google Scholar] [CrossRef]
- Li, P.; Fan, W.Y. The CN free radical in acetonitrile discharges. J. Appl. Phys. 2003, 93, 9497–9502. [Google Scholar] [CrossRef]
- Hübner, M.; Castillo, M.; Davies, P.B.; Ropeke, J. Diode laser spectroscopy of the fundamental bands of12C 14N, 13C14N, 12C15N, 13C15N free radicals in the ground 2∑+ electronic state. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Ozaki, Y.; Suzuki, K.; Kondow, T.; Kuchitsu, K. Emission spectrum of the CN(B2Σ+ − X2Σ+) tail band system: B2Σ+∼4Π perturbations in the vB = 9, 12, and 17 levels. J. Chem. Phys. 1992, 96, 4195–4204. [Google Scholar] [CrossRef]
- Ito, H.; Kazama, A.; Kuchitsu, K. Perturbations in the CN(B2Σ+ – X2Σ+) tail band system Part 4. The B2Σ+∼A2Πi perturbations in the υB = 11, 14–16, 18 and 19 levels. J. Mol. Struct. 1994, 324, 29–43. [Google Scholar] [CrossRef]
- Ram, R.S.; Wallace, L.; Hinkle, K.; Bernath, P.F. Fourier transform emission spectroscopy of the A2Π-X2Σ+ (RED) system of 13C14N. Astrophys. J. Suppl. Ser. 2010, 188, 500–505. [Google Scholar] [CrossRef]
- Ram, R.S.; Wallace, L.; Bernath, P.F. High resolution emission spectroscopy of the A2-X2Σ+ (red) system of 12C14N. J. Mol. Spectrosc. 2010, 263, 82–88. [Google Scholar] [CrossRef]
- Ram, R.S.; Bernath, P.F. Fourier transform emission spectroscopy of the A2Π-X2Σ+ (red) system of 13C 14N (II). J. Mol. Spectrosc. 2012, 274, 22–27. [Google Scholar] [CrossRef]
- Brooke, J.S.A.; Ram, R.S.; Western, C.M.; Li, G.; Schwenke, D.W.; Bernath, P.F. Einstein A coefficients and oscillator strengths for the A2Π – X2Σ+ (red) and B2Σ+ – X2Σ+ (violet) systems and rovibrational transitions in the X2Σ+ state of CN. Astrophys. J. Suppl. Ser. 2014, 210, 23. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, A.D.; Partridge, H.; Bauschlicher, C.W. The dissociation energy of CN and C2. J. Chem. Phys. 1994, 101, 3857–3861. [Google Scholar] [CrossRef]
- Li, P.; Tan, Y.L.; Fan, W.Y. The CN and CS transient species in CH3SCN discharges. Chem. Phys. 2004, 302, 171–177. [Google Scholar] [CrossRef]
- Hodyss, R.; Howard, H.R.; Johnson, P.V.; Goguen, J.D.; Kanik, I. Formation of radical species in photolyzed CH4:N2 ices. Icarus 2011, 214, 748–753. [Google Scholar] [CrossRef]
- Lambert, D.L.; Dearborn, D.S.; Sneden, C. The C-12/C-13 ratio in stellar atmospheres. II–CN and CO in alpha Orionis. Astrophys. J. 1974, 193, 621. [Google Scholar] [CrossRef]
- Saleck, A.H.; Simon, R.; Schneider, N.; Winnewisser, G. Detection of interstellar (C-12)(N-15). Astrophys. J. 1993, 414, L133. [Google Scholar] [CrossRef]
- Saleck, A.H.; Simon, R.; Winnewisser, G. Interstellar CN rotational spectra: (12)C(15)N. Astrophys. J. 1994, 436, 176. [Google Scholar] [CrossRef]
- Sneden, C.; Lucatello, S.; Ram, R.S.; Brooke, J.S.A.; Bernath, P. Line lists for the A2Π − X2Σ+ (red) and B2σ+ − X2Σ+ (violet) systems of CN, 13C14N, and 12C15N, and application to astronomical spectra. Astrophys. J. Suppl. Ser. 2014, 214, 26. [Google Scholar] [CrossRef] [Green Version]
- Thaddeus, P. The Short-Wavelength Spectrum of the Microwave Background. Annu. Rev. Astron. Astrophys. 1972, 10, 305–334. [Google Scholar] [CrossRef]
- Herzberg, G.; Johns, J.W.C. New spectra of the CH molecule. Astrophys. J. 1969, 158, 399. [Google Scholar] [CrossRef]
- Heurlinger, T.; Hulthen, E. On the structure of the band spectrum of burning hydrocarbons. Z. Wiss. Phot. 1919, 18, 241–248. [Google Scholar]
- Filseth, S.V.; Zacharias, H.; Danon, J.; Wallenstein, R.; Welge, K.H. Laser excited fluorescence of CH in a low pressure flame. Chem. Phys. Lett. 1978, 58, 140–144. [Google Scholar] [CrossRef]
- Hougen, J.T.; Mucha, J.A.; Jennings, D.A.; Evenson, K.M. Far infrared laser magnetic resonance spectrum of CH. J. Mol. Spectrosc. 1978, 72, 463–483. [Google Scholar] [CrossRef]
- Suzuki, K.; Kuchitdsu, K. Emission spectra of CH(A2Δ) from methane in an argon flowing afterglow. Chem. Phys. Lett. 1978, 56, 50–53. [Google Scholar] [CrossRef]
- Chen, P.; Pallix, J.B.; Chupka, W.A.; Colson, S.D. Resonant multiphoton ionization spectrum and electronic structure of CH radical. New states and assignments above 50,000 cm−1. J. Chem. Phys. 1986, 86, 516–520. [Google Scholar] [CrossRef]
- Bernath, P.F.; Brazier, C.R.; Olsen, T.; Hailey, R.; Fernando WT, M.L.; Woods, C.; Hardwick, J.L. Spectroscopy of the CH free radical. J. Mol. Spectrosc. 1991, 147, 16–26. [Google Scholar] [CrossRef]
- Hung, W.C.; Huang, M.L.; Lee, Y.C.; Lee, Y.P. Detection of CH in an oxyacetylene flame using two-color resonant four-wave mixing technique. J. Chem. Phys. 1995, 103, 9941–9946. [Google Scholar] [CrossRef]
- Bembenek, Z.; Kȩpa, R.; Rytel, M. Analysis of the 0-0 Band of the C2Σ+ − X2Π Band System in the 12CH and 13CH Isotopic Radicals. J. Mol. Spectrosc. 1997, 183, 1–5. [Google Scholar] [CrossRef]
- Zachwieja, M. The A2Δ–X2Π Band System of the13CH Radical. J. Mol. Spectrosc. 1997, 182, 18–33. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, J.; Pei, L.; Ma, X.; Chen, C. Resonance multiphoton ionization spectroscopy of the D2Π(v = 2) ← A2Δ of CH radicals. J. Electron Spectrosc. Relat. Phenom. 2000, 108, 221–224. [Google Scholar] [CrossRef]
- Amano, T. The Lowest Submillimeter-Wave Transitions of CH: The Laboratory Measurement of the Rest Frequencies. Astrophys. J. 2000, 531, L161–L164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, S.A.; Evenson, K.M.; Brown, J.M. A Measurement of the Rotational Spectrum of the CH Radical in the Far-Infrared. Astrophys. J. 2001, 546, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Czyzewski, A.; Ernst, K.; Franssen, G.; Karasinski, G.; Kmieciak, M.; Lange, H.; Skubiszak, W.; Stacewicz, T. Investigation of kinetics of CH-radical decay by cavity ring-down spectroscopy. Chem. Phys. Lett. 2002, 357, 477–482. [Google Scholar] [CrossRef]
- Davidson, S.A.; Evenson, K.M.; Brown, J.M. The far-infrared laser magnetic resonance spectrum of the 13CH radical. J. Mol. Spectrosc. 2004, 223, 20–30. [Google Scholar] [CrossRef]
- Jackson, M.; Zink, L.R.; McCarthy, M.C.; Perez, L.; Brown, J.M. The far-infrared and microwave spectra of the CH radical in the v = 1 level of the X2Π state. J. Mol. Spectrosc. 2008, 247, 128–139. [Google Scholar] [CrossRef]
- Truppe, S.; Hendricks, R.J.; Hinds, E.A.; Tarbutt, M.R. Measurement of the lowest millimeter-wave transition frequency of the CH radical. Astrophys. J. 2014, 780, 10–13. [Google Scholar]
- Gans, B.; Holzmeier, F.; Krüger, J.; Falvo, C.; Röder, A.; Lopes, A.; Garcia, G.A.; Fittschen, C.; Loison, J.C.; Alcaraz, C. Synchrotron-based valence shell photoionization of CH radical. J. Chem. Phys. 2016, 144, 204307. [Google Scholar] [CrossRef]
- Carre, M. Analysis of two band systems of CH+: 1△ → 1п and 3Σ → 3п. Physica 1969, 41, 63–66. [Google Scholar] [CrossRef]
- Carrington, A.; Ramsay, D.A. Some New Emission Bands of the A1Π – X1Σ+ System of CH+. Phys. Scr. 1982, 25, 272–274. [Google Scholar] [CrossRef]
- Carozza, J.; Anderson, R. Radiative lifetime of the A2Δ state of CH. J. Opt. Soc. Am. 1977, 67, 118. [Google Scholar] [CrossRef]
- Jorgensen, U.G.; Larsson, M.; Iwamae, A.; Yu, B. Line intensities for CH and their application to stellar atmospheres. Astron. Astrophys. 1996, 315, 204–211. [Google Scholar]
- Martin, J.M.L. Spectroscopic quality ab initio potential curves for CH, NH, OH and HF. A convergence study. Chem. Phys. Lett. 1998, 292, 411–420. [Google Scholar] [CrossRef]
- Kalemos, A.; Mavridis, A.; Metropoulos, A. An accurate description of the ground and excited states of CH. J. Chem. Phys. 1999, 111, 9536–9548. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.N.; Deo, M.N.; Kawaguchi, K. Vibrational Transition Moment of the CH Radical Determined from the Herman-Wallis Effect. Astrophys. J. 1999, 525, 539–542. [Google Scholar] [CrossRef]
- Metropoulos, A.; Mavridis, A. Predissociation lifetimes of the e 2Π and F2Π states of CH. Chem. Phys. Lett. 2000, 331, 89–94. [Google Scholar] [CrossRef]
- Heryadi, D.; Mahalakshmi, S.; Yeager, D.L. The direct determination of the ionization potentials of CH and CH3 using the electron propagator method with a multiconfigurational second-order perturbation theory wavefunction as the initial state (EPCASPT2). Chem. Phys. Lett. 2002, 351, 92–98. [Google Scholar] [CrossRef]
- Reddy, R.R.; Nazeer Ahammed, Y.; Rama Gopal, K.; Baba Basha, D. Spectroscopic investigations on cometary molecules CO+, CH and CH+. J. Quant. Spectrosc. Radiat. Transf. 2004, 85, 105–113. [Google Scholar] [CrossRef]
- Vázquez, G.J.; Amero, J.M.; Liebermann, H.P.; Buenker, R.J.; Lefebvre-Brion, H. Insight into the Rydberg states of CH. J. Chem. Phys. 2007, 126, 164302. [Google Scholar] [CrossRef]
- Lavín, C.; Velasco, A.M.; Martín, I. Oscillator strength distribution in the discrete and continuum regions of the spectrum of CH molecule (oscillator strength distribution of CH). Astrophys. J. 2009, 692, 1354–1359. [Google Scholar] [CrossRef]
- Masseron, T.; Plez, B.; Van Eck, S.; Colin, R.; Daoutidis, I.; Godefroid, M.; Coheur, P.F.; Bernath, P.; Jorissen, A.; Christlieb, N. CH in stellar atmospheres: An extensive linelist. Astron. Astrophys. 2014, 571, A47. [Google Scholar] [CrossRef] [Green Version]
- Swings, P.; Rosenfeld, L. Considerations Regarding Interstellar Molecules. Astrophys. J. 1937, 86, 483. [Google Scholar] [CrossRef]
- Swings, P.; Nicolet, M. On the Intensity Distribution in the Bands of Cometary Spectra. Astrophys. J. 1938, 88, 173. [Google Scholar] [CrossRef] [Green Version]
- Wildt, R. The Continuous Spectrum of Stellar Atmospheres Consisting Only of Atoms and Negative Ions of Hydrogen. Astrophys. J. 1941, 93, 47. [Google Scholar] [CrossRef]
- Douglas, A.E.; Morton, J.R. An Extension of the 1Π-1Σ System of CH+ an the Identification of the λ 3579 Interstellar Line. Astrophys. J. 1960, 131, 1. [Google Scholar] [CrossRef]
- Watson, J.K.G. Assignment of the λ1369.13 Diffuse Interstellar Absorption Band and Three Other Far-Ultraviolet Interstellar Absorption Lines to the CH Molecule. Astrophys. J. 2001, 555, 472–476. [Google Scholar] [CrossRef]
- Mélen, F.; Grevesse, N.; Sauval, A.J.; Farmer, C.B.; Norton, R.H.; Bredohl, H.; Dubois, I. A new analysis of the vibration-rotation spectrum of CH from solar spectra. J. Mol. Spectrosc. 1989, 134, 305–313. [Google Scholar] [CrossRef]
- Zachwieja, M. New Investigations of the A2Δ-X2Π band system in the ch radical and a new reduction of the vibration-rotation spectrum of CH from the ATMOS spectra. J. Mol. Spectrosc. 1995, 170, 285–309. [Google Scholar] [CrossRef]
- Tennyson, J.; Yurchenko, S.N.; Al-Refaie, A.F.; Clark, V.H.J.; Chubb, K.L.; Conway, E.K.; Dewan, A.; Gorman, M.N.; Hill, C.; Lynas-Gray, A.E.; et al. The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 2020, 255, 107228. [Google Scholar] [CrossRef]
- Civis, S.; Ferus, M.; Kubelik, P.; Jelinek, P.; Chernov, V.E. Potassium spectra in the 700–7000 cm(−1) domain: Transitions involving f-, g-, and h-states. Astron. Astrophys. 2012, 541, A125. [Google Scholar]
- Sulakshina, O.N.; Borkov, Y.G. Global modelling of the experimental energy levels and observed line positions: Dunham coefficients for the ground state of (NO)-N-14-O-16. Mol. Phys. 2018, 116, 3519–3529. [Google Scholar] [CrossRef]
Our Position | Solar Position * | |
---|---|---|
26 | 757.940 | 757.936 |
757.966 | 757.964 | |
757.993 | 757.992 | |
27 | 776.966 | 776.966 |
776.990 | 776.986 | |
777.014 | 777.009 | |
28 | 795.104 | 795.099 |
795.125 | 795.122 | |
795.146 | 795.143 | |
29 | 812.301 | 812.310 |
812.329 | 812.332 | |
812.355 | 812.360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Civiš, S.; Pastorek, A.; Ferus, M.; Yurchenko, S.N.; Boudjema, N.-I. Infrared Spectra of Small Radicals for Exoplanetary Spectroscopy: OH, NH, CN and CH: The State of Current Knowledge. Molecules 2023, 28, 3362. https://doi.org/10.3390/molecules28083362
Civiš S, Pastorek A, Ferus M, Yurchenko SN, Boudjema N-I. Infrared Spectra of Small Radicals for Exoplanetary Spectroscopy: OH, NH, CN and CH: The State of Current Knowledge. Molecules. 2023; 28(8):3362. https://doi.org/10.3390/molecules28083362
Chicago/Turabian StyleCiviš, Svatopluk, Adam Pastorek, Martin Ferus, Sergei N. Yurchenko, and Noor-Ines Boudjema. 2023. "Infrared Spectra of Small Radicals for Exoplanetary Spectroscopy: OH, NH, CN and CH: The State of Current Knowledge" Molecules 28, no. 8: 3362. https://doi.org/10.3390/molecules28083362
APA StyleCiviš, S., Pastorek, A., Ferus, M., Yurchenko, S. N., & Boudjema, N. -I. (2023). Infrared Spectra of Small Radicals for Exoplanetary Spectroscopy: OH, NH, CN and CH: The State of Current Knowledge. Molecules, 28(8), 3362. https://doi.org/10.3390/molecules28083362