Phytochemical Analysis of Anastatica hierochuntica and Aerva javanica Grown in Qatar: Their Biological Activities and Identification of Some Active Ingredients
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis of Anastatica hierochuntica and Aerva javanica Grown in Qatar
2.2. Antibacterial Activity of Anastatica hierochuntica and Aerva javanica Extracts
2.3. Antioxidant Activity of Anastatica hierochuntica and Aerva javanica Extracts
2.4. Characterization of Secondary Metabolites Present in Extracts of Anastatica hierochuntica and Aerva javanica
2.5. Antibacterial and Antifungal Activity of Isolated Compounds for Both the Plants
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Collection of Plants
3.2.2. Extraction of Phytochemicals and Fractionation
3.2.3. Phytochemical Analysis
3.2.4. Antibacterial Activity Tests
3.2.5. DPPH In Vitro Assay
3.2.6. Identification and Characterization of the Active Compounds
3.2.7. Data Analysis
4. Discussion
4.1. Qualitative Phytochemical Screening of Anastatica hierochuntica and Aerva javanica Extracts
4.2. Antibacterial Activity of Anastatica hierochuntica and Aerva javanica Extracts
4.3. Antioxidant Activity of Anastatica hierochuntica and Aerva javanica Extracts
4.4. Compounds Isolated from Anastatica hierochuntica and Aerva javanica Extracts and Their Role in Enhancing Biological Activities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rizk, A.M.; Hammouda, F.M.; Ismail, S.I.; Hassan, N.M.; Ahmed, F.A. Constituents of Plants Growing in Qatar XX. Phytochemical Investigation of Anastatica hierochuntica. Int. J. Pharmacog. 1993, 31, 327–329. [Google Scholar] [CrossRef]
- Phondani, P.C.; Bhatt, A.; Elsarrag, E.; Alhorr, Y.M. Seed germination and growth performance of Aerva javanica (Burm.f.) Juss ex Schult. J. Appl. Res. Med. Aromat. Plants 2015, 2, 195–199. [Google Scholar] [CrossRef]
- Shah, H.A. Kaff-E-Maryam (Anastatica hierochuntica L.): Evaluation of Gastro-Protective Activity and Toxicity in Different Experimental Models. Biol. Med. 2014, 6, 197. [Google Scholar]
- Daur, I. Chemical properties of the medicinal herb Kaff Maryam (Anastatica hierochuntica L.) and its relation to folk medicine use. Afr. J. Microbiol. Res. 2012, 6, 5048–5051. [Google Scholar]
- Mohamed, M.K.; Guergues, S.N.; Abdel-Rahim, E.A. Studies on the phytochemistry and antimicrobial activity of four plant species from Egypt. Egypt. J. Microbiol. 2000, 35, 257–271. [Google Scholar]
- Yoshikawa, M.; Xu, F.; Morikawa, T.; Ninomiya, K.; Matsuda, H. Anastatins A and B, new skeletal flavonoids with hepatoprotective activities from the desert plant Anastatica hierochuntica. Bioorg. Med. Chem. Lett. 2003, 13, 1045–1049. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Morikawa, T.; Xu, F. (7R,8S) and (7S,8R) 8-5′ linked neolignans from Egyptian herbal medicine Anastatica hierochuntica and inhibitory activities of lignans on nitric oxide production. Heterocycles 2003, 60, 1787–1792. [Google Scholar] [CrossRef]
- AlGamdi, N.; Mullen, W.; Crozier, A. Tea prepared from Anastatica hierochuntica seeds contains a diversity of antioxidant flavonoids, chlorogenic acids and phenolic compounds. Phytochemistry 2011, 72, 248–254. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Khalil, A.A.; El-Beltagi, H.E.S. Antioxidant and antimicrobial properties of Kaff Maryam (Anastatica hierochuntica) and Doum Palm (Hyphaene thebaica). Grasas Aceites 2010, 61, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Marzouk, M.M.; Al-Nowaihi, A.S.M.; Kawashty, S.A.; Saleh, N.A.M. Chemosystematic studies on certain species of the family Brassicaceae (Cruciferae) in Egypt. Biochem. Syst. Ecol. 2010, 38, 680–685. [Google Scholar] [CrossRef]
- Almundarij, T.I.; Alharbi, Y.M.; Abdel-Rahman, H.A.; Barakat, H. Antioxidant Activity, Phenolic Profile, and Nephroprotective Potential of Anastatica hierochuntica Ethanolic and Aqueous Extracts against CCl4-Induced Nephrotoxicity in Rats. Nutrients 2021, 13, 2973. [Google Scholar] [CrossRef]
- Tayel, A.A.; El-Tras, W.F. Possibility of fighting food borne bacteria by egyptian folk medicinal herbs and spices extracts. J. Egypt. Public Health Assoc. 2009, 84, 21–32. [Google Scholar]
- AlSobeai, S.M. In vitro cytotoxicity and antibacterial evaluation of aqueous, methanolic and ethanolic extracts of Anastatica hierochuntica against pathogenic bacteria. Int. J. Curr. Res. Biosci. Plant Biol. 2016, 3, 14–22. [Google Scholar] [CrossRef]
- Saranya, R.; Ali, M.S.; Anuradha, V. Phytochemical, fluorescence screening and GC-MS analysis of various crude extracts of Anastatica hierochuntica. J. Pharm. Chem. Biol. Sci. 2018, 7, 44–56. [Google Scholar]
- Burkill, H.M. The Useful Plants of West Tropical Africa, Families A–D; Royal Botanic Gardens: Richmond, UK, 1985; pp. 446–447. [Google Scholar]
- Emam, S.S. Phytochemical studies on the herb Aerva javanica growing in Egypt. Cairo Univ. Fac. Agric. Bull. 1999, 50, 488–514. [Google Scholar]
- Mufti, F.D.; Ullah, H.; Bangash, A.; Khan, N.; Hussain, S.; Ullah, F.; Jamil, M.; Jabeen, M. Antimicrobial activities of Aerva javanica and Paeonia emodi plants. Pak. J. Pharm. Sci. 2012, 25, 565–569. [Google Scholar]
- Srinivas, P.; Reddy, S.R. Screening for antibacterial principle and activity of Aerva javanica (Burm .f) Juss. ex Schult. Asian Pac. J. Trop. Biomed. 2012, 2, S838–S845. [Google Scholar] [CrossRef]
- Anwar, A.S.; Seemab, A.; Jehana, B.; Ala, U.D. Screening of Aerva javanica for their antidiabetic and anti-oxidant activity. Pak. J. Pharm. Sci. 2017, 30, 67–73. [Google Scholar]
- Saleem, H.; Zengin, G.; Khan, K.-U.; Ahmad, I.; Waqas, M.; Mahomoodally, F.M.; Rengasamy, K.R.; Zainol, N.; Abidin, S.A.Z.; Ahemad, N. New insights into the phytochemical composition, enzyme inhibition and antioxidant properties of desert cotton Aerva javanica (Bum.f) Shult.-Amaranthaceae. Nat. Prod. Res. 2021, 35, 664–668. [Google Scholar] [CrossRef]
- Suleiman, M.H.A. Ethnobotanical, Phytochemical, and Biological Study of Tamarix aphylla and Aerva javanica Medicinal Plants Growing in the Asir Region, Saudi Arabia. Trop. Conserv. Sci. 2019, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Al-Shehri, M.; Moustafa, M. Anticancer, Antibacterial, and Phytochemicals Derived from Extract of Aerva javanica (Burm.f.) Juss. ex Schult. Grown Nat. Saudi Arab. Trop. Conserv. Sci. 2019, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Alzandi, A.A.; Taher, E.A.; Al-Sagheer, N.A.; Al-Khulaidi, A.W.; Azizi, M.; Naguib, D.M. Phytochemical components, antioxidant and anticancer activity of 18 major medicinal plants in Albaha region, Saudi Arabia. Biocatal. Agric. Biotechnol. 2021, 34, 102020. [Google Scholar] [CrossRef]
- Nagei, T.A.; Alshaeri, S.A.; Alsulaimany, F.A.; Aldhebiani, A.Y. The Role of Aerva javanica (Burm.F.) Juss. Growing in Jazan, Saudi Arabia as Antimicrobial and Coagulating Factor. Eur. J. Appl. Sci. 2021, 9, 456–471. [Google Scholar] [CrossRef]
- Mussadiq, S.; Naheed, R.; Saleem, M.; Ashraf, M.; Ismail, T.; Jabbar, A. New acylated flavonoid glycosides from flowers of Aerva javanica. J. Asian Nat. Prod. Res. 2013, 15, 708–716. [Google Scholar] [CrossRef]
- Thotathil, V.; Rizk, H.H.; Fakrooh, A.; Sreerama, L. Phytochemical Analysis of Acacia ehrenbergiana (Hayne) Grown in Qatar: Identification of Active Ingredients and Their Biological Activities. Molecules 2022, 27, 6400. [Google Scholar] [CrossRef]
- Fakhroo, A.; Sreerama, L. Qualitative analysis of phytochemical compounds in Ocimum basilicum grown in Qatar. Int. J. Appl. Pharm. Biol. Res. 2016, 1, 11–17. [Google Scholar]
- Vanden, B.D. Screening methods for antibacterial and antiviral agents from higher plants. Methods Plant Biochem. 1991, 6, 47–68. [Google Scholar]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Al-Khafaji, A.N. Therapeutically and synergism effect between Anastatica hierochuntica and antibiotics against multidrug resistance bacteria isolate from endometritis. Biochem. Cell. Arch. 2018, 18, 2143–2150. [Google Scholar]
- El-hassan, B.; Nouria, N.; Razni, D.; Moghtetasian, S. Antibacterial activity of “Anastatica hierochuntica L.” against some bacterial strains responsible for women’s uro-genital infection. J. Pharm. Clin. Res. 2018, 11, 222–227. [Google Scholar]
- AlSobeai, S.M.; Abdullah, A.A.; Mohammed, S.A.; Joseph, B.; Abdulmoneim, M.S. Antibacterial activity of Anastatica hierochuntica L., extracts against different groups of bacterial pathogens: An in- vitro test. Aust. J. Basic Appl. Sci. 2015, 9, 27–30. [Google Scholar]
- Ododo, M.M.; Choudhury, M.K.; Dekebo, A.H. Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. Springer Plus 2016, 5, 1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muktar, B.; Bello, I.A.; Sallau, M.S. Isolation, characterization and antimicrobial study of lupeol acetate from the root bark of Fig-Mulberry Sycamore. J. Appl. Sci. Environ. Manag. 2018, 22, 1129–1133. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Koche, D.; Shirsat, R.; Kawale, M. An overerview of major classes of phytochemicals: Their types and role in disease prevention. Hislopia J. 2016, 9, 1–11. [Google Scholar]
- Fraga-Corral, M.; Otero, P.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Jarboui, A.; Nuñez-Estevez, B.; Simal-Gandara, J.; Prieto, M.A. By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins’ Biological Activities and Their Potential for Valorization. Foods 2021, 10, 137. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Sparg, S.G.; Light, M.E.; Van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef]
- Marjorie, M.C. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Islam, M.S. Antioxidant, antibacterial and cytotoxic effects of the phytochemicals of whole Leucas aspera extract. Asian Pac. J. Trop. Med. 2013, 3, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Girish, H.V.; Satish, S. Antibacterial activity of important medicinal plants on human pathogenic bacteria: A Comparative Analysis. World Appl. Sci. J. 2008, 5, 267–271. [Google Scholar]
- Mothana, R.A.; Abdo, S.A.; Hasson, S.; Althawab, F.M.; Alaghbari, S.A.; Lindequist, U. Antimicrobial, antioxidant and cytotoxic activities and phytochemical screening of some yemeni medicinal plants. Evid.-Based Complement. Altern. Med. 2010, 7, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, Y.; Niki, E. Antioxidant effects of phytosterol and its components. J. Nutr. Sci. Vitam. 2003, 49, 277–280. [Google Scholar] [CrossRef]
- Kustrin, S.A.; Morton, D.W.; Mizaton, H.H.; Zakaria, H. The relationship between major polyphenolic acids and stigmasterol to antioxidant activity in different extracts of Myrmecodia platytyrea. S. Afr. J. Bot. 2018, 115, 94–99. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, Y.; Lin, Q.; Bao, Y. Study on the antioxidant activity of β-sitosterol and stigmasterol from Sacha Inchi oil and Prinsepia oil added to walnut oil. Food Sci. Technol. 2022, 42, 69522. [Google Scholar] [CrossRef]
- Wal, P.; Wal, A.; Sharma, G.; Rai, A.K. Biological activities of lupeol. Syst. Rev. Pharm. 2011, 2, 96–103. [Google Scholar] [CrossRef]
- Xu, F.; Huang, X.; Wu, H.; Wang, X. Beneficial health effects of lupenone triterpene: A review. Biomed. Pharmacother. 2018, 103, 198–203. [Google Scholar] [CrossRef]
- Sousa, J.L.C.; Gonçalves, C.; Ferreira, R.M.; Cardoso, S.M.; Freire, C.S.R.; Silvestre, A.J.D.; Silva, A.M.S. Functionalization of Betulinic Acid with Polyphenolic Fragments for the Development of New Amphiphilic Antioxidants. Antioxidants 2021, 10, 148. [Google Scholar] [CrossRef]
- Kiprono, P.C.; Kaberia, F.; Keriko, J.M.; Karanja, J.N. The In Vitro Anti-Fungal and Anti-Bacterial Activities of β-Sitosterol from Senecio lyratus (Asteraceae). Z. Naturforsch. 2000, 55c, 485–488. [Google Scholar] [CrossRef]
- Ravi, L.; Girish, L.; Harhsini, M.; Sreenivas, B.K. β-Sitosterol: An Antibacterial Agent in Aquaculture Management of Vibrio Infections. J. Pure Appl. Microbiol. 2020, 14, 2699–2714. [Google Scholar] [CrossRef]
- Alawode, T.T.; Lajide, L.; Olaleye, M.; Owolabi, B. Stigmasterol and β-Sitosterol: Antimicrobial Compounds in the Leaves of Icacina trichantha identified by GC–MS. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 80. [Google Scholar] [CrossRef]
- Saeidnia, S.; Manayi, A.; Gohari, A.R.; Abdollahi, M. The Story of β-sitosterol—A Review. Eur. J. Med. Plants 2014, 4, 590–609. [Google Scholar] [CrossRef]
- Chai, J.; Kuppusamy, U.; Kanthimathi, M.S. β-sitosterol induces apoptosis in MCF-7 cells. Malays. J. Biochem. Mol. Biol. 2008, 16, 28–30. [Google Scholar]
- Wilt, T.J.; Ishani, A.; MacDonald, R.; Stark, G.; Mulrow, C.D.; Lau, J. β-sitosterols for benign prostatic hyperplasia. Cochrane Database Syst. Rev. 2000, 1999, CD001043. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.M.; Lee, E.O.; Lee, H.J.; Kim, K.H.; Ahn, K.S.; Shim, B.S.; Kim, N., II; Song, M.C.; Baek, N.I.; Kim, S.H. Identification of Campesterol from Chrysanthemum coronarium L. and its Antiangiogenic Activities. Phytother. Res. 2007, 21, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Lucetti, D.L.; Lucetti, E.C.P.; Bandeira, M.; Veras, H.N.H.; Silva, A.H.; Leal, L.; Lopes, A.A.; Alves, V.C.C.; Silva, G.S.; Brito, G.A.; et al. Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel. J. Inflamm. 2010, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Madureira, A.R.; Ascenso, J.R.; Valdeira, L.; Duarte, A.; Frade, J.P.; Freitas, G.; Ferreira, M.J.U. Evaluation of the Antiviral and Antimicrobial Activities of Triterpenes Isolated from Euphorbia segetalis. Nat. Prod. Res. 2003, 17, 375–380. [Google Scholar] [CrossRef]
- Oyebanji, B.O.; Saba, A.B.; Oridupa, O.A. Studies on the anti-inflammatory, analgesic and antipyrexic activities of betulilic acid derived from Tetracera potatoria. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.M.; Xu, H.G.; Wang, L.; Li, Y.J.; Sun, P.H.; Wu, X.M.; Wang, G.J.; Chen, W.M.; Ye, W.C. Betulinic acid and its derivatives as potential antitumor agents. Med. Res. Rev. 2015, 35, 1127–1155. [Google Scholar] [CrossRef]
- Ali-Seyed, M.; Jantan, I.; Vijayaraghavan, K.; Bukhari, S.N.A. Betulinic acid: Recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem. Biol. Drug Des. 2016, 87, 517–536. [Google Scholar] [CrossRef]
- Cichewiz, R.H.; Kouzi, S.A. Chemistry, biological activity and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev. 2004, 24, 90–114. [Google Scholar] [CrossRef]
- Ahmed, E.; Imran, M.; Malik, A.; Ashraf, M. Antioxidant activity with flavonoidal constituents from Aerva persica. Arch. Pharmacal. Res. 2006, 29, 343–347. [Google Scholar] [CrossRef]
No. | Test | Procedure * | Observation | Anastatica hierachuntica | Aerva javanica | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Extracts * | Extracts * | ||||||||||||||||
a | b | c | d | e | f | g | a | b | c | d | e | f | g | ||||
1 | Alkaloids | Wagner’s reagent | Brown/reddish ppt. | + | − | − | − | − | + | + | + | − | − | − | − | + | + |
2 | Glycosides | Keller–Kiliani reagent | Brown ring at the junction | + | + | + | + | − | + | + | + | + | + | + | + | + | + |
3 | Tannins | Braymer’s test | Greenish ppt. | + | − | + | + | + | + | + | − | + | + | − | + | + | + |
4 | Flavonoids | Drop of 10% NaOH solution | Intense yellow color | − | + | + | + | + | + | + | + | + | − | − | + | + | + |
5 | Terpenoids | Salkowski test | Reddish brown ring at the junction | + | + | + | + | − | + | + | + | + | + | − | − | + | + |
6 | Saponins | Foam test | Stable froth produced | + | − | − | + | + | + | + | + | + | + | − | + | + | + |
7 | Phenol | 2 mL 5% FeCl3 | Blue-green | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
8 | Anthraquinones | Benzene + 26% NH3 | Greenish-yellow precipitate # | + | + | + | + | + | − | + | + | + | + | − | + | − | + |
9 | Phlobatannins | 2 mL 1% HCl + heat | Red ppt. | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
10 | Anthocyanins | 2 mL HCl (2M) + ammonia (NH3) | No change | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
11 | Proteins | Xanthoproteic test | No change | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
Bacterial Species Tested | Extract * | MDIZ, mm (% of Control) | |
---|---|---|---|
Anastatica hierochuntica | Aerva javanica | ||
Escherichia coli | a | 20.15 (83) | 6.80 (28) |
b | 0 | 0 | |
c | 18.21 (75) | 7.28 (30) | |
d | 14.57 (60) | 8.50 (35) | |
e | 3.16 (13) | 6.07 (25) | |
f | 16.70 (70) | 17.00 (70) | |
g | 19.42 (80) | 18.21 (75) | |
Bacillus subtilis | a | 20.31 (75) | 23.03 (85) |
b | 17.61 (65) | 8.13 (30) | |
c | 7.86 (29) | 6.77 (25) | |
d | 0 | 0 | |
e | 0 | 0 | |
f | 17.61 (65) | 13.55 (50) | |
g | 20.31 (75) | 17.61 (65) | |
Staphylococcus aureus | a | 27.19 (72) | 20.75 (55) |
b | 0 | 24.17 (64) | |
c | 24.54 (65) | 18.12 (48) | |
d | 28.32 (75) | 27.19 (72) | |
e | 9.44 (25) | 13.22 (35) | |
f | 25.30 (67) | 22.66 (60) | |
g | 26.43 (70) | 28.32 (75) |
Plant | Plant Source | Extract | Organism | Part of Plant Tested | Ref | ||
---|---|---|---|---|---|---|---|
E. coli | B. subtilis | S. aureus | |||||
Anastatica hierochuntica | Qatar | Acetone | + | + | + | Stem, leaves Concentrations used: 5–200 µg/mL | Present Study |
Butanol | − | + | - | ||||
Ethanol | + | + | + | ||||
Ethyl Acetate | + | − | + | ||||
Methanol | + | − | + | ||||
Dichloromethane | + | + | + | ||||
Hexane | + | + | + | ||||
Egypt | Methanol | − | + | - | Whole Plant | [9] | |
Iraq | Methanol | + | − | + | Whole Plant | [30] | |
Algeria | Methanol | + | − | + | Whole Plant | [31] | |
Saudi Arabia | Methanol | + | + | + | Whole Plant | [32] | |
Aerva javanica | Qatar | Acetone | + | + | + | Stem, leaves Concentrations used: 5–200 µg/mL | Present Study |
Butanol | − | + | - | ||||
Ethanol | + | + | + | ||||
Ethyl Acetate | + | − | + | ||||
Methanol | + | − | + | ||||
Dichloromethane | + | + | + | ||||
Hexane | + | + | + | ||||
India | Methanol | + | + | + | Leaf, Flower, Root, Stem | [18] | |
Hexane | + | + | + | ||||
Saudi Arabia | Ethanol | + | ND | + | Root, Leaves [21] | ||
Methanol | ND | ND | + | ||||
Petroleum Ether * | ND | ND | + | ||||
Acetone | ND | ND | + | [24] | |||
Saudi Arabia | Methanol | + | − | + | |||
Dichloromethane | + | − | − |
Plant Extract | IC50 Values (mg/mL) * | |
---|---|---|
Anastatica hierochuntica | Aerva javanica | |
Acetone | 0.022 ± 0.001 | 0.030 ± 0.002 |
Butanol | 0.023 ± 0.001 | 0.040 ± 0.002 |
Ethanol | 0.016 ± 0.001 | 0.013 ± 0.001 |
Ethyl Acetate | 2.18 ± 0.110 | 1.92 ± 0.096 |
Methanol | 3.00 ± 0.150 | 2.82 ± 0.141 |
Dichloromethane | 0.017 ± 0.001 | 0.027 ± 0.001 |
Hexane | 0.021 ± 0.001 | 0.020 ± 0.001 |
Plant | Isolated Compound | Organism | Results * | Literature Report * |
---|---|---|---|---|
Anastatica hierochuntica | β-Sitosterol | E. coli | 4 mm | ~15 mm [33] |
Campesterol | 4 mm | N/A | ||
Methyl-9-(4-(3,4-dihydroxy-1′methyl-5′-oxocyclohexyl)-2-hydroxycyclohexyl)nonanoate | 4 mm | N/A | ||
β-Sitosterol | S. aureus | 2 mm | ~18 mm [33] | |
Campesterol | 2 mm | N/A | ||
Methyl-9-(4-(3,4-dihydroxy-1′methyl-5′-oxocyclohexyl)-2-hydroxycyclohexyl)nonanoate | 2 mm | N/A | ||
Aerva javanica | Lupenone | E. coli | 4 mm | N/A |
Betulinic acid | 4 mm | N/A | ||
Lupeol acetate | 4 mm | Inactive [34] | ||
Persinoside A and B. | 4 mm | N/A | ||
Lupenone | S. aureus | 6 mm | N/A | |
Betulinic acid | 2 mm | N/A | ||
Lupeol acetate | 2 mm | Inactive [34] | ||
Persinoside A and B. | 2 mm | N/A |
Plant | Isolated Compound | Organism | Results * |
---|---|---|---|
Anastatica hierochuntica | β-Sitosterol | Saccharomyces cerevisiae | 20 mm |
Campesterol | 6 mm | ||
Methyl-9-(4-(3,4-dihydroxy-1′methyl-5′-oxocyclohexyl)-2-hydroxycyclohexyl)nonanoate | 10 mm | ||
β-Sitosterol | A. fumigatus | 20 mm | |
Campesterol | 10 mm | ||
Methyl-9-(4-(3,4-dihydroxy-1′methyl-5′-oxocyclohexyl)-2-hydroxycyclohexyl)nonanoate | 6 mm | ||
Aerva javanica | Lupenone | Saccharomyces cerevisiae | 4 mm |
Betulinic acid | 6 mm | ||
Lupeol acetate | 6 mm | ||
Persinoside A and B. | 6 mm | ||
Lupenone | A. fumigatus | 4 mm | |
Betulinic acid | 10 mm | ||
Lupeol acetate | 4 mm | ||
Persinoside A and B. | 2 mm |
Secondary Metabolite | Reported Biological Activity * | Reference |
---|---|---|
Alkaloids | i, ii, iii, iv, v, vi, vii, viii and ix | [36] |
Tannins | i, ii, iii, v, vi, x, and xi | [37] |
Flavonoids | i, ii, iii, iv, v, xii and xiii | [38] |
Terpenoids | i, iii, xiv, xv and xvi | [36] |
saponins | i, iv, xvii, xviii, and xix | [39] |
Phenols | i, ii, iii, vi, v, xii and xiii | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thotathil, V.; Sidiq, N.; Fakhroo, A.; Sreerama, L. Phytochemical Analysis of Anastatica hierochuntica and Aerva javanica Grown in Qatar: Their Biological Activities and Identification of Some Active Ingredients. Molecules 2023, 28, 3364. https://doi.org/10.3390/molecules28083364
Thotathil V, Sidiq N, Fakhroo A, Sreerama L. Phytochemical Analysis of Anastatica hierochuntica and Aerva javanica Grown in Qatar: Their Biological Activities and Identification of Some Active Ingredients. Molecules. 2023; 28(8):3364. https://doi.org/10.3390/molecules28083364
Chicago/Turabian StyleThotathil, Vandana, Naheed Sidiq, Ameena Fakhroo, and Lakshmaiah Sreerama. 2023. "Phytochemical Analysis of Anastatica hierochuntica and Aerva javanica Grown in Qatar: Their Biological Activities and Identification of Some Active Ingredients" Molecules 28, no. 8: 3364. https://doi.org/10.3390/molecules28083364
APA StyleThotathil, V., Sidiq, N., Fakhroo, A., & Sreerama, L. (2023). Phytochemical Analysis of Anastatica hierochuntica and Aerva javanica Grown in Qatar: Their Biological Activities and Identification of Some Active Ingredients. Molecules, 28(8), 3364. https://doi.org/10.3390/molecules28083364