Effect of Carbonization Temperature on Microstructures and Properties of Electrospun Tantalum Carbide/Carbon Fibers
Abstract
1. Introduction
2. Results and Discussion
2.1. Surface Morphology
2.2. Crystalline Phase Characterization
2.3. Electrical and Mechanical Properties Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of Electrospun TaC/C Composite Fabric
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yuan, M.; Hu, Z.; Fang, H.; Li, S.; Guo, H.; Hu, R.; Jiang, S.; Liu, K.; Hou, H. High Performance Electrospun Polynaphthalimide Nanofibrous Membranes with Excellent Resistance to Chemically Harsh Conditions. Chin. J. Polym. Sci. 2021, 39, 1634–1644. [Google Scholar] [CrossRef]
- Jian, S.; Chen, Y.; Shi, F.; Liu, Y.; Jiang, W.; Hu, J.; Han, X.; Jiang, S.; Yang, W. Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability. Polymers 2022, 14, 5417. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qi, H.; Jiang, S.; Zhang, C.; Dong, X. Electrospun dual-aeolotropic conductive exceptive Janus membrane and Janus tubule functionalized by up-/down-converting fluorescence and magnetism. Mater. Chem. Front. 2022, 6, 3431–3441. [Google Scholar] [CrossRef]
- Chen, S.; Jia, F.; Zhao, L.; Qiu, F.; Jiang, S.; Ji, J.; Fu, G. Electrospun fiber membrane with asymmetric NO release for the differential regulation of cell growth. Bio-Des. Manuf. 2021, 4, 469–478. [Google Scholar] [CrossRef]
- Chen, Y.; Sui, L.; Fang, H.; Ding, C.H.; Li, Z.K.; Jiang, S.H.; Hou, H.Q. Superior mechanical enhancement of epoxy composites reinforced by polyimide nanofibers via a vacuum-assisted hot-pressing. Compos. Sci. Technol. 2019, 174, 20–26. [Google Scholar] [CrossRef]
- Liang, H.; Shi, R.; Zhou, Y.; Jiang, W.; Sun, T.; Zhang, Z.; Sun, L.; Lian, J.; Li, H.; Bu, Y. Removing Cost Barriers to Template Carbon Synthesis for High-Performance Supercapacitors by Establishing a ZeroEmission Chemical Cycle from CO2. ACS Energy Lett. 2022, 7, 4381–4388. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Lei, Y.; Gu, L.; Xiao, D. Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 19978–19989. [Google Scholar] [CrossRef]
- Ding, L.; Han, X.; Cao, L.; Chen, Y.; Ling, Z.; Han, J.; He, S.; Jiang, S. Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. J. Bioresour. Bioprod. 2022, 7, 190–200. [Google Scholar] [CrossRef]
- Zhou, W.; Lin, P.; Xu, X.; Xie, Y. Sound absorption characteristics of the jute fiber felt and its application in automobiles. J. For. Eng. 2021, 6, 113–119. [Google Scholar]
- Duan, G.; Liu, S.; Jiang, S.; Hou, H. High-performance polyamide-imide films and electrospun aligned nanofibers from an amide-containing diamine. J. Mater. Sci. 2019, 54, 6719–6727. [Google Scholar] [CrossRef]
- Zhao, H.; Miao, Q.; Huang, L.; Zhou, X.; Chen, L. Preparation of long bamboo fiber and its reinforced polypropylene membrane composites. J. For. Eng. 2021, 6, 96–103. [Google Scholar]
- Zhang, W.; Yu, X.; Li, Y.; Su, Z.; Jandt, K.D.; Wei, G. Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog. Polym. Sci. 2018, 80, 94–124. [Google Scholar] [CrossRef]
- Ma, P.; Dai, C.; Jiang, S. Thioetherimide-modified cyanate ester resin with better molding performance for glass fiber reinforced composites. Polymers 2019, 11, 1458. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.S.; Beevy S, S. Physico-mechanical characteristics of bast fibres of Sesamum indicum and Sesamum radiatum for bioprospecting. J. Bioresour. Bioprod. 2022, 7, 306–319. [Google Scholar] [CrossRef]
- Jin, P.; Li, L.; Gu, X.; Hu, Y.; Zhang, X.; Lin, X.; Ma, X.; He, X. S-doped porous carbon fibers with superior electrode behaviors in lithium ion batteries and fuel cells. Mater. Rep. Energy 2022, 2, 100160. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Y.; Li, Y.; Zhou, W.; Xu, W.; Pang, L.; Fan, X.; Jiang, S. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review. Compos. Part A 2021, 143, 106309. [Google Scholar] [CrossRef]
- Wu, H.; Xie, Y.; Ma, Y.; Zhang, B.; Xia, B.; Zhang, P.; Qian, W.; He, D.; Zhang, X.; Li, B.W.; et al. Aqueous MXene/Xanthan Gum Hybrid Inks for Screen-Printing Electromagnetic Shielding, Joule Heater, and Piezoresistive Sensor. Small 2022, 18, e2107087. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, S.; Tang, B. Rational design of nanomaterials for high energy density dielectric capacitors via electrospinning. Energy Storage Mater. 2021, 37, 530–555. [Google Scholar] [CrossRef]
- D’Amato, A.R.; Ding, X.; Wang, Y. Using Solution Electrowriting to Control the Properties of Tubular Fibrous Conduits. ACS Biomater. Sci. Eng. 2021, 7, 400–407. [Google Scholar] [CrossRef]
- Zhang, Y.; Ruan, K.; Gu, J. Flexible Sandwich-Structured Electromagnetic Interference Shielding Nanocomposite Films with Excellent Thermal Conductivities. Small 2021, 17, e2101951. [Google Scholar] [CrossRef]
- Tian, F.; Guan, M.; Du, K.; Yong, C.; Zhao, C. Fiber properties of straw pretreated by fermentation and its degradable composites. J. For. Eng. 2022, 7, 128–133. [Google Scholar]
- Zhu, R.; Li, Z.; Deng, G.; Yu, Y.; Shui, J.; Yu, R.; Pan, C.; Liu, X. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700. [Google Scholar] [CrossRef]
- He, H.-W.; Zhang, B.; Yan, X.; Dong, R.-H.; Jia, X.-S.; Yu, G.-F.; Ning, X.; Xia, L.-H.; Long, Y.-Z. Solvent-free thermocuring electrospinning to fabricate ultrathin polyurethane fibers with high conductivity by in situ polymerization of polyaniline. RSC Adv. 2016, 6, 106945–106950. [Google Scholar] [CrossRef]
- Dai, J.; Yang, S.; Jin, J.; Li, G. Electrospinning of PLA/pearl powder nanofibrous scaffold for bone tissue engineering. RSC Adv. 2016, 6, 106798–106805. [Google Scholar] [CrossRef]
- Gee, S.; Johnson, B.; Smith, A.L. Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes. J. Membr. Sci. 2018, 563, 804–812. [Google Scholar] [CrossRef]
- Zou, Y.; Jiang, S.H.; Hu, X.W.; Xu, W.H.; Chen, Z.G.; Liu, K.M.; Hou, H.Q. Influence of pre-oxidation on mechanical properties of single electrospun polyacrylonitrile nanofiber. Mater. Today Commun. 2021, 26, 102069. [Google Scholar] [CrossRef]
- Neisiany, R.E.; Khorasani, S.N.; Kong Yoong Lee, J.; Ramakrishna, S. Encapsulation of epoxy and amine curing agent in PAN nanofibers by coaxial electrospinning for self-healing purposes. RSC Adv. 2016, 6, 70056–70063. [Google Scholar] [CrossRef]
- Wen, X.; Luo, J.; Xiang, K.; Zhou, W.; Zhang, C.; Chen, H. High-performance monoclinic WO3 nanospheres with the novel NH4+ diffusion behaviors for aqueous ammonium-ion batteries. Chem. Eng. J. 2023, 458, 141381. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Ji, Y.; Chen, Y.; Liu, K.; Shen, B.; He, S.; Duan, G.; Han, J.; Jiang, S. Highly flexible carbon nanotubes/aramid nanofibers composite papers with ordered and layered structures for efficient electromagnetic interference shielding. Compos. Commun. 2021, 27, 100879. [Google Scholar] [CrossRef]
- Hu, J.Z.; Liu, W.J.; Zheng, J.H.; Li, G.C.; Bu, Y.F.; Qiao, F.; Lian, J.B.; Zhao, Y. Coral-like cobalt selenide/carbon nanosheet arrays attached on carbon nanofibers for high-rate sodium-ion storage. Rare Met. 2023, 42, 916–928. [Google Scholar] [CrossRef]
- Huang, W.-X.; Li, Z.-P.; Li, D.-D.; Hu, Z.-H.; Wu, C.; Lv, K.-L.; Li, Q. Ti3C2 MXene: Recent progress in its fundamentals, synthesis, and applications. Rare Met. 2022, 41, 3268–3300. [Google Scholar] [CrossRef]
- Zhou, K.; Pei, H.L.; Xiao, J.K.; Zhang, L. Micro-scratch behavior of WC particle-reinforced copper matrix composites. Rare Met. 2022, 41, 2337–2342. [Google Scholar] [CrossRef]
- Guo, H.; Wang, F.; Luo, H.; Li, Y.; Lou, Z.; Ji, Y.; Liu, X.; Shen, B.; Peng, Y.; Liu, K.; et al. Flexible TaC/C electrospun non–woven fabrics with multiple spatial-scale conductive frameworks for efficient electromagnetic interference shielding. Composites, Part A 2021, 151, 106662. [Google Scholar] [CrossRef]
- Guo, H.; Zheng, M.; Ma, X.; Cao, R.; Liu, K.; Yang, W.; Jian, S.; Jiang, S.; Duan, G. Electrospun TaC/Fe3C–Fe carbon composite fabrics for high efficiency of electromagnetic interference shielding. Compos. Commun. 2022, 31, 101130. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, G.; Jiang, S.; Fan, P.; Hou, H. Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity. Mater. Lett. 2017, 200, 97–100. [Google Scholar] [CrossRef]
- Yi, S.; Liu, J.; Wang, C.; Miao, P.; Liang, J.; Wang, X. Effects of carbonization temperature on structure and mechanical strength of electrospun carbon nanofibrous mats. Mater. Lett. 2020, 273, 127962. [Google Scholar] [CrossRef]
Temperature (°C) | (1 1 1) | (2 0 0) | (2 2 0) | (3 1 1) | (2 2 2) |
---|---|---|---|---|---|
1200 | 86.45% ± 1.87% | 92.51% ± 2.83% | 96.69% ± 5.22% | 97.18% ± 3.25% | 99.30% ± 4.38% |
1300 | 86.45% ± 1.87% | 93.28% ± 3.99% | 95.50% ± 5.26% | 97.08% ± 3.59% | 99.22% ± 2.34% |
1400 | 95.81% ± 3.25% | 97.78% ± 2.35% | 99.46% ± 4.56% | 99.43% ± 4.27% | 99.86% ± 3.39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Ma, X.; Lv, Q.; Zhang, C.; Duan, G. Effect of Carbonization Temperature on Microstructures and Properties of Electrospun Tantalum Carbide/Carbon Fibers. Molecules 2023, 28, 3430. https://doi.org/10.3390/molecules28083430
Guo H, Ma X, Lv Q, Zhang C, Duan G. Effect of Carbonization Temperature on Microstructures and Properties of Electrospun Tantalum Carbide/Carbon Fibers. Molecules. 2023; 28(8):3430. https://doi.org/10.3390/molecules28083430
Chicago/Turabian StyleGuo, Hongtao, Xiaofan Ma, Qiqi Lv, Chunmei Zhang, and Gaigai Duan. 2023. "Effect of Carbonization Temperature on Microstructures and Properties of Electrospun Tantalum Carbide/Carbon Fibers" Molecules 28, no. 8: 3430. https://doi.org/10.3390/molecules28083430
APA StyleGuo, H., Ma, X., Lv, Q., Zhang, C., & Duan, G. (2023). Effect of Carbonization Temperature on Microstructures and Properties of Electrospun Tantalum Carbide/Carbon Fibers. Molecules, 28(8), 3430. https://doi.org/10.3390/molecules28083430