Ethoxy Groups on ZrO2, CuO, CuO/ZrO2 Al2O3, Ga2O3, SiO2 and NiO: Formation and Reactivity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology
2.2. Hydroxyl Groups
2.3. Ethoxy Groups on Oxides
2.4. Correlation of Amount of Ethoxy Groups with Basicity of Oxides
2.5. Oxidation of Ethoxy Groups
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Spatari, S.; Zhang, Y.; MacLean, H.L. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled auto-mobiles. Environ. Sci. Technol. 2005, 39, 9750–9758. [Google Scholar] [CrossRef] [PubMed]
- Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol can contribute to energy and envi-ronmental goals. Science 2006, 311, 506–508. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Patzek, T.W. Ethanol Production Using Corn, Switchgrass, and wood; biodiesel production using soybean and sunflower. Nat. Resour. Res. 2005, 14, 65–76. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, S.; Chen, Y.; Wang, D.; Cai, W. Hydrogen production from ethanol reforming: Catalysts and reaction mechanism. Renew. Sustain. Energy Rev. 2015, 44, 132–148. [Google Scholar] [CrossRef]
- Akdim, O.; Cai, W.; Fierro, V.; Provendier, H.; Veen, A.; Shen, W.; Mirodatos, C. Oxidative Steam Reforming of Ethanol over Ni–Cu/SiO2, Rh/Al2O3 and Ir/CeO2: Effect of Metal and Support on Reaction Mechanism. Top. Catal. 2008, 51, 22–38. [Google Scholar] [CrossRef]
- Vargas, P.; Campos, C.H.; Navarro, R.M.; Fierro, J.L.G.; Reyes, P. Rh/Al2O3–La2O3 catalysts promoted with CeO2 for ethanol steam reforming reaction. J. Mol. Catal. A Chem. 2015, 407, 169–181. [Google Scholar] [CrossRef]
- Śliwa, M.; Socha, P.R. Modification of CuO–ZrO2–ZnO Mixed Oxide Catalyst with Mn, Ga, Ni: Impact on Physicochemical Properties and Hydrogen Production via Low Temperature Steam Reforming of Ethanol. Catal. Lett. 2022, 152, 3747–3760. [Google Scholar] [CrossRef]
- Roh, H.S.; Wang, Y.; King, D.L.; Platon, A.; Chin, Y.H. Low Temperature and H2 Selective Catalysts for Ethanol Steam Reforming. Catal. Lett. 2006, 108, 15–19. [Google Scholar] [CrossRef]
- Birot, A.; Epron, F.; Descorme, C.; Duprez, D. Ethanol steam reforming over Rh/CexZr1−xO2 catalysts: Impact of the CO–CO2–CH4 interconversion reactions on the H2 production. Appl. Catal. B Environ. 2008, 79, 17–25. [Google Scholar] [CrossRef]
- Koh, A.C.W.; Leong, W.K.; Chen, L.; Ang, T.P.; Lin, J.; Johnson, B.F.G.; Khimyak, T. Highly efficient ruthenium and ruthenium–platinum cluster-derived nanocatalysts for hydrogen production via ethanol steam reforming. Catal. Commun. 2008, 9, 170–175. [Google Scholar] [CrossRef]
- Wang, F.; Cai, W.T.; Provendier, H.; Schuurman, Y.; Descorme, C.; Mirodatos, C.; Shen, W. Ageing analysis of a model Ir/CeO2 catalyst in ethanol steam reforming. Appl. Catal. B Environ. 2012, 125, 546–555. [Google Scholar] [CrossRef]
- Goula, M.; Kontou, S.; Tsiakaras, P. Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst. Appl. Catal. B Environ. 2004, 49, 135–144. [Google Scholar] [CrossRef]
- Ciambelli, P.; Palma, V.; Ruggiero, A. Low temperature catalytic steam reforming of ethanol. 1. The effect of the support on the activity and stability of Pt catalysts. Appl. Catal. B Environ. 2010, 96, 18–27. [Google Scholar] [CrossRef]
- Song, H.; Ozkan, U.S. Changing the Oxygen Mobility in Co/Ceria Catalysts by Ca Incorporation: Implications for Ethanol Steam Reforming. J. Phys. Chem. A 2010, 114, 3796–3801. [Google Scholar] [CrossRef] [PubMed]
- Frusteri, F.; Freni, S.; Spadaro, L.; Chiodo, V.; Bonura, G.; Donato, S.; Cavallaro, S. H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catal. Commun. 2004, 5, 611–615. [Google Scholar] [CrossRef]
- Li, S.; Li, M.; Zhang, C.; Wang, S.; Ma, X.; Gong, J. Steam reforming of ethanol over Ni/ZrO2 catalysts: Effect of support on product distribution. Int. J. Hydrogen Energy 2012, 37, 2940–2949. [Google Scholar] [CrossRef]
- Han, S.J.; Song, J.H.; Bang, Y.; Yoo, J.; Park, S.; Kang, K.H.; Song, I.K. Hydrogen production by steam reforming of ethanol over mesoporous Cu–Ni–Al2O3–ZrO2 xerogel catalysts. Int. J. Hydrogen Energy 2016, 41, 2554–2563. [Google Scholar] [CrossRef]
- Garbarino, G.; Riani, P.; Lucchini, M.A.; Canepa, F.; Kawale, S.; Busca, G. Cobalt-based nanoparticles as catalysts for low temperature hydrogen production by ethanol steam reforming. Int. J. Hydrogen Energy 2013, 38, 82–91. [Google Scholar] [CrossRef]
- Lorenzut, B.; Montini, T.; De Rogatisa, L.; Canton, P.; Benedetti, A.; Fornasiero, P. Hydrogen production through alcohol steam reforming on Cu/ZnO-based catalysts. Appl. Catal. B Environ. 2011, 101, 397–408. [Google Scholar] [CrossRef]
- Navarro, R.M.; Peña, M.A.; Fierro, J.L.G. Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chem. Rev. 2007, 107, 3952–3991. [Google Scholar] [CrossRef]
- Galetti, A.E.; Gomez, M.F.; Arrua, L.A.; Marchi, A.J.; Abello, M.C. Study of CuCoZnAl oxide as catalyst for the hydrogen production from ethanol reforming. Catal. Commun. 2008, 9, 1201–1208. [Google Scholar] [CrossRef]
- Śliwa, M.; Samson, K. Steam reforming of ethanol over copper-zirconia based catalysts doped with Mn, Ni, Ga. Int. J. Hydrogen Energy 2021, 46, 555–564. [Google Scholar] [CrossRef]
- Podobiński, J.; Zimowska, M.; Śliwa, M.; Datka, J. IR Studies of Ethoxy Groups on CeO2. Molecules 2023, 28, 1251. [Google Scholar] [CrossRef] [PubMed]
- Podobiński, J.; Śliwa, M.; Datka, J. Ethoxy Groups on ZrO2, CuO, and CuO/ZrO2 Studied by IR Spectroscopy. Molecules 2022, 27, 4790. [Google Scholar] [CrossRef]
- Binet, C.; Daturi, M.; Lavalley, J.C. IR Study of polycrystalline ceria properties in oxidized and reduced states. Catal. Today 1999, 50, 207–225. [Google Scholar] [CrossRef]
- Badri, A.; Binet, C.; Lavalley, J.C. An FTIR study of surface ceria hydroxy groups during a redox process with H2. J. Chem. Soc. Faraday Trans. 1996, 92, 4669. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Yang, C.; Wei, W.; Li, W.H.; Sun, Y.H. Surface properties and CO adsorption on zirconia polymorphs. J. Mol. Catal. A Chem. 2005, 227, 119–124. [Google Scholar] [CrossRef]
- He, M.Y.; Ekerdt, J.G. Infrared studies of the adsorption of synthesis gas on zirconium dioxide. J. Catal. 1984, 87, 381–388. [Google Scholar] [CrossRef]
- Bensitel, M.; Saur, O.; Lavalley, J.C.; Mabilon, G. Acidity of zirconium oxide and sulfated ZrO2 samples. Mater. Chem. Phys. 1987, 17, 249–258. [Google Scholar] [CrossRef]
- Agron, P.A.; Fuller, E.L., Jr.; Holmes, H.F. IR studies of water sorption on ZrO2 polymorphs. J. Colloid Interf. Sci. 1975, 52, 553–561. [Google Scholar] [CrossRef]
- Tsyganenko, A.A.; Filimonov, V.N. Infrared spectra of surface hydroxyl groups and crystalline structure of oxides. Spectrosc. Lett. 1972, 5, 477–487. [Google Scholar] [CrossRef]
- Knözinger, H. Specific Poisoning and Characterization of Catalytically Active Oxide Surfaces. Advances in Catalysis. 1976, 25, 184–271. [Google Scholar] [CrossRef]
- West, R.; Baney, R.H. The relationship between O-H stretching frequency and electronegativity in hydroxides of various elements. J. Phys. Chem. 1960, 64, 822–824. [Google Scholar] [CrossRef]
- Peri, J.B. Surface chemistry of AlPO4—a mixed oxide of Al and P. Discuss. Faraday Soc. 1971, 52, 55–65. [Google Scholar] [CrossRef]
- Knözinger, H.; Ratnasamy, P. Catalytic Aluminas: Surface Models and Characterization of Surface Sites. Catal. Rev. Sci. Eng. 1978, 17, 31–70. [Google Scholar] [CrossRef]
- Arean, C.O.; Bellan, A.L.; Mentruit, M.P.; Delgado, M.R.; Palomino, G.T. Preparation and characterization of mesoporous γ-Ga2O3. Microporous Mesoporous Mater. 2000, 40, 35–42. [Google Scholar] [CrossRef]
- Cappus, D.; Xu, C.; Ehrlich, D.; Dillmann, B.; Ventrice, C.A., Jr.; Al Shamery, K.; Kuhlenbeck, H.; Freud, H.J. Hydroxyl groups on oxide surfaces: NiO (100), NiO (111), and Cr2O3 (111). Chem. Physic 1993, 177, 533–546. [Google Scholar] [CrossRef]
- Yee, A.; Morrison, S.J.; Idriss, H. A Study of the Reactions of Ethanol on CeO2 and Pd/CeO2 by Steady State Reactions, Temperature Programmed Desorption, and In Situ FT-IR. J. Catal. 1999, 186, 279–295. [Google Scholar] [CrossRef]
- Ito, K.; Bernstein, H.J. The Vibrational Spectra of Formate, Acetate and Oxalate Ions. Can. J. Chem. 1956, 34, 170. [Google Scholar] [CrossRef]
Samples | Frequencies of OH Groups/cm−1 | Frequencies of Ethoxy Groups/cm−1 |
---|---|---|
SiO2 | 3745 | - |
ZrO2 | 3775, 3737, 3675 | 1160 (M), 1077 (M), 920 (M) 1100 (B), 1055 (B), 898 (B) |
CuO/ZrO2 | 3775, 3665 | 1160 (M), 1077 (M), 920 (M) 1100 (B), 1055 (B), 898 (B) |
Al2O3 | 3770, 3755, 3730, 3675, 3585 | 1070 (M), 1024 (M) 1138 (B), 1084 (B) |
Ga2O3 | 3695, 3667, 3632 | 1106 (M), 1064 (M), 903 (M) 1095 (B), 1050 (B), 895 (B) |
CuO | - | 1105, 1059, 890 |
NiO | 3682, 3605 | 1111, 1064, 894 |
Samples | B µmol CO2/g | A370/m cm−1/g | A440/m cm−1/g | A440/A370 | Peak temp. H2-TPR K |
---|---|---|---|---|---|
SiO2 | 0 | 0 | - | - | - |
ZrO2 | 55 | 50 | 51 | 1.02 | - |
CuO/ZrO2 | 48 | 48 | 0 | 0 | 550 |
Al2O3 | 44 | 52 | 50 | 0.96 | - |
Ga2O3 | 0.1 | 2.2 | 2.1 | 0.95 | - |
CuO | 5.8 | 4.7 | 1.7 | 0.36 | 620 |
NiO | 0.6 | 2.0 | 1.3 | 0.65 | 710 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podobiński, J.; Zimowska, M.; Samson, K.; Śliwa, M.; Datka, J. Ethoxy Groups on ZrO2, CuO, CuO/ZrO2 Al2O3, Ga2O3, SiO2 and NiO: Formation and Reactivity. Molecules 2023, 28, 3463. https://doi.org/10.3390/molecules28083463
Podobiński J, Zimowska M, Samson K, Śliwa M, Datka J. Ethoxy Groups on ZrO2, CuO, CuO/ZrO2 Al2O3, Ga2O3, SiO2 and NiO: Formation and Reactivity. Molecules. 2023; 28(8):3463. https://doi.org/10.3390/molecules28083463
Chicago/Turabian StylePodobiński, Jerzy, Małgorzata Zimowska, Katarzyna Samson, Michał Śliwa, and Jerzy Datka. 2023. "Ethoxy Groups on ZrO2, CuO, CuO/ZrO2 Al2O3, Ga2O3, SiO2 and NiO: Formation and Reactivity" Molecules 28, no. 8: 3463. https://doi.org/10.3390/molecules28083463
APA StylePodobiński, J., Zimowska, M., Samson, K., Śliwa, M., & Datka, J. (2023). Ethoxy Groups on ZrO2, CuO, CuO/ZrO2 Al2O3, Ga2O3, SiO2 and NiO: Formation and Reactivity. Molecules, 28(8), 3463. https://doi.org/10.3390/molecules28083463