Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation of Isolated Compounds
2.2. In Vitro Antibacterial Activity
2.3. Minimum Inhibitory Concentration (MIC)
2.4. Growth Curve of the 4-Allylbenzene-1,2-diol against Xoo
2.5. In Vivo Bioactivity of 4-Allylbenzene-1,2-Diol against Xoo
2.6. SEM Observation
2.7. Membrane Permeability
2.8. Cell Motility Assays
2.9. Assay of 4-Allylbenzene-1,2-diol-Inhibited Biofilm Formation Assay
2.10. Extracellular Polysaccharide (EPS) Production
3. Materials and Methods
3.1. Experimental Materials and Reagents
3.2. Extraction and Isolation
3.3. In Vitro Antibacterial Bioassay
3.4. Determination of the Minimum Inhibitory Concentration (MIC)
3.5. Growth Curve Assay
3.6. In Vivo Antibacterial Activity against Xoo
3.7. Scanning Electronic Microscope (SEM)
3.8. Membrane Permeability
3.9. Bacterial Motility Assay
3.10. Assay of Biofilm Formation
3.11. Extracellular Polysaccharide (EPS) Production
3.12. Statistical Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Latijnhouwers, M.; de Wit, P.J.G.M.; Govers, F. Oomycetes and fungi: Similar weaponry to attack plants. Trends Microbiol. 2003, 11, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.-Q.; Liu, L.-W.; Wang, P.-Y.; Long, Q.-S.; Zhao, Y.-L.; Jin, L.-H.; Xu, W.-M.; Chen, Y.; Li, Z.; Yang, S. Synthesis and In Vitro and In Vivo Biological Activity Evaluation and Quantitative Proteome Profiling of Oxadiazoles Bearing Flexible Heterocyclic Patterns. J. Agric. Food Chem. 2019, 67, 7626–7639. [Google Scholar] [CrossRef] [PubMed]
- Young, M.; Ozcan, A.; Rajasekaran, P.; Kumrah, P.; Myers, M.E.; Johnson, E.; Graham, J.H.; Santra, S. Fixed-Quat: An Attractive Nonmetal Alternative to Copper Biocides against Plant Pathogens. J. Agric. Food Chem. 2018, 66, 13056–13064. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, D.K.; Natarajan, S.; Mandal, S.; Mitra, A. Lactoferrin-Derived Resistance against Plant Pathogens in Transgenic Plants. J. Agric. Food Chem. 2013, 61, 11730–11735. [Google Scholar] [CrossRef] [PubMed]
- Rampitsch, C.; Bykova, N.V. Proteomics and plant disease: Advances in combating a major threat to the global food supply. Proteomics 2012, 12, 673–690. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yin, Y.-M.; Wang, X.-Y.; Wu, H.; Ge, X.-Z. Evaluation of berberine as a natural fungicide: Biodegradation and antimicrobial mechanism. J. Asian Nat. Prod. Res. 2018, 20, 148–162. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Zhao, L.; He, W.; Liu, Z.; Gan, X.; Song, B. First Discovery of Novel Pyrido 1,2-a pyrimidinone Mesoionic Compounds as Antibacterial Agents. J. Agric. Food Chem. 2019, 67, 11860–11866. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Fang, H.-S.; Shao, W.-B.; Zhou, J.; Chen, Z.; Song, B.-A.; Yang, S. Synthesis and biological evaluation of pyridinium-functionalized carbazole derivatives as promising antibacterial agents. Bioorganic Med. Chem. Lett. 2017, 27, 4294–4297. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Xiang, M.; Luo, M.; Liu, H.-W.; Zhou, X.; Wu, Z.-B.; Liu, L.-W.; Li, Z.; Yang, S. Novel piperazine-tailored ursolic acid hybrids as significant antibacterial agents targeting phytopathogens Xanthomonas oryzae pv. Oryzae and X. axonopodis pv. Citri probably directed by activation of apoptosis. Pest Manag. Sci. 2020, 76, 2744–2754. [Google Scholar] [CrossRef]
- Singh, G.; Passsari, A.K.; Leo, V.V.; Mishra, V.K.; Subbarayan, S.; Singh, B.P.; Kumar, B.; Kumar, S.; Gupta, V.K.; Lalhlenmawia, H.; et al. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India. Front. Plant Sci. 2016, 7, 407. [Google Scholar] [CrossRef]
- Duong Quang, P.; Duong Thi, B.; Nga Thu, D.; Choi, G.J.; Thuy Thu, V.; Kim, J.-C.; Thi Phuong Ly, G.; Hoang Dinh, V.; Quang Le, D. Antimicrobial efficacy of extracts and constituents fractionated from Rheum tanguticum Maxim. ex Balf. rhizomes against phytopathogenic fungi and bacteria. Ind. Crops Prod. 2017, 108, 442–450. [Google Scholar]
- Quang Le, D.; Hoai Thu Thi, D.; Gyung Ja, C.; Minh Van, N.; Hoang Dinh, V.; Gia Vu, P.; Cuong Tu, H.; Xuan Canh, N.; Van Hanh, V.; Thang Dinh, T.; et al. In vitro and in vivo antimicrobial activities of extracts and constituents derived from Desmodium styracifolium (Osb.) Merr. against various phytopathogenic fungi and bacteria. Ind. Crops Prod. 2022, 188, 115521. [Google Scholar]
- Wang, C.-M.; Guan, W.; Fang, S.; Chen, H.; Li, Y.-Q.; Cai, C.; Fan, Y.-J.; Shi, Z.-Q. Antifungal activity of the osthol derivative JS-B against Phytophthora capsici. J. Asian Nat. Prod. Res. 2010, 12, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-M.; Zhou, W.; Li, C.-X.; Chen, H.; Shi, Z.-Q.; Fan, Y.-J. Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea. J. Asian Nat. Prod. Res. 2009, 11, 783–791. [Google Scholar] [CrossRef]
- Zhang, Z.-R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. Evid.-Based Complement. Altern. Med. 2015, 2015, 919616. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current knowledge and pharmacological profile of berberine: An update. Eur. J. Pharmacol. 2015, 761, 288–297. [Google Scholar] [CrossRef]
- Li, Y.; Wei, J.; Ge, X. Microbial Extraction of Berberine from Phellodendron for Simultaneous Product Purification and Waste Resource Utilization. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 687–694. [Google Scholar] [CrossRef]
- Pan, H.; Xu, L.H.; Huang, M.Y.; Zha, Q.B.; Zhao, G.X.; Hou, X.F.; Shi, Z.J.; Lin, Q.R.; Ouyang, D.Y.; He, X.H. Piperine metabolically regulates peritoneal resident macrophages to potentiate their functions against bacterial infection. Oncotarget 2015, 6, 32468–32483. [Google Scholar] [CrossRef]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef]
- Venkatesh, S.; Durga, K.D.; Padmavathi, Y.; Reddy, B.M.; Mullang, R. Influence of piperine on ibuprofen induced antinociception and its pharmacokinetics. Arzneim.-Forsch.-Drug Res. 2011, 61, 506–509. [Google Scholar]
- Feng, G.; Chen, M.; Ye, H.-C.; Zhang, Z.-K.; Li, H.; Chen, L.-L.; Chen, X.-L.; Yan, C.; Zhang, J. Herbicidal activities of compounds isolated from the medicinal plant Piper sarmentosum. Ind. Crops Prod. 2019, 132, 41–47. [Google Scholar] [CrossRef]
- Shi, Y.N.; Yang, L.; Zhao, J.H.; Shi, Y.M.; Qu, Y.; Zhu, H.T.; Wang, D.; Yang, C.R.; Li, X.C.; Xu, M.; et al. Chemical constituents from Piper wallichii. Nat. Prod. Res. 2015, 29, 1372–1375. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.P.; Shi, Y.N.; Liu, F.F.; Li, H.Z.; Zhang, Y.J.; Yang, C.R.; Xu, M. A Survey of the Chemical Compounds of Piper spp. (Piperaceae) and Their Biological Activities. Nat. Prod. Commun. 2016, 11, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiao, P.; Han, G. Studies on chemical constituents of Piper austrosinense. Nat. Prod. Res. Dev. 1995, 7, 20–23. [Google Scholar]
- Chen, L.; Xiang, C.-P.; Han, J.; Jiao, Y.; Hao, C.; Yang, S.; Yang, L.; Guo, L.-Q.; Li, H.-Z.; Yang, C.-R.; et al. Chemical Constituents of Piper austrosinense and Their Anticholinesterase Inhibitory Activity. Nat. Prod. Res. Dev. 2018, 30, 1569–1574. [Google Scholar]
- Chen, S.; Huang, H.-Y.; Cheng, M.-J.; Wu, C.-C.; Ishikawa, T.; Peng, C.-F.; Chang, H.-S.; Wang, C.-J.; Wong, S.-L.; Chen, I.-S. Neolignans and phenylpropanoids from the roots of Piper taiwanense and their antiplatelet and antitubercular activities. Phytochemistry 2013, 93, 203–209. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Kawaii, S.; Kanauchi, M.; Chida, M.; Mizutani, J. Chavicol and Related Compounds as Nematocides. Biosci. Biotechnol. Biochem. 1993, 57, 1572–1574. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Huang, X.; Liu, L.-W.; Wang, P.-Y.; Long, Q.-S.; Tao, Q.-Q.; Li, Z.; Yang, S. Identification of Racemic and Chiral Carbazole Derivatives Containing an Isopropanolamine Linker as Prospective Surrogates against Plant Pathogenic Bacteria: In Vitro and In Vivo Assays and Quantitative Proteomics. J. Agric. Food Chem. 2019, 67, 7512–7525. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Silva-Angulo, A.B.; Zanini, S.F.; Rosenthal, A.; Rodrigo, D.; Klein, G.; Martinez, A. Comparative Study of the Effects of Citral on the Growth and Injury of Listeria innocua and Listeria monocytogenes Cells. PLoS ONE 2015, 10, e0114026. [Google Scholar] [CrossRef]
- Rao, J.; Liu, L.; Zeng, D.; Wang, M.; Xiang, M.; Yang, S. Antibiotic activities of propanolamine containing 1,4-benzoxazin-3-ones against phytopathogenic bacteria. RSC Adv. 2020, 10, 682–688. [Google Scholar] [CrossRef]
- Liu, T.; Ren, X.; Cao, G.; Zhou, X.; Jin, L. Transcriptome Analysis on the Mechanism of Ethylicin Inhibiting Pseudomonas syringae pv. actinidiae on Kiwifruit. Microorganisms 2021, 9, 724. [Google Scholar] [CrossRef]
- Ernst, W.A.; Thoma-Uszynski, S.; Teitelbaum, R.; Ko, C.; Hanson, D.A.; Clayberger, C.; Krensky, A.M.; Leippe, M.; Bloom, B.R.; Ganz, T.; et al. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J. Immunol. 2000, 165, 7102–7108. [Google Scholar] [CrossRef]
- Di Bonaventura, G.; Piccolomini, R.; Paludi, D.; D’Orio, V.; Vergara, A.; Conter, M.; Ianieri, A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. J. Appl. Microbiol. 2008, 104, 1552–1561. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Zhou, M.; Liu, Z.; Chen, Y.; Li, R. Inhibition effects of low concentrations of epigallocatechin gallate on the biofilm formation and hemolytic activity of Listeria monocytogenes. Food Control 2018, 85, 119–126. [Google Scholar] [CrossRef]
- Yi, C.; Chen, J.; Wei, C.; Wu, S.; Wang, S.; Hu, D.; Song, B. α-Haloacetophenone and analogues as potential antibacterial agents and nematicides. Bioorganic Med. Chem. Lett. 2020, 30, 126814. [Google Scholar] [CrossRef]
- Zamakshshari, N.; Ahmed, I.A.; Nasharuddin, M.N.A.; Hashim, N.M.; Mustafa, M.R.; Othman, R.; Noordin, M.I. Effect of extraction procedure on the yield and biological activities of hydroxychavicol from Piper betle L. leaves. J. Appl. Res. Med. Aromat. Plants 2021, 24, 100320. [Google Scholar] [CrossRef]
- Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Khan, I.A.; Ali, I.; Ali, F.; Kumar, M.; Kumar, A.; Johri, R.K.; Abdullah, S.T.; Bani, S.; Pandey, A.; et al. Evaluation of the Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Hydroxychavicol for Its Potential Use as an Oral Care Agent. Antimicrob. Agents Chemother. 2009, 53, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Majumdar, A.G.; Gamre, S.; Subramanian, M. Membrane damage precedes DNA damage in hydroxychavicol treated E. coli cells and facilitates cooperativity with hydrophobic antibiotics. Biochimie 2021, 180, 158–168. [Google Scholar] [CrossRef]
- Ishiyama, T.; Hara, I.; Matsuoka, M.; Sato, K.; Shimada, S.; Izawa, R.; Hashimoto, T.; Hamada, M.; Okami, Y.; Takeuchi, T.; et al. Studies on the preventive effect of kasugamycin on rice blast. J. Antibiot. 1965, 18, 115–119. [Google Scholar]
- Yang, X.; Thornburg, T.; Suo, Z.; Jun, S.; Robison, A.; Li, J.; Lim, T.; Cao, L.; Hoyt, T.; Avci, R.; et al. Flagella Overexpression Attenuates Salmonella Pathogenesis. PLoS ONE 2012, 7, e46828. [Google Scholar] [CrossRef] [PubMed]
- Tans-Kersten, J.; Huang, H.; Allen, C. Ralstonia solanacearum needs motility for invasive virulence on tomato. J. Bacteriol. 2001, 183, 3597–3605. [Google Scholar] [CrossRef] [PubMed]
- Heydorn, A.; Nielsen, A.T.; Hentzer, M.; Sternberg, C.; Givskov, M.; Ersbøll, B.K.; Molin, S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000, 146 Pt 10, 2395–2407. [Google Scholar] [CrossRef]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef]
- Qian, G.; Liu, C.; Wu, G.; Yin, F.; Zhao, Y.; Zhou, Y.; Zhang, Y.; Song, Z.; Fan, J.; Hu, B.; et al. AsnB, regulated by diffusible signal factor and global regulator Clp, is involved in aspartate metabolism, resistance to oxidative stress and virulence in Xanthomonas oryzae pv. oryzicola. Mol. Plant Pathol. 2013, 14, 145–157. [Google Scholar] [CrossRef]
- Ryan, R.P.; Vorhölter, F.J.; Potnis, N.; Jones, J.B.; Van Sluys, M.A.; Bogdanove, A.J.; Dow, J.M. Pathogenomics of Xanthomonas: Understanding bacterium-plant interactions. Nat. Reviews. Microbiol. 2011, 9, 344–355. [Google Scholar] [CrossRef]
- Zhao, Y.; Qian, G.; Yin, F.; Fan, J.; Zhai, Z.; Liu, C.; Hu, B.; Liu, F. Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonas oryzae pv. oryzicola. Microb. Pathog. 2011, 50, 48–55. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Y.; Li, S.; Ding, W. Resveratrol and Coumarin: Novel Agricultural Antibacterial Agent against Ralstonia solanacearum In Vitro and In Vivo. Molecules 2016, 21, 1501. [Google Scholar] [CrossRef]
Strain | Inhibition Rate (%) | ||
---|---|---|---|
4-Allylbenzene-1,2-diol | (S)-4-Allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol | Kasugamycin | |
Xac | 97.39 ± 0.17 a | 24.73 ± 1.84 b | 99.35 ± 0.25 a |
Xoc | 99.58 ± 0.96 a | 37.53 ± 4.35 b | 100.00 ± 0.22 a |
Xcm | 99.03 ± 0.24 a | 40.44 ± 2.23 b | 99.17 ± 0.50 a |
Xoo | 99.24 ± 0.05 a | 30.97 ± 2.99 b | 98.54 ± 0.25 a |
Bacteria | Minimum Inhibitory Concentration (μmol/L) | |
---|---|---|
4-Allylbenzene-1,2-diol | Kasugamycin | |
Xac | 667.5 | 250 |
Pcc | 1335 | 250 |
Xcc | 1335 | 500 |
Pcb | 1335 | 62.5 |
Xoo | 333.75 | 500 |
Xoc | 333.75 | 125 |
Xcm | 333.75 | 500 |
Xf | 1335 | 62.5 |
Chemicals | Protective Activity (15 Days after Spraying) | Curative Activity (15 Days after Spraying) | ||||
---|---|---|---|---|---|---|
Morbidity (%) | Disease Index (%) | Control Efficiency (%) | Morbidity (%) | Disease Index (%) | Control Efficiency (%) | |
4-Allylbenzene-1,2-diol (2 MIC, 667.5 μmol/L) | 100 | 37.04 b | 54.54 ± 6.38 b | 100 | 60.49 b | 26.86 ± 5.65 b |
4-Allylbenzene-1,2-diol (4 MIC, 1335 μmol/L) | 100 | 22.22 c | 72.73 ± 5.60 a | 100 | 56.79 b | 31.34 ± 3.97 b |
Kasugamycin (4 MIC, 2000 μmol/L) | 100 | 38.27 b | 53.03 ± 4.61 b | 100 | 46.91 c | 43.28 ± 7.83 a |
Control | 100 | 81.48 a | - | 100 | 82.71 a | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, M.; Wang, Q.; Fan, R.; Liu, S.; Zhu, F.; Feng, G.; Zhang, J. Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense. Molecules 2023, 28, 3572. https://doi.org/10.3390/molecules28083572
Gu M, Wang Q, Fan R, Liu S, Zhu F, Feng G, Zhang J. Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense. Molecules. 2023; 28(8):3572. https://doi.org/10.3390/molecules28083572
Chicago/Turabian StyleGu, Mengxuan, Qin Wang, Rui Fan, Shoubai Liu, Fadi Zhu, Gang Feng, and Jing Zhang. 2023. "Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense" Molecules 28, no. 8: 3572. https://doi.org/10.3390/molecules28083572
APA StyleGu, M., Wang, Q., Fan, R., Liu, S., Zhu, F., Feng, G., & Zhang, J. (2023). Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense. Molecules, 28(8), 3572. https://doi.org/10.3390/molecules28083572