Conversion of Waste Cooking Oil into Bio-Fuel via Pyrolysis Using Activated Carbon as a Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Characterization of WCO as Pyrolysis Feedstock and AC as a Catalyst
2.2. The Pyrolysis of WCO in the Absence of AC
2.3. The Pyrolysis of WCO in the Presence of AC
2.3.1. The Effect of Reaction Temperature and AC
2.3.2. The Effect of the AC:WCO Ratio
2.4. The Bio-Oil Characteristics
2.5. The Fuel Properties of Liquid Bio-Oil
Fuel Properties | WCO | Noncatalytic Bio-Oil a | Catalytic Bio-Oil a | Bio-Diesel b | Diesel c |
---|---|---|---|---|---|
Elemental analysis, wet basis | |||||
- Carbon (C) | 78.69 | 77.19 | 79.64 | 76.66–79.50 | 85.72–86.60 |
- Hydrogen (H) | 12.22 | 12.18 | 12.59 | 10.30 | 13.2–13.4 |
- Nitrogen (N) | 0.89 | 0.47 | 0.37 | 1.30 | <0.2 |
- Oxygen (O) d | 0.2 | 10.16 | 7.40 | 8.90–11.15 | - |
- Sulfur (S) | - | - | - | - | <0.3 |
H/C ratio | 1.85 | 1.88 | 1.90 | 1.86–1.88 | 1.77–1.95 |
Density at 15 °C (kg/m3) | 910.10 | 877 | 899 | 820–900 | 810–870 |
Viscosity at 40 °C (cSt.) | 42.50 | 8.03 | 11.16 | 1.8–4.5 | 1.8–4.1 |
Water content (%) | 0.465 | 0.23 | 0.23 | <0.5 | <0.5 |
Calorific value (kJ/g) | 39.07 | 39.73 | 40.20 | >42.00 | >45.00 |
Acid value (mgKOH/g) | 5.4 | 128.61 | 126.78 | 0.2 | 5.0 |
2.6. Energy Recovery
3. Materials and Methods
3.1. Materials
3.2. Catalytic Testing
3.3. AC and WCO Characterization and Product Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lopresto, C.G.; Naccarato, S.; Albo, L.; De Paola, M.G.; Chakraborty, S.; Curcio, S.; Calabro, V. Enzymatic transesterification of waste vegetable oil to produce biodiesel. Ecotoxicol. Environ. Saf. 2014, 121, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, C.; Ma, W.; Zhang, X.; Li, Y.; Yan, B.; Zhou, W. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresour. Technol. 2015, 166, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ding, Z.; Li, K.; Xu, J.; Liu, F.; Liu, S.; Yu, S.; Xie, C.; Ge, X. Liquid hydrocarbon fuels from catalytic cracking of waste cooking oils using ultrastable zeolite USY as catalyst. J. Anal. Appl. Pyrol. 2016, 117, 268–272. [Google Scholar] [CrossRef]
- Malkow, T. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. J. Waste Manag. 2004, 24, 53–79. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, W.D. Disposing of solid wastes by pyrolysis. Environ. Sci. Technol. 1975, 9, 98. [Google Scholar]
- Ngo, T.A.; Kim, J.; Kim, S.S. Pyrolysis of soybean oil with H-ZSM5 (Proton-exchange of Zeolite Socony Mobil #5) and MCM41 (Mobil Composition of Matter No.41) catalysts in a fixed-bed reactor. Energy 2010, 35, 2723–2728. [Google Scholar]
- Lima, D.G.; Soares, V.C.D.; Ribeiro, E.B.; Carvalho, D.A.; Cardoso, E.C.V.; Rassi, F.C.; Mundim, K.C.; Rubim, J.C.; Saurez, P.A.Z. Diesel-like fuel obtained by pyrolysis of vegetable oils. J. Anal. Appl. Pyrolysis. 2004, 71, 987–996. [Google Scholar] [CrossRef]
- Phung, T.K.; Casazza, A.A.; Perego, P.; Capranica, P.; Busca, G. Catalytic pyrolysis of vegetable oils to biofuels: Catalyst functionalities and the role of ketonization on the oxygenate paths. Fuel Process. Technol. 2015, 140, 119–124. [Google Scholar] [CrossRef]
- Valliyappan, T.; Bakhshi, N.N.; Dalai, A.K. Pyrolysis of glycerol for the production of hydrogen or syn gas. Bioresour. Technol. 2008, 99, 4476–4483. [Google Scholar] [CrossRef]
- Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. J. Waste Manag. 2014, 34, 210–218. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Buffi, M.; Rizzo, A.M.; Lotti, G.; Prussi, M. Bio-hydrocarbons through catalytic pyrolysis of used cooking oils and fatty acids for sustainable jet and road fuel production. Biomass Bioenergy 2016, 95, 424–435. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, L.; Fan, L.; Cao, L.; Zhou, Y.; Zhao, Y.; Liu, Y.; Ruan, R. Catalytic co-pyrolysis of waste vegetable oil and high-density polyethylene for hydrocarbon fuel production. Biomass Bioenergy 2017, 61, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, Y.; Arenillas, A.; Angel Menendez, J. Microwave heating applied to pyrolysis. In Advances in Induction and Microwave Heating of Mineral and Organic Material; Grundas, S., Ed.; IntechOpen: Rijeka, Croatia, 2011; Volume 72, pp. 723–752. [Google Scholar]
- Wiggers, V.R.; Meier, H.F.; Wisniewski, A., Jr.; Chivanga Barros, A.A.; Wolf Maciel, M.R. Biofuels from continuous fast pyrolysis of soybean oil: A pilot plant study. Bioresour. Technol. 2009, 100, 6570–6577. [Google Scholar] [CrossRef] [PubMed]
- Lappi, H.; Alén, R. Pyrolysis of vegetable oil soaps-palm, olive, rapeseed and castor oils. J. Anal. Appl. Pyrol. 2011, 91, 154–158. [Google Scholar] [CrossRef]
- Ben Hassen-Trabelsi, A.; Azzfouri, K.; Baghdadi, W.; Naoui, S.; Ouerghi, A. Second generation biofuels production from waste cooking oil via pyrolysis process. Renew. Energy 2018, 126, 888–896. [Google Scholar] [CrossRef]
- Buzetzki, E.; Sidorova, K.; Cvengrosova, Z.; Kaszonyi, A.; Cvengros, J. The influence of zeolite catalysts on the products of rapeseed oil cracking. Fuel Process. Technol. 2011, 92, 1623–1631. [Google Scholar] [CrossRef]
- Rashid, U.; Soltani, A.; Yaw Choong, T.S.; Nehdi, I.A.; Ahmad, J.; Ngamcharussrivichai, C. Palm biochar-based sulphated zirconium (Zr-AC-HSO3) catalyst for methyl ester production from palm fatty acid distillate. Catalysts 2019, 9, 1029. [Google Scholar] [CrossRef]
- Suprianto, T.; Wijayanti, W.-W.; Wardan, I. Effect of activated carbon catalyst on the cracking of biomass molecules into light hydrocarbons in biomass pyrolysis. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1034, 012079. [Google Scholar] [CrossRef]
- Aswie, V.; Qadariyah, L.; Mahfud, M. Pyrolysis of microalgae Chlorella sp. using activated carbon as catalyst for biofuel production. Bull. Chem. React. Eng. Catal. 2021, 16, 205–213. [Google Scholar] [CrossRef]
- Rangel, M.d.C.; Mayer, F.M.; Carvalho, M.d.S.; Saboia, G.; de Andrade, A.M. Selecting catalysts for pyrolysis of lignocellulosic biomass. Biomass 2023, 3, 31–63. [Google Scholar] [CrossRef]
- Han, T.; Ding, S.; Yang, W.; Jönsson, P. Catalytic pyrolysis of lignin using low-cost materials with different acidities and textural properties as catalysts. Chem. Eng. J. 2019, 373, 846–856. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Z.; Chen, W.; Chen, Y.; Wang, X.; Chen, H. Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis. Energy 2020, 210, 118646. [Google Scholar] [CrossRef]
- Chen, W.; Li, K.; Xia, M.; Yang, H.; Chen, Y.; Chen, X.; Che, Q.; Chen, H. Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst. Energy 2018, 157, 472–482. [Google Scholar] [CrossRef]
- Nejati, B.; Adami, P.; Bozorg, A.; Tavasoli, A.; Mirzahosseini, A.H. Catalytic pyrolysis and bio-products upgrading derived from Chlorella vulgaris over its biochar and activated biochar-supported Fe catalysts. J. Anal. Appl. Pyrolysis 2020, 152, 104799. [Google Scholar] [CrossRef]
- Wiggers, V.R.; Beims, R.F.; Ender, L.; Simionatto, E.L.; Meier, H.F. Renewable Hydrocarbons from Triglyceride’s Thermal Cracking; Intech Open Ltd.: London, UK, 2017; pp. 407–424. [Google Scholar]
- Lam, S.S.; Russel, A.D.; Lee, C.L.; Chase, H.A. Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil. Fuel 2012, 92, 327–339. [Google Scholar] [CrossRef]
- Heil, V.F. GREASOLINE-New Technology for Conversion of Waste Fats to High-Quality Fuels; Project No. 018109 Publishable Final Activity Report (Report R10b). 2008, pp. 2–29. Available online: https://cordis.europa.eu/project/id/18109/reporting (accessed on 12 January 2023).
- Lam, S.S.; Wan Mahari, W.A.; Cheng, C.K.; Omar, R.; Chong, C.T.; Chase, H.A. Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon. Energy 2016, 115, 791–799. [Google Scholar] [CrossRef]
- Lam, S.S.; Wan Mahari, W.A.; Jusoh, A.; Chong, C.T.; Lee, C.L.; Chase, H.A. Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with desirable properties. J. Clean. Prod. 2017, 147, 263–272. [Google Scholar] [CrossRef]
- Echaroj, S.; Asavatesanupap, C.; Chavadej, S.; Santikunaporn, M. Kinetic study on microwave-assisted oligomerization of 1-decene over a HY catalyst. Catalysts 2021, 11, 1105. [Google Scholar] [CrossRef]
- Aslam, M.; Kothiyal, N.C.; Sarma, A.K. True boiling point distillation and product quality assessment of biocrude obtained from Mesua ferrea L. seed oil via hydroprocessing. Clean Technol. Environ. Policy 2015, 17, 175–185. [Google Scholar] [CrossRef]
- Sampath, A. Chemical Characterization of Camelina Seed Oil. Master’s Thesis, Graduate School Nue Brnswick Rutgers, The State University of New Jersey, New Brunswick, NJ, USA, May 2009. [Google Scholar]
- Wang, S.; Yuan, C.; Esakkimuthu, S.; Xu, L.; Cao, B.; Abomohra, A.E.F.; Qian, L.; Liu, L.; Hu, Y. Catalytic pyrolysis of waste clay oil to produce high quality biofuel. J. Anal. Appl. Pyrol. 2019, 141, 104633. [Google Scholar] [CrossRef]
- Xie, Q.; Addy, M.; Liu, S.; Zhang, B.; Cheng, Y.; Wan, Y.; Li, Y.; Lin, X.; Chen, P.; Ruan, R. Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production. Fuel 2015, 160, 577–582. [Google Scholar] [CrossRef]
- Kraiem, T.; Hassen, A.B.; Belayouni, H.; Jeguirim, M. Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environ. Sci. Pollut. Res. 2017, 24, 9951–9961. [Google Scholar] [CrossRef]
- Qasim, M.; Ansari, T.M.; Hussain, M. Combustion, Performance, and emission evaluation of diesel engine with biodiesel like fuel blends derived from a mixture of Pakistani waste canola and waste transformer oils. Energies 2017, 10, 1023. [Google Scholar] [CrossRef]
- Kalargaris, I.; Tian, G.; Gu, S. The utilization of oils produced from plastic waste at different pyrolysis temperature in a DI diesel engine. Energy 2017, 131, 179–185. [Google Scholar] [CrossRef]
- Wan Mahari, W.A.; Chong, C.T.; Cheng, C.K.; Lee, C.L.; Hendrata, K.; Yuh Yek, P.N.; Ma, N.L.; Lam, S.S. Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy 2018, 162, 309–317. [Google Scholar] [CrossRef]
- Srivastava, A.; Prasad, R. Triglycerides-based diesel fuel. Renew. Sustain. Energy Rev. 2000, 4, 111–133. [Google Scholar] [CrossRef]
- Li, L.; Yan, B.; Li, H.; Yu, S.; Ge, X. Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst. Renew. Energy 2020, 146, 643–650. [Google Scholar] [CrossRef]
- Santikunaporn, M.; Techopittayakul, T.; Echaroj, S.; Chavadej, S.; Chen, Y.H.; Yuan, M.H.; Asavatesanupap, C. Optimization of biodiesel production from waste cooking oil in a continuous mesoscale oscillatory baffled reactor. Eng. J. 2020, 24, 19–28. [Google Scholar] [CrossRef]
- Yue, L.; Li, G.; He, G.; Guo, Y.; Xu, L.; Fang, W. Impacts of hydrogen to carbon ratio (H/C) on fundamental properties and supercritical cracking performance of hydrocarbon fuels. Chem. Eng. J. 2015, 283, 1216–1223. [Google Scholar] [CrossRef]
- Wang, W.C.; Thapaliya, N.; Campos, A.; Stikeleather, L.F.; Roberts, W.L. Hydrocarbon fuels from vegetable oils via hydrolysis and thermos-catalytic decarboxylation. Fuel 2012, 95, 622–629. [Google Scholar] [CrossRef]
- Tutunea, D.; Dumitru, I.; Racila, L.; Otat, O.; Matei, L.; Geonea, I. Characterization of sunflower oil biodiesel as alternative for diesel fuel. In Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018), Technical University of Cluj-Napoca, Cluj-Napoca, Romania, 17–19 October 2018; pp. 172–180. [Google Scholar]
- Ilkilic, C.; Oner, C. Biodiesel fuel obtained from sunflower oil as an alternative fuel for diesel engines. Online J. Sci. Technol. 2017, 7, 12–18. [Google Scholar]
- Hansdah, D.; Murugan, S.; Das, L.M. Experimental studies on a DI diesel engine fueled with bioethanol-diesel emulsions. Alex. Eng. J. 2013, 52, 267–276. [Google Scholar] [CrossRef]
- Mamat, R.; Hainin, M.R.; Hassan, N.A.; Rahman, N.A.A.; Warid, M.N.M.; Idhamb, M.K. A review of performance asphalt mixtures using bio-binder as alternative binder. J. Teknol. 2015, 77, 17–20. [Google Scholar] [CrossRef]
- Wan Mahari, W.A.; Zainuddin, N.F.; Chong, C.T.; Lee, C.L.; Lam, W.H.; Poh, S.C.; Lam, S.S. Conversion of waste shipping oil into diesel-like oil via microwave-assisted pyrolysis. J. Environ. Chem. Eng. 2017, 5, 5836–5842. [Google Scholar] [CrossRef]
Elemental Composition | (wt.%) |
---|---|
- C | 78.69 |
- H | 12.22 |
- N | 0.89 |
- S | 0.00 |
- a O | 8.20 |
Fatty Acid Composition | (wt.%) |
- Palmitic Acid (C16H32O2) | 56.00 |
- Oleic Acid (C18H34O2) | 33.72 |
- Linoleic Acid (C18H32O2) | 7.53 |
- Others | 2.75 |
b Distribution of Compounds | (wt.%) |
- <180 °C | 0.13 |
- 180–250 °C | 0.80 |
- 250–350 °C | 5.66 |
- >350 °C | 93.19 |
Calorific Value (MJ/kg) | 39.10 |
Acid Value (mg KOH/g) | 5.40 |
Wave Number (cm−1) | Functional Group |
---|---|
2921.91–2852.83 | C–H stretching (alkanes) Carboxylic acid O–H stretching |
1798.93 | C=O stretching (carbonyl group such as aldehydes, ketones, esters, anhydrides, carboxylic acids) |
1464.30–1412.34 | C–H bending (alkanes) |
1283.64–1112.96 | C–O stretching (ester, ethers, alcohols, carboxylic acids) |
935.95 | C–H bending (alkene) |
721.89 | C–H bending (aromatics) |
Properties | |
---|---|
Ultimate analysis | Amount (wt.%) |
- C | 72.33 |
- H | 1.97 |
- N | 1.04 |
- * O | 24.66 |
BET surface area | 720.0 m2/g |
Total pore volume | 0.41 cm3/g |
Average pore size | 0.95 nm |
Compounds | wt.% |
---|---|
Without oxygen atoms | |
- Alkanes | 17.48 |
- Alkenes | 6.53 |
- Alkynes | 3.02 |
With oxygen atoms | |
- Carboxylic acids | 52.33 |
- Alcohols | 11.12 |
- Esters | 2.30 |
- Ketones | 3.67 |
- Aldehydes | 2.86 |
- Others | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banchapattanasakda, W.; Asavatesanupap, C.; Santikunaporn, M. Conversion of Waste Cooking Oil into Bio-Fuel via Pyrolysis Using Activated Carbon as a Catalyst. Molecules 2023, 28, 3590. https://doi.org/10.3390/molecules28083590
Banchapattanasakda W, Asavatesanupap C, Santikunaporn M. Conversion of Waste Cooking Oil into Bio-Fuel via Pyrolysis Using Activated Carbon as a Catalyst. Molecules. 2023; 28(8):3590. https://doi.org/10.3390/molecules28083590
Chicago/Turabian StyleBanchapattanasakda, Warintorn, Channarong Asavatesanupap, and Malee Santikunaporn. 2023. "Conversion of Waste Cooking Oil into Bio-Fuel via Pyrolysis Using Activated Carbon as a Catalyst" Molecules 28, no. 8: 3590. https://doi.org/10.3390/molecules28083590
APA StyleBanchapattanasakda, W., Asavatesanupap, C., & Santikunaporn, M. (2023). Conversion of Waste Cooking Oil into Bio-Fuel via Pyrolysis Using Activated Carbon as a Catalyst. Molecules, 28(8), 3590. https://doi.org/10.3390/molecules28083590