Synthesis and Peroxide Activation Mechanism of Bimetallic MOF for Water Contaminant Degradation: A Review
Abstract
:1. Introduction
2. Preparation of Bimetallic MOFs
2.1. One-Step Synthesis
2.1.1. Hydrothermal/Solvothermal Method
2.1.2. Microwave-Assisted Method
2.1.3. Nucleation Dynamics Control Method
2.2. Stepwise Synthesis Method
2.2.1. Ion Exchange Method
2.2.2. Seed-Induced Growth Method
3. Fenton-like Reaction of Bimetallic MOFs
3.1. Bimetallic MOF for H2O2 Activation
3.2. Bimetallic MOF for PMS Activation
3.3. Bimetallic MOF for PDS Activation
4. Influence of Reaction Parameters on the Degradation Process
4.1. Effect of Bimetallic Stoichiometric Ratio
4.2. Effect of pH Value of Reaction Solution
4.3. Influence of Inorganic Anions
5. Regeneration and Stability of Bimetallic MOFs
6. Conclusions
- The problem of metal ion leaching in bimetallic MOFs needs to be addressed to prevent a decrease in catalyst activity. Thus, it is essential to explore the stable material structure of bimetallic MOFs.
- The recycling of bimetallic MOFs remains a major challenge. While most bimetallic MOFs achieve a high pollutant removal rate, their small particle size makes it difficult to recycle them, and the structure of the material itself leads to easy loss and other issues. Therefore, future research must focus on achieving high activation performance and easy and efficient recycling of bimetallic MOFs.
- Presently, the range of available bimetallic MOFs is restricted, and there are numerous unexplored combinations of metal ions remaining to be utilized in their synthesis. The development of novel materials is imperative to expand this repertoire.
- The activation mechanism of peroxide by bimetallic MOFs is intricate, and the precise control of its pathway presents a notable challenge. Consequently, further investigations into the underlying reaction mechanisms are necessary for future progress in this area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Emerging contaminants of high concern and their enzyme-assisted biodegradation—A review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef]
- Yan, C.C.; Jin, J.Q.; Wang, J.N.; Zhang, F.F.; Tian, Y.J.; Liu, C.X.; Zhang, F.Q.; Cao, L.C.; Zhou, Y.M.; Han, Q.X. Metal-organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord. Chem. Rev. 2022, 468, 214595. [Google Scholar] [CrossRef]
- Wang, L.Y.; Luo, D.; Yang, J.P.; Wang, C.Q. Metal-organic frameworks-derived catalysts for contaminant degradation in persulfate-based advanced oxidation processes. J. Clean. Prod. 2022, 375, 134118. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef]
- Xiong, Z.K.; Jiang, Y.N.; Wu, Z.L.; Yao, G.; Lai, B. Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review. Chem. Eng. J. 2021, 421, 127863. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Baaloudj, O.; Badawi, A.K.; Kenfoud, H.; Benrighi, Y.; Hassan, R.; Nasrallah, N.; Assadi, A.A. Techno-economic studies for a pilot-scale Bi12TiO20 based photocatalytic system for pharmaceutical wastewater treatment: From laboratory studies to commercial-scale applications. J. Water Process Eng. 2022, 48, 102847. [Google Scholar] [CrossRef]
- Shayegan, Z.; Haghighat, F.; Lee, C.-S. Photocatalytic oxidation of volatile organic compounds for indoor environment applications: Three different scaled setups. Chem. Eng. J. 2019, 357, 533–546. [Google Scholar] [CrossRef]
- Pan, S.; Jiang, W.; Tian, L.; Li, X.; Wang, J.; Wang, Y.; Li, Z.; Guo, H. Simultaneous degradation of antibiotic and removal of phosphate in water by a O3/CaO2 advanced oxidation process. Sep. Purif. Technol. 2023, 312, 123452. [Google Scholar] [CrossRef]
- Guo, H.; Su, Y.; Yang, X.; Wang, Y.; Li, Z.; Wu, Y.; Ren, J. Dielectric Barrier Discharge Plasma Coupled with Catalysis for Organic Wastewater Treatment: A Review. Catalysts 2023, 13, 10. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Ren, X.; Wang, P.; Wang, F.-X.; Chu, H.-Y.; Gao, S.; Wang, C.-C. Peroxymonosulfate activation for effective atrazine degradation over a 3D cobalt-MOF: Performance and mechanism. J. Environ. Chem. Eng. 2023, 11, 109116. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.N.; Xu, X.; Gao, B.Y.; Wang, S.B.; Duan, X.G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.L.; Xiang, S.C.; Qian, G.D. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules. Acc. Chem. Res. 2010, 43, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Ledwaba, M.; Musyoka, N.M.; Langan, H.W.; Mathe, M.; Liao, S.; Pang, W. Structural defects in metal-organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coord. Chem. Rev. 2017, 349, 169–197. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.; Ping, J.; Chen, B.; Cao, X.; Huang, Y.; Tan, C.; Ma, Q.; Wu, S.; Yu, Y.; et al. Bioinspired Design of Ultrathin 2D Bimetallic Metal-Organic-Framework Nanosheets Used as Biomimetic Enzymes. Adv. Mater. 2016, 28, 4149–4155. [Google Scholar] [CrossRef]
- Xu, Y.; Xia, P.; Wang, C.; Cai, J.; Li, H.; Ye, Z.; Zhang, H. A mini-review on MOFs activated peroxide processes and the enhancement with the external energy. Chem. Eng. J. 2023, 462, 142021. [Google Scholar] [CrossRef]
- Cong, J.; Lei, F.; Zhao, T.; Liu, H.; Wang, J.; Lu, M.; Li, Y.; Xu, H.; Gao, J. Two Co-zeolite imidazolate frameworks with different topologies for degradation of organic dyes via peroxymonosulfate activation. J. Solid State Chem. 2017, 256, 10–13. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, C.; Lin, W.B. Metal-Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catalysis 2012, 2, 2630–2640. [Google Scholar] [CrossRef]
- Cheng, M.; Lai, C.; Liu, Y.; Zeng, G.M.; Huang, D.L.; Zhang, C.; Qin, L.; Hu, L.; Zhou, C.Y.; Xiong, W.P. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord. Chem. Rev. 2018, 368, 80–92. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, M.; Wang, H.; Zeng, G.; Huang, D.; Cheng, M.; Liu, Y.; Xue, W.; Wang, Z. The application of different typological and structural MOFs-based materials for the dyes adsorption. Coord. Chem. Rev. 2019, 380, 471–483. [Google Scholar] [CrossRef]
- Ye, G.; Wang, H.L.; Zeng, X.Y.; Wang, L.; Wang, J. Defect-rich bimetallic UiO-66(Hf-Zr): Solvent-free rapid synthesis and robust ambient-temperature oxidative desulfurization performance. Appl. Catal. B 2021, 299, 120659. [Google Scholar] [CrossRef]
- Wang, X.M.; Wang, X.X.; Zhao, L.; Zhang, H.Y.; Liu, M.; Zhang, C.; Liu, S.X. Self-reconstruction of cationic activated Ni-MOFs enhanced the intrinsic activity of electrocatalytic water oxidation. Inorg. Chem. Front. 2022, 9, 179–185. [Google Scholar] [CrossRef]
- Liu, Q.; Cong, H.; Deng, H. Deciphering the Spatial Arrangement of Metals and Correlation to Reactivity in Multivariate Metal-Organic Frameworks. J. Am. Chem. Soc 2016, 138, 13822–13825. [Google Scholar] [CrossRef]
- Li, S.S.; Gao, Y.Q.; Li, N.; Ge, L.; Bu, X.H.; Feng, P.Y. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927. [Google Scholar] [CrossRef]
- Hou, X.B.A.; Han, Z.K.; Xu, X.J.; Sarker, D.; Zhou, J.; Wu, M.A.; Liu, Z.C.; Huang, M.H.; Jiang, H.Q. Controllable amorphization engineering on bimetallic metal-organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129330. [Google Scholar] [CrossRef]
- Duan, M.; Jiang, L.; Zeng, G.; Wang, D.; Tang, W.; Liang, J.; Wang, H.; He, D.; Liu, Z.; Tang, L. Bimetallic nanoparticles/metal-organic frameworks: Synthesis, applications and challenges. Appl. Mater. Today 2020, 19, 100564. [Google Scholar] [CrossRef]
- Hu, Z.G.; Kundu, T.; Wang, Y.X.; Sun, Y.; Zeng, K.Y.; Zhao, D. Modulated Hydrothermal Synthesis of Highly Stable MOF-808(Hf) for Methane Storage. ACS Sustain. Chem. Eng. 2020, 8, 17042–17053. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev. 2008, 37, 1546–1557. [Google Scholar] [CrossRef]
- Chen, L.Y.; Wang, H.F.; Li, C.X.; Xu, Q. Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, Y.; Ge, S.; Ding, X.; Cui, Z.; Shao, Q. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal-organic frameworks for enhanced photochemical properties. Adv. Compos. Mater. 2021, 4, 150–161. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Ahmed, I.; Lee, H.J.; Jhung, S.H. Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coord. Chem. Rev. 2022, 450, 214237. [Google Scholar] [CrossRef]
- Tang, J.; Salunkhe, R.R.; Zhang, H.B.; Malgras, V.; Ahamad, T.; Alshehri, S.M.; Kobayashi, N.; Tominaka, S.; Ide, Y.; Kim, J.H.; et al. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons. Sci. Rep. 2016, 6, 30295. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.F.; Jiang, L.J.; Shu, J.; Yue, C.B.; Zhu, R.S.; Qiao, H.B. Recent development and application of Li4Ti5O12 as anode material of lithiumion battery. J. Phys. Chem. Solids 2010, 71, 1236–1242. [Google Scholar] [CrossRef]
- Wang, X.-L.; Dong, L.-Z.; Qiao, M.; Tang, Y.-J.; Liu, J.; Li, Y.; Li, S.-L.; Su, J.-X.; Lan, Y.-Q. Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System. Angew. Chem. Int. Ed. 2018, 57, 9660–9664. [Google Scholar] [CrossRef] [PubMed]
- Nouar, F.; Breeze, M.I.; Campo, B.C.; Vimont, A.; Clet, G.; Daturi, M.; Devic, T.; Walton, R.I.; Serre, C. Tuning the properties of the UiO-66 metal organic framework by Ce substitution. Chem. Commun. 2015, 51, 14458–14461. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Han, Y.; Li, C.; Zhu, L.; Shi, L.; Tang, W.; Wang, J.; Yue, T.; Li, Z. Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal. Chem. Eng. J. 2019, 375, 122076. [Google Scholar] [CrossRef]
- Wang, D.; Suo, M.; Lai, S.; Deng, L.; Liu, J.; Yang, J.; Chen, S.; Wu, M.-F.; Zou, J.-P. Photoinduced acceleration of Fe3+/Fe2+ cycle in heterogeneous FeNi-MOFs to boost peroxodisulfate activation for organic pollutant degradation. Appl. Catal. B. 2023, 321, 122054. [Google Scholar] [CrossRef]
- Li, M.; Yuan, J.; Wang, G.; Yang, L.; Shao, J.; Li, H.; Lu, J. One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A. Sep. Purif. Technol. 2022, 298, 121658. [Google Scholar] [CrossRef]
- Han, C.; Xie, J.; Min, X. Efficient adsorption H3AsO4 and Cr(VI) from strongly acidic solutions by La-Zr bimetallic MOFs: Crystallinity role and mechanism. J. Environ. Chem. Eng. 2022, 10, 108982. [Google Scholar] [CrossRef]
- Chen, C.; Kosari, M.; Jing, M.; He, C. Microwave-assisted synthesis of bimetallic NiCo-MOF-74 with enhanced open metal site for efficient CO2 capture. Environ. Funct. Mater. 2023, 1, 253–266. [Google Scholar]
- Yao, B.; Lua, S.-K.; Lim, H.-S.; Zhang, Q.; Cui, X.; White, T.J.; Ting, V.P.; Dong, Z. Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis. Microporous Mesoporous Mater. 2021, 314, 110777. [Google Scholar] [CrossRef]
- Ni, Z.; Masel, R.I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.W.; Segakweng, T.; Langmi, H.W.; Musyoka, N.M.; North, B.C.; Mathe, M.; Bessarabov, D. Microwave-assisted modulated synthesis of zirconium-based metal-organic framework (Zr-MOF) for hydrogen storage applications. Int. J. Mater. Res. 2014, 105, 516–519. [Google Scholar] [CrossRef]
- Wang, F.; He, S.F.; Wang, H.L.; Zhang, S.W.; Wu, C.H.; Huang, H.X.; Pang, Y.Q.; Tsung, C.K.; Li, T. Uncovering two kinetic factors in the controlled growth of topologically distinct core-shell metal-organic frameworks. Chem. Sci. 2019, 10, 7755–7761. [Google Scholar] [CrossRef]
- Yang, X.Y.; Yuan, S.; Zou, L.F.; Drake, H.; Zhang, Y.M.; Qin, J.S.; Alsalme, A.; Zhou, H.C. One-Step Synthesis of Hybrid Core-Shell Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2018, 57, 3927–3932. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.Y.; Li, J.; Yuan, Y.W.; Yang, J.; Xu, W.; An, P.F.; Xi, S.B.; Guo, J.P.; Liu, B.; et al. Two-Dimensional-on-Three-Dimensional Metal-Organic Frameworks for Photocatalytic H-2 Production. Angew. Chem. Int. Ed. 2022, 61, e202211031. [Google Scholar]
- Tsuruoka, T.; Hata, M.; Hirao, S.; Ohhashi, T.; Takashima, Y.; Akamatsu, K. Formation of Metal-Organic Frameworks on a Metal Ion-Doped Polymer Substrate: In-Depth Time-Course Analysis Using Scanning Electron Microscopy. Langmuir 2019, 35, 10390–10396. [Google Scholar] [CrossRef]
- Guo, W.H.; Xia, W.; Cai, K.T.; Wu, Y.X.; Qiu, B.; Liang, Z.B.; Qu, C.; Zou, R.Q. Kinetic-Controlled Formation of Bimetallic Metal-Organic Framework Hybrid Structures. Small 2017, 13, 1702049. [Google Scholar] [CrossRef]
- Yang, K.; Yan, Y.; Chen, W.; Zeng, D.; Ma, C.; Han, Y.; Zhang, W.; Kang, H.; Wen, Y.; Yang, Y. Yolk-shell bimetallic metal-organic frameworks derived multilayer core-shells NiCo2O4/NiO structure spheres for high-performance supercapacitor. J. Electroanal. Chem. 2019, 851, 113445. [Google Scholar] [CrossRef]
- Prasad, T.K.; Hong, D.H.; Suh, M.P. High Gas Sorption and Metal-Ion Exchange of Microporous Metal-Organic Frameworks with Incorporated Imide Groups. Chem. Eur. J. 2010, 16, 14043–14050. [Google Scholar] [CrossRef] [PubMed]
- Brozek, C.K.; Dinca, M. Cation exchange at the secondary building units of metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5456–5467. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.R.; Wu, Z.P.; Luan, D.Y.; Zang, S.Q.; Lou, X.W. Synergetic Cobalt-Copper-Based Bimetal-Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angew. Chem. Int. Ed. 2021, 60, 26397–26402. [Google Scholar] [CrossRef]
- Shekhah, O.; Hirai, K.; Wang, H.; Uehara, H.; Kondo, M.; Diring, S.; Zacher, D.; Fischer, R.A.; Sakata, O.; Kitagawa, S.; et al. MOF-on-MOF heteroepitaxy: Perfectly oriented Zn-2(ndc)(2)(dabco) (n) grown on Cu-2(ndc)(2)(dabco) (n) thin films. Dalton Trans. 2011, 40, 4954–4958. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Cote, A.P.; Choi, J.Y.; Huang, R.D.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Li, S.; Ma, J.; Cao, W.; Zheng, J. Ultrathin 2D metal- organic framework (nanosheets and nanofilms)- based xD-2D hybrid nanostructures as biomimetic enzymes and supercapacitors. J. Mater. Chem. A 2019, 7, 9086–9098. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, Y.-n.; Li, L.; Chen, W.; Li, F.; Kitagawa, S. Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures. Angew. Chem. Int. Ed. 2017, 56, 15658–15662. [Google Scholar] [CrossRef]
- Yao, M.-S.; Xiu, J.-W.; Huang, Q.-Q.; Li, W.-H.; Wu, W.-W.; Wu, A.-Q.; Cao, L.-A.; Deng, W.-H.; Wang, G.-E.; Xu, G. Van der Waals Heterostructured MOF-on-MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing. Angew. Chem. Int. Ed. 2019, 58, 14915–14919. [Google Scholar] [CrossRef]
- Hu, M.-L.; Masoomi, M.Y.; Morsali, A. Template strategies with MOFs. Coord. Chem. Rev. 2019, 387, 415–435. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, X.; Jiang, Y.; Zhao, L.; Wang, T.; Liu, F.; Yan, X.; Liang, X.; Liu, F.; Sun, P.; et al. Bimetallic MOFs-derived core-shell structured mesoporous Sn-doped NiO for conductometric ppb-level xylene gas sensors. Sens. Actuators B Chem. 2022, 372, 132620. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, F.; Lu, H.; Hong, X.; Jiang, H.; Wu, Y.; Li, Y. Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. Angew. Chem. Int. Ed. 2015, 54, 10889–10893. [Google Scholar] [CrossRef]
- Wei, J.; Hu, Y.; Liang, Y.; Kong, B.; Zheng, Z.; Zhang, J.; Jiang, S.P.; Zhao, Y.; Wang, H. Graphene oxide/core-shell structured metal-organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 10182–10189. [Google Scholar] [CrossRef]
- Tang, J.; Salunkhe, R.R.; Liu, J.; Torad, N.L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal Conversion of Core-Shell Metal-Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580. [Google Scholar] [CrossRef]
- Wang, Y.; Bi, F.; Wang, Y.; Jia, M.; Tao, X.; Jin, Y.; Zhang, X. MOF-derived CeO2 supported Ag catalysts for toluene oxidation: The effect of synthesis method. Mol. Catal. 2021, 515, 111922. [Google Scholar] [CrossRef]
- Kumari, A.; Kaushal, S.; Singh, P.P. Bimetallic metal organic frameworks heterogeneous catalysts: Design, construction, and applications. Mater. Today Energy 2021, 20, 100667. [Google Scholar] [CrossRef]
- Kifle, G.A.; Huang, Y.; Xiang, M.; Wang, W.; Wang, C.; Li, C.; Li, H. Heterogeneous activation of peroxygens by iron-based bimetallic nanostructures for the efficient remediation of contaminated water. A review. Chem. Eng. J. 2022, 442, 136187. [Google Scholar] [CrossRef]
- Yuan, L.; Zou, Y.; Zhao, L.; Zhang, C.; Wang, J.; Liu, C.; Wei, G.; Yu, C. Unveiling the lattice distortion and electron-donating effects in methoxy-functionalized MOF photocatalysts for H2O2 production. Appl. Catal. B Environ. 2022, 318, 121859. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Kim, S.H.; Lee, J.-H.; Jeong, K.; Kim, J. Metal-organic framework-derived ZrO2 on N/S-doped porous carbons for mechanistic and kinetic inspection of catalytic H2O2 homolysis. Carbon 2023, 203, 630–649. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, M.; Liu, L.; Yang, X.; Xu, X. Electrochemical investigation of a new Cu-MOF and its electrocatalytic activity towards H2O2 oxidation in alkaline solution. Electrochem. Commun. 2013, 33, 131–134. [Google Scholar] [CrossRef]
- Liang, H.; Liu, R.; Hu, C.; An, X.; Zhang, X.; Liu, H.; Qu, J. Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation. J. Hazard. Mater. 2021, 406, 124692. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Liu, R.; An, X.; Hu, C.; Zhang, X.; Liu, H. Bimetal-organic frameworks with coordinatively unsaturated metal sites for highly efficient Fenton-like catalysis. Chem. Eng. J. 2021, 414, 128669. [Google Scholar] [CrossRef]
- Shi, S.; Han, X.; Liu, J.; Lan, X.; Feng, J.; Li, Y.; Zhang, W.; Wang, J. Photothermal-boosted effect of binary Cu-Fe bimetallic magnetic MOF heterojunction for high-performance photo-Fenton degradation of organic pollutants. Sci. Total Environ. 2021, 795, 148883. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Yang, J.; Zhu, L.; Sun, T. Bromine functionalized Fe/Cu bimetallic MOFs for accelerating Fe(III)/Fe(II) cycle and efficient degradation of phenol in Fenton-like system. Colloids Surf. Physicochem. Eng. Asp. 2023, 658, 130701. [Google Scholar] [CrossRef]
- Lu, K.; Min, Z.; Qin, J.; Shi, P.; Wu, J.; Fan, J.; Min, Y.; Xu, Q. Preparation of nitrogen self-doped hierarchical porous carbon with rapid-freezing support for cooperative pollutant adsorption and catalytic oxidation of persulfate. Sci. Total Environ. 2021, 752, 142282. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lu, J.; Jiang, Y.; Yang, S.; Yang, Y.; Wang, Z. FeCo bimetallic metal organic framework nanosheets as peroxymonosulfate activator for selective oxidation of organic pollutants. Chem. Eng. J. 2022, 443, 136483. [Google Scholar] [CrossRef]
- Gu, A.; Wang, P.; Chen, K.; Miensah, E.D.; Gong, C.; Jiao, Y.; Mao, P.; Chen, K.; Jiang, J.; Liu, Y.; et al. Core-shell bimetallic Fe-Co MOFs to activated peroxymonosulfate for efficient degradation of 2-chlorophenol. Sep. Purif. Technol. 2022, 298, 121461. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Liu, D.; Liu, S. Co isomorphic substitution for Cu-based metal organic framework based on electronic structure modulation boosts Fenton-like process. Sep. Purif. Technol. 2023, 306, 122526. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, W.; He, K.; Wang, L.; Wang, Q.; Liu, J. Half-salen Fe(III) covalently post-modified MIL-125(Ti)-NH2 MOF for effective photocatalytic peroxymonosulfate activation. Appl. Surf. Sci. 2022, 591, 153115. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, X.; Fu, L.; Peng, X.; Pan, C.; Mao, Q.; Wang, C.; Yan, J. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective. Sci. Total Environ. 2021, 765, 142794. [Google Scholar] [CrossRef]
- Li, H.; Yao, Y.; Chen, J.; Wang, C.; Huang, J.; Du, J.; Xu, S.; Tang, J.; Zhao, H.; Huang, M. Heterogeneous activation of peroxymonosulfate by bimetallic MOFs for efficient degradation of phenanthrene: Synthesis, performance, kinetics, and mechanisms. Sep. Purif. Technol. 2021, 259, 118217. [Google Scholar] [CrossRef]
- Sun, Q.; Huang, S.; Li, Z.; Su, D.; Sun, J. Synergistic activation of persulfate by heat and cobalt-doped-bimetallic-MOFs for effective methylene blue degradation: Synthesis, kinetics, DFT calculation, and mechanisms. J. Environ. Chem. Eng. 2023, 11, 109065. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, J.; Xing, L.; Li, J.; Xu, M.; Pan, G.; Li, J. Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation. Sep. Purif. Technol. 2022, 282, 120124. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Moussavi, G.; Giannakis, S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chem. Eng. J. 2021, 411, 127957. [Google Scholar] [CrossRef]
- Behera, P.; Subudhi, S.; Tripathy, S.P.; Parida, K. MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coordin. Chem. Rev. 2022, 456, 214392. [Google Scholar] [CrossRef]
- Gaikwad, R.; Gaikwad, S.; Han, S. Bimetallic UTSA-16 (Zn, X.; X = Mg, Mn, Cu) metal organic framework developed by a microwave method with improved CO2 capture performances. J. Ind. Eng. Chem. 2022, 111, 346–355. [Google Scholar] [CrossRef]
- Yang, J.-M.; Liu, Q.; Sun, W.-Y. Shape and size control and gas adsorption of Ni(II)-doped MOF-5 nano/microcrystals. Microporous Mesoporous Mater. 2014, 190, 26–31. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Mei, L.; Ma, C.; Xu, F.; Xiao, J.; Xia, Q.B.; Li, Z. A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N-2 selectivity. Chem. Eng. Sci. 2016, 147, 109–117. [Google Scholar] [CrossRef]
- Chu, C.L.; Chen, J.R.; Lee, T.Y. Enhancement of hydrogen adsorption by alkali-metal cation doping of metal-organic framework-5. Int. J. Hydrog. 2012, 37, 6721–6726. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.X.; Song, F.J.; Zhong, Q. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity. J. Energy Chem. 2014, 23, 468–474. [Google Scholar] [CrossRef]
- Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation. J. Am. Chem. Soc. 2011, 133, 15506–15513. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Yang, D.; Guan, Y.; Yang, Y.; Zhu, Y.; Zhang, Y.; Wu, J.; Sheng, L.; Liu, L.; Yao, T. Maximally exploiting active sites on Yolk@shell nanoreactor: Nearly 100% PMS activation efficiency and outstanding performance over full pH range in Fenton-like reaction. Appl. Catal. B 2022, 316, 121594. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, H.; Wang, P.; Zhang, M.; Yang, P. Multiwall carbon nanotube decorated hemin/Mn-MOF towards BPA degradation through PMS activation. J. Environ. Chem. Eng. 2022, 10, 108426. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, Y. Co3O4/C-PC composite derived from pomelo peel-loaded ZIF-67 for activating peroxymonosulfate (PMS) to degrade ciprofloxacin. J. Water Process Eng. 2022, 49, 103043. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, W.; Guo, Q.; Wang, X.; Zhang, L.; Gao, X.; Luo, Y. Highly efficient degradation of sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS) with CoFe2O4 in a wide pH range. Sep. Purif. Technol. 2021, 276, 119403. [Google Scholar] [CrossRef]
- Zhang, J.; Song, H.; Liu, Y.; Wang, L.; Li, D.; Liu, C.; Gong, M.; Zhang, Z.; Yang, T.; Ma, J. Remarkable enhancement of a photochemical Fenton-like system (UV-A/Fe(II)/PMS) at near-neutral pH and low Fe(II)/peroxymonosulfate ratio by three alpha hydroxy acids: Mechanisms and influencing factors. Sep. Purif. Technol. 2019, 224, 142–151. [Google Scholar] [CrossRef]
- Mi, X.; Ma, R.; Pu, X.; Fu, X.; Geng, M.; Qian, J. FeNi-layered double hydroxide (LDH)@biochar composite for, activation of peroxymonosulfate (PMS) towards enhanced degradation of doxycycline (DOX): Characterizations of the catalysts, catalytic performances,degradation pathways and mechanisms. J. Clean. Prod. 2022, 378, 134514. [Google Scholar] [CrossRef]
- Roy, D.; Neogi, S.; De, S. Visible light assisted activation of peroxymonosulfate by bimetallic MOF based heterojunction MIL-53(Fe/Co)/CeO2 for atrazine degradation: Pivotal roles of dual redox cycle for reactive species generation. Chem. Eng. J. 2022, 430, 133069. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, H.; Zheng, H.; Hu, H.; Tang, Y.; Liu, X.; Wang, S. Nonprecious bimetallic Fe, Mo-embedded N-enriched porous biochar for efficient oxidation of aqueous organic contaminants. J. Hazard. Mater. 2022, 422, 126776. [Google Scholar] [CrossRef]
- Li, H.X.; Yang, Z.X.; Lu, S.; Su, L.Y.; Wang, C.H.; Huang, J.G.; Zhou, J.; Tang, J.H.; Huang, M.Z. Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism. Chemosphere 2021, 273, 129643. [Google Scholar] [CrossRef]
- Jawad, A.; Lang, J.; Liao, Z.; Khan, A.; Ifthikar, J.; Lv, Z.; Long, S.; Chen, Z.; Chen, Z. Activation of persulfate by CuOx@Co-LDH: A novel heterogeneous system for contaminant degradation with broad pH window and controlled leaching. Chem. Eng. J. 2018, 335, 548–559. [Google Scholar] [CrossRef]
- Feng, Y.; Shih, K.M. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms. Environ. Sci. Technol. 2016, 50, 3119–3127. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.M.; Niu, H.Y.; Niu, C.G.; Guo, H.; Liang, S.; Yang, Y.Y. Metal-organic framework-derived CuCo/carbon as an efficient magnetic heterogeneous catalyst for persulfate activation and ciprofloxacin degradation. J. Hazard. Mater. 2022, 424, 127196. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Y.; Liu, Z.H.; Yang, Y.L.; Zhu, L.D.; Deng, J.; Lu, S.J.; Li, X.Y.; Dietrich, A.M. Aqueous degradation of artificial sweeteners saccharin and neotame by metal organic framework material. Sci. Total Environ. 2021, 761, 143181. [Google Scholar] [CrossRef]
- Xiao, K.; Liang, F.; Liang, J.; Xu, W.; Liu, Z.; Chen, B.; Jiang, X.; Wu, X.; Xu, J.; Beiyuan, J.; et al. Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: Applications, mechanism insight and toxicity evaluation. Chem. Eng. J. 2022, 433, 134387. [Google Scholar] [CrossRef]
- Cheng, G.J.; Wu, G.Y.; Li, H.; Liu, S.C.; Liu, Y. Bimetallic oxygen electrocatalyst derived from metallocenes doped MOFs. Nanotechnology 2021, 32, 225603. [Google Scholar] [CrossRef]
- She, W.; Wang, J.; Li, X.W.; Li, J.F.; Mao, G.J.; Li, W.Z.; Li, G.M. Bimetallic CuZn-MOFs derived Cu-ZnO/C catalyst for reductive amination of nitroarenes with aromatic aldehydes tandem reaction. Appl. Surf. Sci. 2021, 569, 151033. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhang, B.; Wang, C.X.; Xia, X.F.; Lei, W.; Hao, Q.L. Bimetallic metal-organic framework derived porous NiCo2S4 nanosheets arrays as binder-free electrode for hybrid supercapacitor. Appl. Surf. Sci. 2021, 542, 148621. [Google Scholar] [CrossRef]
- Ji, C.; Xu, M.; Yu, H.; Lv, L.; Zhang, W. Mechanistic insight into selective adsorption and easy regeneration of carboxyl-functionalized MOFs towards heavy metals. J. Hazard. Mater. 2022, 424, 127684. [Google Scholar] [CrossRef]
- Zurrer, T.; Lovell, E.; Han, Z.; Liang, K.; Scott, J.; Amal, R. Harnessing the structural attributes of NiMg-CUK-1 MOF for the dual-function capture and transformation of carbon dioxide into methane. Chem. Eng. J. 2023, 455, 140623. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Cai, Y.; Wang, S. Peroxymonosulfate-activated molecularly imprinted bimetallic MOFs for targeted removal of PAHs and recovery of biosurfactants from soil washing effluents. Chem. Eng. J. 2022, 443, 136412. [Google Scholar] [CrossRef]
Type of Catalyst | Synthesis Method | Peroxides | Mechanism | Performance | Cycle Times | Reference |
---|---|---|---|---|---|---|
MIL-101 (Fe, Co) | Hydrothermal | H2O2 | C-O-Fe/Co bonds and Fe-O-Co bonds facilitate electron transfer; π-π interaction between CIP and MIL-101 (Fe, Co) | 30 min, 97.8% (CIP = 20 mg/L, catalyst = 0.2 g/L, H2O2 = 5 mM) | —— | 68 |
CUMS/MIL-101 (Fe, Cu) | Hydrothermal | H2O2 | π–Cation interactions; favorable reaction between Cu(I) and Fe(III) | 30 min, 100% (CIP = 20 mg/L, catalyst = 0.1g/L, H2O2 = 3 mM) | —— | 69 |
MCuFe MOF | Hydrothermal | H2O2 | Holes and electrons can be heated into “hot electrons” and “hot holes” | 40 min, 95% (MB =50 mg/L, catalyst = 0.05 g/L, H2O2 = 5 mM) | —— | 70 |
FeCu (BDC-Br) | Hydrothermal | H2O2 | Fe-Cu electron transfer process promotes the decomposition of H2O2 | 60 min, nearly 100% (phenol =100 mg/L, catalyst = 0.1 g/L, H2O2 = 8 mM) | 4 | 71 |
FeCo-BDC | Hydrothermal | PMS | Redox cycle between Co3+/Co2+ and Fe3+/Fe2+ promotes PMS activation | 5 min, 99.1% (RhB = 20 mg/L, catalyst = 20 mg/L, PMS = 0.25 mM) | —— | 72 |
Fe-Co MOFs | Nucleation dynamics control | PMS | Synergy of cobalt and iron active sites promotes redox cycling of Co2+/Co3+ | 30 min, 90.3% (2-cp = 100 mg/L, catalyst = 0.1g/L, PMS = 0.3 g/L) | 5 | 73 |
CuCo-MOF | Hydrothermal | PMS | Synergistic effect of Cu and Co facilitates electron transfer from electron-rich regions to metal sites | 25 min, 100% (NIM = 20 mg/L, catalyst = 0.2 g/L, PMS = 3 mM) | —— | 74 |
MIL-88B (Fe/Co) | Hydrothermal | PDS | Co2+ can accelerate electron transfer and promote the cycle of Fe3+ and Fe2+ | 30 min, 99.85% (MB = 0.1 mM, catalysts = 0.5 g/L, PDS = 10 mM) | 4 | 75 |
FeCo/N-MOF | Hydrothermal | PDS | Interaction of Fe(II) and Co(III) promotes the cycling of Co(II)/Co(III) and Fe(II)/Fe(III); doped N helps to generate 1O2 | 3 h, 98.60% (TC = 50 mg/L, catalyst = 0.2 g/L, PDS = 5 mmol/L) | —— | 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Yan, J.; Cui, Q.; Shang, R.; Zuo, Q.; Gong, L.; Zhang, W. Synthesis and Peroxide Activation Mechanism of Bimetallic MOF for Water Contaminant Degradation: A Review. Molecules 2023, 28, 3622. https://doi.org/10.3390/molecules28083622
Fan M, Yan J, Cui Q, Shang R, Zuo Q, Gong L, Zhang W. Synthesis and Peroxide Activation Mechanism of Bimetallic MOF for Water Contaminant Degradation: A Review. Molecules. 2023; 28(8):3622. https://doi.org/10.3390/molecules28083622
Chicago/Turabian StyleFan, Mengke, Jingwei Yan, Quantao Cui, Run Shang, Qiting Zuo, Lin Gong, and Wei Zhang. 2023. "Synthesis and Peroxide Activation Mechanism of Bimetallic MOF for Water Contaminant Degradation: A Review" Molecules 28, no. 8: 3622. https://doi.org/10.3390/molecules28083622
APA StyleFan, M., Yan, J., Cui, Q., Shang, R., Zuo, Q., Gong, L., & Zhang, W. (2023). Synthesis and Peroxide Activation Mechanism of Bimetallic MOF for Water Contaminant Degradation: A Review. Molecules, 28(8), 3622. https://doi.org/10.3390/molecules28083622