An ESIPT-Based Fluorescent Probe for Aqueous Cu+ Detection through Strip, Nanofiber and Living Cells
Abstract
:1. Introduction
2. Results
2.1. Structural Characterization
2.2. Spectroscopic Properties
2.2.1. Selectivity and Competition
2.2.2. Linear Relationship
2.2.3. Influence Parameters
2.3. Mechanism
2.4. Imaging Applications
2.4.1. Detection and Imaging of Cu+ by RBg on Test Strips
2.4.2. Detection and Imaging of Cu+ by RBg on Solid-State Nanofibers
2.4.3. Detection and Imaging of Cu+ by RBg in Living HeLa Cells
3. Discussion
4. Materials and Methods
4.1. Reagents and Equipments
4.2. Synthesis of Probe RBg
4.3. Spectroscopic Analysis
4.4. Colorimetric Imaging
4.5. Bioimaging
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L., Jr.; Adams, W.J.; Menzie, C.A. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, A.; Barile, A.; Arciello, M.; Rossi, L. Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy. J. Trace Elem. Med. Biol. 2019, 55, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Schlief, M.L.; Gitlin, J.D. Copper homeostatsis in the CNS. Mol. Neurobiol. 2006, 33, 81–90. [Google Scholar] [CrossRef]
- Neff, E.; Dharmarajan, G. The direct and indirect effects of copper on vector-borne disease dynamics. Environ. Pollut. 2021, 269, 116213. [Google Scholar] [CrossRef] [PubMed]
- Mezzaroba, L.; Alfieri, D.F.; Colado Simao, A.N.; Vissoci Reiche, E.M. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 2019, 74, 230–241. [Google Scholar] [CrossRef]
- Lavado, L.K.; Zhang, M.H.; Patel, K.; Khan, S.; Patel, U.K. Biometals as potential predictors of the neurodegenerative decline in Alzheimer’s Disease. Cureus 2019, 11, e5573. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Zhao, S.J.; Wu, X.L.; Zeng, L.T.; Lan, M.H. β-Cyclodextrin-promoted colorimetric and fluorescence turn-on probe for discriminating highly toxic thiophenol from biothiols. ACS Sustain. Chem. Eng. 2020, 8, 6413–6421. [Google Scholar] [CrossRef]
- Baldari, S.; Di Rocco, G.; Toietta, G. Current biomedical use of copper chelation therapy. Int. J. Mol. Sci. 2020, 21, 1069. [Google Scholar] [CrossRef] [Green Version]
- Coelho, F.C.; Squitti, R.; Ventriglia, M.; Cerchiaro, G.; Daher, J.P.; Rocha, J.G.; Rongioletti, M.C.A.; Moonen, A.-C. Agricultural use of copper and its link to Alzheimer’s Disease. Biomolecules 2020, 10, 897. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Miller, E.W.; Pralle, A.; Isacoff, E.Y.; Chang, C.J. A selective turn-on fluorescent sensor for imaging copper in living cells. J. Am. Chem. Soc. 2006, 128, 10–11. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Duan, X.; Chen, Z.; Liu, Y.; Xie, T.; Fang, L.; Li, X.; Yin, M.; Tang, B. A near-infrared fluorescent probe for detecting copper(II) with high selectivity and sensitivity and its biological imaging applications. Chem. Commun. 2011, 47, 7755–7757. [Google Scholar] [CrossRef]
- Liu, C.; Jiao, X.; He, S.; Zhao, L.; Zeng, X. A highly selective and sensitive fluorescent probe for Cu2+ based on a novel naphthalimide-rhodamine platform and its application in live cell imaging. Org. Biomol. Chem. 2017, 15, 3947–3954. [Google Scholar] [CrossRef] [PubMed]
- Fettouche, S.; Boukhriss, A.; Tahiri, M.; Cherkaoui, O.; Bazi, F.; Gmouh, S. Naked eye and selective detection of copper(II) in mixed aqueous media using a cellulose-based support. Chem. Res. Chin. Univ. 2019, 35, 598–603. [Google Scholar] [CrossRef]
- Qian, J.; Wen, C.; Xia, J. Development of highly efficient chemosensors for Cu2+ and N2H4 detection based on 2D polyaniline derivatives by template-free chemical polymerization method. J. Hazard. Mater. 2020, 389, 121902. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.L.; Chen, Z.Z.; Liu, C.; Dong, W.K.; Ding, Y.J. A chemical probe capable for fluorescent and colorimetric detection to Cu2+ and CN− based on coordination and nucleophilic addition mechanism. Microchem. J. 2020, 155, 104801. [Google Scholar] [CrossRef]
- Viguier, R.F.; Hulme, A.N. A sensitized europium complex generated by micromolar concentrations of copper(I): Toward the detection of copper(I) in biology. J. Am. Chem. Soc. 2006, 128, 11370–11371. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Wang, W.; Ge, G.; Chu, P.; Long, F.; Yang, Y.; Peng, Y.; Feng, L.; Ma, X.; James, T.D. Target enzyme-activated two-photon fluorescent probes: A case study of CYP3A4 using a two-dimensional design strategy. Angew. Chem. Int. Ed. Engl. 2019, 58, 9959–9963. [Google Scholar] [CrossRef]
- Jun, Y.W.; Cho, S.W.; Jung, J.; Huh, Y.; Kim, Y.; Kim, D.; Ahn, K.H. Frontiers in probing Alzheimer’s Disease biomarkers with fluorescent small molecules. ACS Cent. Sci. 2019, 5, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H.; Kim, J.S.; Sessler, J.L. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, F.; Chai, J.; Yang, B.; Liu, B. A TICT+AIE based fluorescent probe for ultrafast response of hypochlorite in living cells and mouse. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 256, 119735. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Liu, T.; Dong, P.; Wang, W.; Ge, G.; Wang, B.; Yu, Z.; Shi, L.; Tian, X.; Huo, X.; et al. Molecular design strategy to construct the near-infrared fluorescent probe for selectively sensing human cytochrome P450 2J2. J. Am. Chem. Soc. 2019, 141, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, K.P.L.; Bottecchia, C.; Cambié, D.; Drummen, K.; König, N.J.; Noël, T. A fully automated continuous-flow platform for fluorescence quenching studies and Stern-Volmer analysis. Angew. Chem. Int. Ed. Engl. 2018, 57, 11278–11282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Ding, H.; Wang, Y.; Xiong, C.; Wang, X. Colorimetric and turn-on fluorescence determination of mercury (II) by using carbon dots and gold nanoparticles. Nanotechnology 2021, 32, 155501. [Google Scholar] [CrossRef]
- Song, Y.; Pruden, A.; Edwards, M.A.; Rhoads, W.J. Natural organic matter, orthophosphate, pH, and growth phase can limit copper antimicrobial efficacy for Legionella in drinking water. Environ. Sci. Technol. 2021, 55, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Varadaraju, C.; Paulraj, M.S.; Tamilselvan, G.; Enoch, I.V.M.V.; Srinivasadesikan, V.; Shyi-Long, L. Evaluation of metal ion sensing behaviour of fluorescent probe along with its precursors: PET-CHEF mechanism, molecular logic gate behaviour and DFT studies. J. Incl. Phenom. Macrocycl. Chem. 2019, 95, 79–89. [Google Scholar] [CrossRef]
- Palanisamy, S.; Wang, Y.L.; Chen, Y.J.; Chen, C.Y.; Tsai, F.T.; Liaw, W.F.; Wang, Y.M. In vitro and in vivo imaging of nitroxyl with copper fluorescent probe in living cells and zebrafish. Molecules 2018, 23, 2551. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.Q.; He, Y.F.; Cao, Y.S.; Shen, W.X.; Lv, Y.Y. Porphyrinic probe for fluorescence “turn-on” monitoring of Cu+ in aqueous buffer and mitochondria. ACS. Sens. 2019, 4, 856–864. [Google Scholar] [CrossRef]
- Xie, J.-Y.; Li, C.-Y.; Li, Y.-F.; Fei, J.; Xu, F.; Ou-Yang, J.; Liu, J. Near-infrared fluorescent probe with high quantum yield and its application in the selective detection of glutathione in living cells and tissues. Anal. Chem. 2016, 88, 9746–9752. [Google Scholar] [CrossRef]
t-Test in Fluorescent Analyses (conc.: 10 μmol L−1 RBg, 40 μmol L−1 Metal Ions/Cu+, x: FI586/FI428) | |||||||
of RBg-Metal Ion | of RBg–Metal Ion–Cu+ | p Value | t | df | R2 | 95% Confidence Interval | Significantly Different (p < 0.05) |
0.004976 | 0.1681 | <0.0001 | 122.5 | 32 | 0.9979 | 0.1604–0.1658 | yes |
t-Test in UV-Vis Analyses (conc.: 10 μmol L−1 RBg, 40 μmol L−1 Metal Ions/Cu+, x: Absorbance) | |||||||
of RBg–Metal Ion | of RBg–Metal Ion–Cu+ | p Value | t | df | R2 | 95% Confidence Interval | Significantly Different (p < 0.05) |
3.761 | 44.68 | <0.0001 | 64.29 | 32 | 0.9923 | 39.62–42.21 | yes |
FI586/FI428 | |||||
Content (μmol L−1) | Added (μmol L−1) | Measured (μmol L−1) | Recovery(%) | Average Recovery(%) | RSD(%) |
1 | 1 | 2.0332 | 101.66% | 99.31% | 2.192% |
1 | 1 | 2.0604 | 103.02% | ||
1 | 1 | 1.9470 | 97.35% | ||
1 | 2 | 2.9187 | 97.29% | ||
1 | 2 | 2.9496 | 98.32% | ||
1 | 2 | 3.0051 | 100.17% | ||
1 | 4 | 4.9279 | 98.56% | ||
1 | 4 | 5.0325 | 100.65% | ||
1 | 4 | 4.8370 | 96.74% | ||
Absorbance | |||||
Content (μmol L−1) | Added (μmol L−1) | Measured (μmol L−1) | Recovery(%) | Average Recovery(%) | RSD(%) |
1 | 1 | 1.9577 | 97.88% | 100.25% | 2.094% |
1 | 1 | 200.14 | 100.07% | ||
1 | 1 | 208.56 | 104.28% | ||
1 | 2 | 3.0328 | 101.09% | ||
1 | 2 | 2.9613 | 98.71% | ||
1 | 2 | 2.9415 | 98.05% | ||
1 | 4 | 4.9723 | 99.45% | ||
1 | 4 | 5.0160 | 100.32% | ||
1 | 4 | 5.1220 | 102.44% |
RSD in RBg–Cu+ Fluorescent Analyses (conc.: 10 μmol L−1 RBg, 40 μmol L−1 Cu+, x: FI586/FI428) | |||||||
x1 | x2 | x3 | x4 | x5 | x6 | ± s | RSD% |
43.0265 | 43.2000 | 44.0230 | 45.1236 | 45.2350 | 45.2057 | 44.3023 ± 1.0278 | 2.3198% |
RSD in RBg–Cu+ UV-Vis Analyses (conc.: 10 μmol L−1 RBg, 40 μmol L−1 Cu+, x: Absorbance) | |||||||
x1 | x2 | x3 | x4 | x5 | x6 | ± s | RSD% |
0.1204 | 0.1256 | 0.1293 | 0.1295 | 0.1300 | 0.1317 | 0.1278 ± 0.004118 | 3.2232% |
t-Tests in RBg–Cu+ Fluorescent Analyses (conc.: 10 μmol L−1 RBg, Varied Cu+, x: FI586/FI428) | ||||||
1 μmol L−1 Cu+ | 3 μmol L−1 Cu+ | 5 μmol L−1 Cu+ | F | p Value | Statistically Significant (p < 0.05) | R2 |
x1 5.0413 | x1 19.5498 | x1 30.9045 | 4810 | 0.0002 | yes | 0.9996 |
x2 5.3454 | x2 18.9978 | x2 31.5612 | ||||
x3 5.0779 | x3 19.4712 | x3 31.1623 | ||||
t-Tests in RBg–Cu+ UV-Vis Analyses (conc.: 10 μmol L−1 RBg, Varied Cu+, x: Absorbance) | ||||||
1 μmol L−1 Cu+ | 3 μmol L−1 Cu+ | 5 μmol L−1 Cu+ | F | p Value | Significant Diff. among Means (p < 0.05) | R2 |
x1 0.0222 | x1 0.0724 | x1 0.1305 | 1032 | <0.0001 | yes | 0.9971 |
x2 0.0235 | x2 0.0698 | x2 0.1369 | ||||
x3 0.0234 | x3 0.0685 | x3 0.1279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Z.; Jin, X.; Liu, Y.; Zheng, L.; He, H. An ESIPT-Based Fluorescent Probe for Aqueous Cu+ Detection through Strip, Nanofiber and Living Cells. Molecules 2023, 28, 3725. https://doi.org/10.3390/molecules28093725
Cheng Z, Jin X, Liu Y, Zheng L, He H. An ESIPT-Based Fluorescent Probe for Aqueous Cu+ Detection through Strip, Nanofiber and Living Cells. Molecules. 2023; 28(9):3725. https://doi.org/10.3390/molecules28093725
Chicago/Turabian StyleCheng, Zhao, Xilang Jin, Yinggang Liu, Lei Zheng, and Hao He. 2023. "An ESIPT-Based Fluorescent Probe for Aqueous Cu+ Detection through Strip, Nanofiber and Living Cells" Molecules 28, no. 9: 3725. https://doi.org/10.3390/molecules28093725
APA StyleCheng, Z., Jin, X., Liu, Y., Zheng, L., & He, H. (2023). An ESIPT-Based Fluorescent Probe for Aqueous Cu+ Detection through Strip, Nanofiber and Living Cells. Molecules, 28(9), 3725. https://doi.org/10.3390/molecules28093725