Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review
Abstract
:1. Introduction
2. Extraction and Purification Methods of Ginger Polysaccharides
2.1. Extraction Methods of Ginger Polysaccharides
2.1.1. Solvent Extraction Method
2.1.2. Ultrasonic-Assisted Extraction Method
2.1.3. Enzyme-Assisted Extraction Method
Polysaccharide Fraction | Extraction Methods | Time (min) | Temperature (°C) | Solid–Liquid Ratio (g/mL) | Total Yield (%) | Ref. |
---|---|---|---|---|---|---|
Ginger polysaccharide (GPS) | Complex-enzyme hydrolysis extraction | 60 min | 55 °C | 1:25 | 22.18% | [45] |
Ginger pomace polysaccharides extracted by hot water (HW-GPPs) | Hot water extraction | 120 min | 70 °C | 1:40 | 12.13 ± 1.15% | [46] |
Ginger pomace polysaccharides extracted by ultrasonic–assisted (UA-GPPs) | Ultrasonic assisted extraction | 17 min | 74 °C | 1:40 | 16.62 ± 1.82% | [46] |
A neutral ginger polysaccharide fraction (NGP) | Hot water extraction | 180 min | 90 °C | 1:20 | N/A | [47] |
A water extracted polysaccharides (WEP) containing fraction from ginger rhizome | Hot water extraction | 60 min | 100 °C | N/A | N/A | [48] |
Crude ginger polysaccharides were extracted by hot water extraction (HCGP) | Hot water extraction | 240 min | 100 °C | 1:20 | 11.74 ± 0.23% | [43] |
Crude ginger polysaccharides were extracted by enzyme assisted extraction (ECGP) | Enzyme assisted extraction | 120 min | 40 °C | 1:25 | 7.00 ± 0.04% | [43] |
Crude ginger polysaccharides were extracted by ultrasonic cell grinder extraction (UCGP) | Ultrasonic cell grinder extraction | 30 min | N/A | 1:25 | 18.06 ± 0.05% | [43] |
Polysaccharides from ginger (Zingiber officinale Roscoe.) stems and leaves (GSLP) | Hot water extraction | 300 min | 100 °C | 1:20 | 6.83 ± 0.54% | [32] |
Polysaccharides from ginger (Zingiber officinale Roscoe.) stems and leaves (GSLP) | Ultrasound-assisted extraction | 60 min | 50 °C | 1:20 | 8.29 ± 0.31% | [32] |
Polysaccharides from ginger (Zingiber officinale Roscoe.) stems and leaves (GSLP) | Alkaline solution extraction | 120 min | 25 °C | 1:20 | 11.38 ± 1.17% | [32] |
Polysaccharides from ginger (Zingiber officinale Roscoe.) stems and leaves (GSLP) | Enzyme-assisted extraction | 90 min | 50 °C | 1:20 | 8.13 ± 0.85% | [32] |
A novel polysaccharide (ZOP) was extracted from Zingiber officinale Roscoe. | Ultrasonic assisted extraction | 120 min | 90 °C | 1:30 | N/A | [49] |
Ginger polysaccharide (GP) | Hot water extraction | 60 min | 100 °C | 1: 20 | N/A | [29] |
2.2. Purification Methods of Ginger Polysaccharides
3. Structural Characteristics of Ginger Polysaccharides
3.1. Molecular Weight
3.2. Monosaccharide Composition
3.3. Chemical Structures
Source | Compound Name | Molecular Weights | Monosaccharide Composition | Ref. |
---|---|---|---|---|
Rhizome | Ginger polysaccharide 2 (GP2) | 12.619 kDa | Ara:Man:Glu:Gal = 4.78:16.70:61.77:16.75 | [45] |
Rhizome | Ginger polysaccharide 1 (GP1) | 6.128 kDa | Man:Glu:Gal = 4.96:92.24:2.80 | [45] |
Rhizome | Ginger polysaccharide (GP) | N/A | Rha:Ara:Man:Glu:Gal = 3.64:5.37:3.04:61.03:26.91 | [45] |
Ginger pomace | Ginger pomace polysaccharide 1 extracted by hot water (HW-GPP1) | 89.2 kDa | Man:Rha:Glu = 19.40 ± 0.06:12.27 ± 0.05:68.33 ± 0.24 | [46] |
Ginger pomace | Ginger pomace polysaccharide 2 extracted by hot water (HW-GPP2) | 939.8 kDa | Man:Rha:Glu:Xyl:Ara = 11.84 ± 0.13:9.36 ± 0.02:58.05 ± 0.07:12.68 ± 0.15:8.07 ± 0.08. | [46] |
Ginger pomace | Ginger pomace polysaccharide 3 extracted by hot water (HW-GPP3) | 1007.9 kDa | Man:Rha:Glu:Gal:Xyl:Ara = 11.33 ± 0.05:13.90 ± 0.03:50.01 ± 0.13:10.96 ± 0.13:4.73 ± 0.09:9.07 ± 0.14 | [46] |
Ginger pomace | Ginger pomace polysaccharide 1 extracted by ultrasonic–assisted (UA-GPP1) | 40.6 kDa | Man:Rha:Glu = 17.56 ± 0.11:7.72 ± 0.29:74.72 ± 0.27 | [46] |
Ginger pomace | Ginger pomace polysaccharide 2 extracted by ultrasonic–assisted (UA-GPP2) | 868.1 kDa | Man:Rha:Glu:Xyl:Ara = 13.18 ± 0.05:9.03 ± 0.08:63.78 ± 0.14:8.97 ± 0.15:5.04 ± 0.08 | [46] |
Ginger pomace | Ginger pomace polysaccharide 3 extracted by ultrasonic–assisted (UA-GPP3) | 892.7 kDa | Man:Rha:Glu:Gal:Xyl:Ara = 8.32 ± 0.09:9.01 ± 0.02:59.28 ± 0.11:4.33 ± 0.03:12.19 ± 0.12:6.87 ± 0.05 | [46] |
Rhizome | A neutral ginger polysaccharide fraction (NGP) | 6.305 kDa | Glu:Gal:Ara = 93.88:3.27:1.67 | [47] |
Rhizome | A water extracted polysaccharides (WEP) containing fraction from ginger | 36 kDa | N/A | [48] |
Rhizome | Ginger polysaccharides were extracted by hot water extraction (HGP) | 1831.75 kDa | Man:Gal = 3.1:0.9 | [43] |
Rhizome | Ginger polysaccharides were extracted by enzyme assisted extraction (EGP1) | 11.81 kDa | Man:Glu:Gal:Ara = 13.3:80.7:4.0:2.0 | [43] |
Rhizome | Ginger polysaccharides were extracted by enzyme assisted extraction (EGP2) | 688.73 kDa | Man:Rha:Glu:Gal:Xyl:Ara = 49.4:0.8:32.6:7.7:2.5:7.0 | [43] |
Rhizome | Ginger polysaccharides were extracted by ultrasonic cell grinder extraction (UGP1) | 769.19 kDa | Man:Glu:Gal:Ara = 28.0:59.2:9.6:3.2 | [43] |
Rhizome | Ginger polysaccharides were extracted by ultrasonic cell grinder extraction (UGP2) | 1432.80 kDa | Man:Rha:Glu:Gal:Xyl:Ara = 27.2:2.2:12.0:26.3:10.5:21.7 | [43] |
Stems and leaves | Polysaccharides from ginger stems and leaves (GSLP) by hot water extraction (HWE-GSLP) | N/A | Man:Rha:Glu:Gal:Xyl:Ara:GlcA:GalA = 1.95:17.22:4.69:38.88:5.66:28.42:1.81:1.34 | [32] |
Stems and leaves | Polysaccharides from ginger stems and leaves (GSLP) by ultrasound-assisted extraction (UAE-GSLP) | N/A | Man:Rha:Glc:Gal:Xyl:Ara:GlcA:GalA = 2.11:16.06:7.518:32.44:7.764:28.43:1.74:3.95 | [32] |
Stems and leaves | Polysaccharides from ginger stems and leaves (GSLP) by alkaline solution extraction (ASE-GSLP) | N/A | Man:Rha:Glc:Gal:Xyl:Ara:GlcA:GalA = 2.20:16.24:7.453:34.09:6.36:26.72:1.98:4.96 | [32] |
Stems and leaves | Polysaccharides from ginger stems and leaves (GSLP) by enzyme-assisted extraction (EAE-GSLP) | N/A | Man:Rha:Glc:Gal:Xyl:Ara:GlcA:GalA = 1.47:9.63:3.84:15.31:27.94:35.55:3.68:2.586 | [32] |
Rhizome | A novel polysaccharide (ZOP) was extracted from Zingiber officinale | 6040 kDa (7.17 %) and 5.42 kDa (92.83 %) | GlcA:GalA:Glu:Gal:Ara = 1.97:1.15:94.33:1.48:1.07 | [49] |
Rhizome | Zingiber officinale polysaccharides (ZOP) | 6040 kDa (7.17 %) and 5.42 kDa (92.83 %) | GlcA:GalA:Glc:Gal:Ara = 1.97:1.15:94.33:1.48:1.07 | [49] |
Rhizome | Zingiber officinale polysaccharides 1 (ZOP-1) | 837 kDa | Glc:Gal:Ara = 1.00:95.09:2.26 | [49] |
Rhizome | Ginger polysaccharides (GP) | 747.2 kDa | Man:Rha:GlcA:GalA:Glc:Gal:Xyl:Ara:Fuc = 0.17:0.13:0.21:0.12:0.08:1:0.16:0.64:0.18 | [29] |
Rhizome | Ginger polysaccharides UGP1 | 1002 kDa | N/A | [54] |
Rhizome | Ginger polysaccharides UGP2 | 1296 kDa | N/A | [54] |
4. Biological Activities of Ginger Polysaccharides
4.1. Anti-Oxidant Effects
4.2. Anti-Tumor Effects
4.3. Anti-Influenza Effects
4.4. Anti-Colitis Effects
4.5. Anti-Tussive Effects
Biological Activities | Compound Name | In Vitro or In Vivo | Indicated Concentrations and Animal Experiments/Test System | Action or Mechanism | Ref. |
---|---|---|---|---|---|
Anti-oxidant effects | Polysaccharides from ginger stems and leaves (HWE-GSLP, UAE-GSLP, ASE-GSLP and EAE-GSLP) | In vitro | ABTS radical scavenging activity, DPPH radical scavenging activity, hydroxyl radical scavenging activity, superoxide radical scavenging activity, chelating activity, and ferric reducing power. | ABTS radical scavenging activity: These samples’ anti-oxidant capacities of ABTS, although better than those of HWE-GSLP and UAE-GSLP, did not exceed those of Ascorbic acid (VC); DPPH radical scavenging activity: ASE-GSLP (IC50 = 0.492 mg/mL) < EAE-GSLP (IC50 = 0.975 mg/mL) < UAE-GSLP (IC50 = 2.877 mg/mL) < HWE-GSLP (IC50 = 3.583 mg/mL); Hydroxyl radical scavenging activity: ASE-GSLP exhibited higher hydroxyl radical scavenging activity than the other polysaccharides; Superoxide radical scavenging activity: The experimental IC50 values followed the trend ASE-GSLP < EAE-GSLP < UAE-GSLP < HWE-GSLP. | [32,38,49] |
Chelating activity: The strong Fe2+ chelating activity of EAE-GSLP and UAE-GSLP might be partially due to the high contents of–COOH and C-O groups in their structures; Ferric reducing power: In solutions of concentrations between 0.25 and 5.0 mg/mL, the reducing power of the EAE-GSLP was the greatest, followed by ASE-GSLP. | |||||
Anti-tumor effects | Five purified ginger polysaccharides were obtained, namely HGP, EGP1, EGP2, UGP1 and UGP2 | In vitro | The human colon cancer HCT 116 cell line, human cervical cancer Hela cell line, human lung adenocarcinoma H1975 cell line, human breast cancer MCF-7 cell line, mouse melanoma B16 cell line | UGP1 has a strong inhibitory effect on these kinds of tumor cells such as Hela and HCT116, of which the inhibitory effect of UGP1 on the human colon cancer HCT116 cell linen is relatively high (56.843 + 2.405%), which indicates that UGP1 may be a potential drug for the treatment of colon cancer. | [43] |
Anti-influenza effects | The mixed polysaccharides (MPs) extracted from shiitake mushroom, poriacocos, gin-ger, and tangerine peel | In vivo | 0.342 g/mL, four-week-old female BALB/c mice | Immune mice: The levels of IgG and IgG2a in the serum of mice treated with MPs were higher. | [59,60] |
Non-immune mice: The CD3+, CD19+ and CD25+ cell proportions were up-regulated in thymus under MPs pretreatment. | |||||
Anti-colitis effects | Ginger polysaccharides (GP) | In vivo | SPF grade eight-week-old male C57BL/6 mice | GP alleviated UC symptoms by inhibiting pro-inflammatory cytokines levels to regulate intestinal inflammation, repairing the intestinal barrier, as indicated by occludin-1 and ZOP-1, and regulating gut microbiota. | [29] |
Anti-tussive effects | A water extracted ginger polysaccharides (WEP) | In vivo | 25 and 50 mg/kg body weight, thirty adult healthy male TRIK strain guinea pigs | WEP could reduce the number of coughs effort but did not affect the specific airway resistance of animals. | [48] |
5. Structure–Activity Relationship
6. Applications of Ginger Polysaccharides
6.1. In the Food Industry
6.2. In the Pharmaceutical Industry
6.3. In the Cosmetics Industry
6.4. In the Animal Husbandry Industry
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garza-Cadena, C.; Ortega-Rivera, D.M.; Machorro-García, G.; Gonzalez-Zermeño, E.M.; Homma-Dueñas, D.; Plata-Gryl, M.; Castro-Muñoz, R. A comprehensive review on Ginger (Zingiber officinale) as a potential source of nutraceuticals for food formulations: Towards the polishing of gingerol and other present biomolecules. Food Chem. 2023, 413, 135629. [Google Scholar] [CrossRef] [PubMed]
- Crichton, M.; Marshall, S.; Marx, W.; Isenring, E.; Lohning, A. Therapeutic health effects of ginger (Zingiber officinale): Updated narrative review exploring the mechanisms of action. Nutr. Rev. 2023, nuac115, Advance online publication. [Google Scholar] [CrossRef]
- Ozkur, M.; Benlier, N.; Takan, I.; Vasileiou, C.; Georgakilas, A.G.; Pavlopoulou, A.; Cetin, Z.; Saygili, E.I. Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Oxidative Med. Cell. Longev. 2022, 2022, 4748447. [Google Scholar] [CrossRef] [PubMed]
- Mahomoodally, M.; Aumeeruddy, M.; Rengasamy, K.R.; Roshan, S.; Hammad, S.; Pandohee, J.; Hu, X.; Zengin, G. Ginger and its active compounds in cancer therapy: From folk uses to nano-therapeutic applications. Semin. Cancer Biol. 2021, 69, 140–149. [Google Scholar] [CrossRef]
- Kiyama, R. Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. J. Nutr. Biochem. 2020, 86, 108486. [Google Scholar] [CrossRef] [PubMed]
- Sowley, E.N.K.; Kankam, F. Harnessing the Therapeutic Properties of Ginger (Zingiber officinale Roscoe) for the Management of Plant Diseases. In Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 2015, 117, 554–568. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Masuku, N.P.; Paimo, O.K.; Lebelo, S.L. Ginger from Farmyard to Town: Nutritional and Pharmacological Applications. Front. Pharmacol. 2021, 12, 779352. [Google Scholar] [CrossRef]
- Bag, B.B. Ginger Processing in India (Zingiber officinale): A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1639–1651. [Google Scholar] [CrossRef]
- Hasani, H.; Arab, A.; Hadi, A.; Pourmasoumi, M.; Ghavami, A.; Miraghajani, M. Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials. Phytother. Res. 2019, 33, 1639–1647. [Google Scholar] [CrossRef]
- Roudsari, N.M.; Lashgari, N.; Momtaz, S.; Roufogalis, B.; Abdolghaffari, A.H.; Sahebkar, A. Ginger: A complementary approach for management of cardiovascular diseases. Biofactors 2021, 47, 933–951. [Google Scholar] [CrossRef]
- Schepici, G.; Contestabile, V.; Valeri, A.; Mazzon, E. Ginger, a Possible Candidate for the Treatment of Dementias? Molecules 2021, 26, 5700. [Google Scholar] [CrossRef]
- Baliga, M.S.; Haniadka, R.; Pereira, M.M.; D’souza, J.J.; Pallaty, P.L.; Bhat, H.P.; Popuri, S. Update on the Chemopreventive Effects of Ginger and its Phytochemicals. Crit. Rev. Food Sci. Nutr. 2011, 51, 499–523. [Google Scholar] [CrossRef] [PubMed]
- Dalsasso, R.R.; Valencia, G.A.; Monteiro, A.R. Impact of drying and extractions processes on the recovery of gingerols and shogaols, the main bioactive compounds of ginger. Food Res. Int. 2022, 154, 111043. [Google Scholar] [CrossRef]
- Crichton, M.; Davidson, A.R.; Innerarity, C.; Marx, W.; Lohning, A.; Isenring, E.; Marshall, S. Orally consumed ginger and human health: An umbrella review. Am. J. Clin. Nutr. 2022, 115, 1511–1527. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Cai, H.; Li, S.; Xie, W.; Sun, R. The Chemical Signatures of Water Extract of Zingiber officinale Rosc. Molecules 2022, 27, 7818. [Google Scholar] [CrossRef]
- Sang, S.; Snook, H.D.; Tareq, F.S.; Fasina, Y. Precision Research on Ginger: The Type of Ginger Matters. J. Agric. Food Chem. 2020, 68, 8517–8523. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.M.; Asish, G.; Sabu, M.; Balachandran, I. Significance of gingers (Zingiberaceae) in Indian System of Medicine–Ayurveda: An overview. Anc. Sci. Life 2013, 32, 253–261. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, S.; Wu, J.; Sun, X.; Shen, Z.; Dong, J.; Huang, J. Promotion of Mitochondrial Biogenesis via Activation of AMPK-PGC1α Signaling Pathway by Ginger (Zingiber officinale Roscoe) Extract, and Its Major Active Component 6-Gingerol. J. Food Sci. 2019, 84, 2101–2111. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.; Luo, D.; Ma, Y.; Zhang, J.; Li, M.; Yao, L.; Shi, X.; Liu, X.; Yang, K. Ginger for health care: An overview of systematic reviews. Complement. Ther. Med. 2019, 45, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Chen, D.; Sun, X.; Dong, J.; Huang, J. Effects of ginger extract and its major component 6-gingerol on anti-tumor property through mitochondrial biogenesis in CD8+ T cells. J. Food Sci. 2022, 87, 3307–3317. [Google Scholar] [CrossRef]
- Baldin, V.P.; de Lima Scodro, R.B.; Fernandez, C.M.M.; Ieque, A.L.; Caleffi-Ferracioli, K.R.; Siqueira, V.L.D.; de Almeida, A.L.; Gonçalves, J.E.; Cortez, D.A.G.; Cardoso, R.F. Ginger essential oil and fractions against Mycobacterium spp. J. Ethnopharmacol. 2019, 244, 112095. [Google Scholar] [CrossRef]
- Camero, M.; Lanave, G.; Catella, C.; Capozza, P.; Gentile, A.; Fracchiolla, G.; Britti, D.; Martella, V.; Buonavoglia, C.; Tempesta, M. Virucidal activity of ginger essential oil against caprine alphaherpesvirus-1. Vet. Microbiol. 2019, 230, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Veeraraghavan, V.P.; Mohan, S.K.; Lu, W. A ginger derivative, zingerone—A phenolic compound—Induces ROS-mediated apoptosis in colon cancer cells (HCT-116). J. Biochem. Mol. Toxicol. 2019, 33, e22403. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.-K.; Hu, L.-L.; Zhang, Y.-X.; Xu, Y.-L.; Liu, X.-Y.; He, P.-K.; Jia, Y.-H. 6-Gingerol ameliorates sepsis-induced liver injury through the Nrf2 pathway. Int. Immunopharmacol. 2020, 80, 106196. [Google Scholar] [CrossRef] [PubMed]
- de Lima, R.M.T.; dos Reis, A.C.; de Menezes, A.-A.P.M.; de Oliveira Santos, J.V.; de Oliveira Filho, J.W.G.; de Oliveira Ferreira, J.R.; de Alencar, M.V.O.B.; da Mata, A.M.O.F.; Khan, I.N.; Islam, A.; et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother. Res. 2018, 32, 1885–1907. [Google Scholar] [CrossRef]
- Ahmed, S.H.H.; Gonda, T.; Hunyadi, A. Medicinal chemistry inspired by ginger: Exploring the chemical space around 6-gingerol. RSC Adv. 2021, 11, 26687–26699. [Google Scholar] [CrossRef]
- Mao, Q.-Q.; Xu, X.-Y.; Cao, S.-Y.; Gan, R.-Y.; Corke, H.; Beta, T.; Li, H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef]
- Hao, W.; Chen, Z.; Yuan, Q.; Ma, M.; Gao, C.; Zhou, Y.; Zhou, H.; Wu, X.; Wu, D.; Farag, M.A.; et al. Ginger polysaccharides relieve ulcerative colitis via maintaining intestinal barrier integrity and gut microbiota modulation. Int. J. Biol. Macromol. 2022, 219, 730–739. [Google Scholar] [CrossRef]
- Li, W.; Qiu, Z.; Ma, Y.; Zhang, B.; Li, L.; Li, Q.; He, Q.; Zheng, Z. Preparation and Characterization of Ginger Peel Polysaccharide–Zn (II) Complexes and Evaluation of Anti-Inflammatory Activity. Antioxidants 2022, 11, 2331. [Google Scholar] [CrossRef]
- Zagórska, J.; Czernicka-Boś, L.; Kukula-Koch, W.; Iłowiecka, K.; Koch, W. Impact of Thermal Processing on the Selected Biological Activities of Ginger Rhizome—A Review. Molecules 2023, 28, 412. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Wang, Z.; Kan, J. A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: Preparation, structure characteristics, and biological activities. Int. J. Biol. Macromol. 2020, 151, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, G. Extraction and derivatisation of active polysaccharides. J. Enzym. Inhib. Med. Chem. 2019, 34, 1690–1696. [Google Scholar] [CrossRef] [PubMed]
- Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A 2010, 1217, 2484–2494. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.-C.; Yin, J.; Wu, J.-Y. Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution. Carbohydr. Polym. 2018, 195, 298–302. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, Z.; Sun, D.-W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of emerging technologies for the extraction of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Yang, Q.; Kan, J. Effect of high-pressure ultrasonic extraction on structural characterization and biological activities of polysaccharide from ginger stems and leaves. J. Food Meas. Charact. 2022, 16, 85–101. [Google Scholar] [CrossRef]
- Imre, B.; García, L.; Puglia, D.; Vilaplana, F. Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydr. Polym. 2019, 209, 20–37. [Google Scholar] [CrossRef]
- Ruprecht, C.; Blaukopf, M.; Pfrengle, F. Synthetic fragments of plant polysaccharides as tools for cell wall biology. Curr. Opin. Chem. Biol. 2022, 71, 102208. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Das, S.; Nadar, S.S.; Rathod, V.K. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int. J. Biol. Macromol. 2021, 191, 899–917. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.-W.; Cheng, C.; Liu, J.-P.; Zhao, L.-Y.; Huang, D.-C.; Chen, G.-T. Characterization and antitumor activities of polysaccharides obtained from ginger (Zingiber officinale) by different extraction methods. Int. J. Biol. Macromol. 2020, 152, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, X.; Wang, F.; Xu, J.; Tang, X.; Li, N. Structural characterization and antioxidant activity of polysaccharide from ginger. Int. J. Biol. Macromol. 2018, 111, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-T.; Yuan, B.; Wang, H.-X.; Qi, G.-H.; Cheng, S.-J. Characterization and antioxidant activity of polysaccharides obtained from ginger pomace using two different extraction processes. Int. J. Biol. Macromol. 2019, 139, 801–809. [Google Scholar] [CrossRef]
- Yang, X.; Wei, S.; Lu, X.; Qiao, X.; Simal-Gandara, J.; Capanoglu, E.; Woźniak, Ł.; Zou, L.; Cao, H.; Xiao, J.; et al. A neutral polysaccharide with a triple helix structure from ginger: Characterization and immunomodulatory activity. Food Chem. 2021, 350, 129261. [Google Scholar] [CrossRef]
- Bera, K.; Nosalova, G.; Sivova, V.; Ray, B. Structural Elements and Cough Suppressing Activity of Polysaccharides from Zingiber officinale Rhizome. Phytother. Res. 2016, 30, 105–111. [Google Scholar] [CrossRef]
- Jing, Y.; Cheng, W.; Ma, Y.; Zhang, Y.; Li, M.; Zheng, Y.; Zhang, D.; Wu, L. Structural Characterization, Antioxidant and Antibacterial Activities of a Novel Polysaccharide from Zingiber officinale and Its Application in Synthesis of Silver Nanoparticles. Front. Nutr. 2022, 9, 917094. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.; Wang, W.; Li, Q.; Chen, Y.; Feng, W.; Zheng, D.; Zhao, T.; Mao, G.; Yang, L.; et al. Extraction, purification, characterization and antioxidant activities of polysaccharides from Cistanche tubulosa. Int. J. Biol. Macromol. 2016, 93 Pt A, 448–458. [Google Scholar] [CrossRef]
- Zeng, P.; Li, J.; Chen, Y.; Zhang, L. The structures and biological functions of polysaccharides from traditional Chinese herbs. Prog. Mol. Biol. Transl. Sci. 2019, 163, 423–444. [Google Scholar] [CrossRef]
- Morris, G.A.; Adams, G.G.; Harding, S.E. On hydrodynamic methods for the analysis of the sizes and shapes of polysaccharides in dilute solution: A short review. Food Hydrocoll. 2014, 42, 318–334. [Google Scholar] [CrossRef]
- He, J.; Xu, Y.; Chen, H.; Sun, P. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds. Int. J. Biol. Macromol. 2016, 17, 1988. [Google Scholar] [CrossRef]
- Liu, J.-P.; Wang, J.; Zhou, S.-X.; Huang, D.-C.; Qi, G.-H.; Chen, G.-T. Ginger polysaccharides enhance intestinal immunity by modulating gut microbiota in cyclophosphamide-induced immunosuppressed mice. Int. J. Biol. Macromol. 2022, 223, 1308–1319. [Google Scholar] [CrossRef]
- Singer, M.; Young, P.J.; Laffey, J.G.; Asfar, P.; Taccone, F.S.; Skrifvars, M.B.; Meyhoff, C.S.; Radermacher, P. Dangers of hyperoxia. Crit. Care 2021, 25, 440. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; Tsuruta, D. What Are Reactive Oxygen Species, Free Radicals, and Oxidative Stress in Skin Diseases? Int. J. Mol. Sci. 2021, 22, 10799. [Google Scholar] [CrossRef]
- Javanian, M.; Barary, M.; Ghebrehewet, S.; Koppolu, V.; Vasigala, V.R.; Ebrahimpour, S. A brief review of influenza virus infection. J. Med. Virol. 2021, 93, 4638–4646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Jia, X.; Li, J.; Fu, J.; Huang, X.; Cui, X.; Wang, B.; Luo, W.; Lin, C.; et al. Influenza vaccination features revealed by a single-cell transcriptome atlas. J. Med. Virol. 2023, 95, 28174. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, M.; Wang, D.; Xu, G.; Yin, X.; Liu, X.; Ding, M.; Han, L. Mixed polysaccharides derived from Shiitake mushroom, Poriacocos, Ginger, and Tangerine peel enhanced protective immune responses in mice induced by inactivated influenza vaccine. Biomed. Pharmacother. 2020, 126, 110049. [Google Scholar] [CrossRef]
- Yang, D.; Hu, M.; Zhu, H.; Chen, J.; Wang, D.; Ding, M.; Han, L. Mixed polysaccharides derived from shiitake mushroom, Poriacocos, Ginger, and Tangerine peel prevent the H1N1 virus infections in mice. Biosci. Biotechnol. Biochem. 2021, 85, 2459–2465. [Google Scholar] [CrossRef]
- Ordás, I.; Eckmann, L.; Talamini, M.; Baumgart, D.C.; Sandborn, W.J. Ulcerative colitis. Lancet 2012, 380, 1606–1619. [Google Scholar] [CrossRef]
- Segal, J.P.; LeBlanc, J.-F.; Hart, A.L. Ulcerative colitis: An update. Clin. Med. 2021, 21, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Ha, C. Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterol. Clin. N. Am. 2020, 49, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.F.; McGarvey, L.; Song, W.-J.; Chang, A.B.; Lai, K.; Canning, B.J.; Birring, S.S.; Smith, J.A.; Mazzone, S.B. Cough hypersensitivity and chronic cough. Nat. Rev. Dis. Prim. 2022, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Schattner, A. The Wide-Ranging Spectrum of Cough-Induced Complications and Patient Harm. Am. J. Med. 2020, 133, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Haniadka, R.; Saldanha, E.; Sunita, V.; Palatty, P.L.; Fayad, R.; Baliga, M.S. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe). Food Funct. 2013, 4, 845–855. [Google Scholar] [CrossRef]
- Ballester, P.; Cerdá, B.; Arcusa, R.; Marhuenda, J.; Yamedjeu, K.; Zafrilla, P. Effect of Ginger on Inflammatory Diseases. Molecules 2022, 27, 7223. [Google Scholar] [CrossRef]
- Niyigaba, T.; Liu, D.; Habimana, J.D.D. The Extraction, Functionalities and Applications of Plant Polysaccharides in Fermented Foods: A Review. Foods 2021, 10, 3004. [Google Scholar] [CrossRef]
- Shao, P.; Feng, J.; Sun, P.; Xiang, N.; Lu, B.; Qiu, D. Recent advances in improving stability of food emulsion by plant polysaccharides. Food Res. Int. 2020, 137, 109376. [Google Scholar] [CrossRef]
- Chakka, V.P.; Zhou, T. Carboxymethylation of polysaccharides: Synthesis and bioactivities. Int. J. Biol. Macromol. 2020, 165, 2425–2431. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Y.-J.; Sun, P.-L.; Zhang, F.-M.; Linhardt, R.J.; Zhang, A.-Q. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int. J. Biol. Macromol. 2019, 132, 970–977. [Google Scholar] [CrossRef]
- Wan, X.; Yin, Y.; Zhou, C.; Hou, L.; Cui, Q.; Zhang, X.; Cai, X.; Wang, Y.; Wang, L.; Tian, J. Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants. Carbohydr. Polym. 2022, 276, 118739. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Yu, S.; Zhao, D.; Guo, S.; Wang, X.; Zhao, K. Polysaccharides as vaccine adjuvants. Vaccine 2018, 36, 5226–5234. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. [Google Scholar] [CrossRef]
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-B.; Kwack, S.J.; Lee, J.Y.; Kacew, S.; Lee, B.-M. Current opinion on risk assessment of cosmetics. J. Toxicol. Environ. Health Part B Crit. Rev. 2021, 24, 137–161. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, A.; Kaur, J.; Kumari, S.; Garg, M.; Sindhu, R.K.; Rahman, H.; Akhtar, M.F.; Tagde, P.; Najda, A.; et al. Bioactive-Based Cosmeceuticals: An Update on Emerging Trends. Molecules 2022, 27, 828. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, R.; Rich, K.; Adasme, M.; Kamp, A.; Singer, R.; Atlagich, M.; Estrada, C.; Jacob, R.; Zimin-Veselkoff, N.; Escobar-Dodero, J.; et al. Animal production, animal health and food safety: Gaps and challenges in the chilean industry. Food Microbiol. 2018, 75, 114–118. [Google Scholar] [CrossRef]
- Lillehoj, H.; Liu, Y.; Calsamiglia, S.; Fernandez-Miyakawa, M.E.; Chi, F.; Cravens, R.L.; Oh, S.; Gay, C.G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 2018, 49, 76. [Google Scholar] [CrossRef]
- Li, L.; Sun, X.; Zhao, D.; Dai, H. Pharmacological Applications and Action Mechanisms of Phytochemicals as Alternatives to Antibiotics in Pig Production. Front. Immunol. 2021, 12, 798553. [Google Scholar] [CrossRef]
- Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial Food Animal Production, Antimicrobial Resistance, and Human Health. Annu. Rev. Public Health 2008, 29, 151–169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Yu, A.; Wang, S.; Bai, Q.; Tang, H.; Yang, B.; Wang, M.; Kuang, H. Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review. Molecules 2023, 28, 3855. https://doi.org/10.3390/molecules28093855
Hu W, Yu A, Wang S, Bai Q, Tang H, Yang B, Wang M, Kuang H. Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review. Molecules. 2023; 28(9):3855. https://doi.org/10.3390/molecules28093855
Chicago/Turabian StyleHu, Wenjing, Aiqi Yu, Shuang Wang, Qianxiang Bai, Haipeng Tang, Bingyou Yang, Meng Wang, and Haixue Kuang. 2023. "Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review" Molecules 28, no. 9: 3855. https://doi.org/10.3390/molecules28093855
APA StyleHu, W., Yu, A., Wang, S., Bai, Q., Tang, H., Yang, B., Wang, M., & Kuang, H. (2023). Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review. Molecules, 28(9), 3855. https://doi.org/10.3390/molecules28093855